
Saarland University
Faculty of Natural Sciences and Technology I

Department of Computer Science

Master Thesis

Defining Compositionality in
Execution Time Analysis

submitted by
Sebastian Hahn

submitted
November 2014

Supervisors
Prof. Dr. Jan Reineke

Prof. Dr. Reinhard Wilhelm

Eidesstattliche Erklärung
Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbstständig
verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet
habe.

Statement in Lieu of an Oath
I hereby confirm that I have written this thesis on my own and that I have not
used any other media or materials than the ones referred to in this thesis.

Einverständniserklärung
Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen
in die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent
I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken,
(Datum/Date) (Unterschrift/Signature)

iii

Abstract

Timely operation of hard real-time systems is a correctness criterion. Guarantees,
i.e. upper bounds on the execution times of a program running on a specific microar-
chitecture, are obtained by static timing analysis. To prevent over-provisioning of
system resources, the computed bounds should be as tight as possible. For current
processors, precise timing analysis is difficult mainly due to subtle interferences
between processor features that affect the overall timing behaviour. To still obtain
precise results, state-of-the-art approaches perform a detailed but computationally
expensive exploration of possibly arising system states – thereby capturing the
effects of these interferences.
Future systems pose new challenges. As an example, multi-core processors

introduce interference on shared resources between (functionally independent)
programs running on different cores. This will eventually render the above approach
infeasible in terms of analysis runtime and memory consumption. As a consequence,
recent approaches to timing analysis assume so-called timing compositionality of
the underlying system. This allows for a decoupling into several, less complex,
individual analyses.
In this thesis, we present and discuss an updated version of our definition of

timing compositionality [18]. How to achieve timing compositionality in general
is an unsolved question. We are interested in the construction of compositional
analyses even for complex processors, as well as hardware designs that allow for
precise and compositional analyses by construction. We present ideas to approach
the challenges that arise in the context of compositional timing analysis.

Remarks on previous publications

The first part of this thesis has already been published in [18] with a preliminary
version of the compositionality definition. The publication includes Section 1,
Section 2, a previous version of Section 3, and parts of Section 7 of this thesis. The
remaining sections present novel and unpublished material.

iv

Acknowledgments

First of all, thanks to my supervisors Jan Reineke and Reinhard Wilhelm providing
an excellent working and research environment - including many valuable discussions
on ideas and details within the scope of compositionality.
Further thanks go to

(a) Michael Jacobs for interesting discussions and conversations - not limited to
compositionality;

(b) Florian Haupenthal, Barbara Dörr, Christoph Mallon, and Jörg Herter for
⊆ { regular tea meetings, lively conversations, reading and correcting parts of
the thesis };

(c) the people of the compiler design/real-time and embedded systems lab;

(d) the anonymous reviewers of [18] for their comments.

This work was supported by the DFG as part of the Transregional Collaborative
Research Centre SFB/TR 14 (AVACS) and by the Saarbrücken Graduate School of
Computer Science which receives funding from the DFG as part of the Excellence
Initiative of the German Federal and State Governments.

Last but not least, I would like to express my special gratitude to my entire
family for their love and support throughout my life.

v

Contents

Contents

1 Introduction 1

2 Timing Compositionality by Examples 4
2.1 Resource-Sharing Systems . 4
2.2 Preemptively Scheduled Systems 5
2.3 Dynamic Random Access Memory (DRAM) 6
2.4 The Essence . 7

3 Timing Compositionality – Definition 8
3.1 Foundations . 8
3.2 Timing Compositionality . 9
3.3 Compositionality and Composability 11
3.4 Timing Compositional Architectures 13
3.5 Summary . 14

4 Worst-Case Execution Time Analysis 16
4.1 The Worst-Case Execution Time Problem 16
4.2 Interdependencies in Modern Microprocessors 18
4.3 The Integrated Analysis Approach 19
4.4 Towards Compositional Analyses 21
4.5 Integrated versus Compositional Approach 22
4.6 Example Applications for Compositional Timing Analysis 24
4.7 Challenges in Compositional Timing Analysis 26
4.8 Summary . 27

5 Compositional Timing Analysis 28
5.1 Accountability, or: Deriving Timing Contribution Functions . . . 28
5.2 Compositional Analysis based on Accident Counting 31
5.3 Analysis Frameworks . 32
5.4 Practical Considerations . 36

6 Timing Compositionality by Design 39
6.1 Stall on Timing Accidents . 39
6.2 Relaxation: Monotonicity . 40
6.3 Summary . 41

7 Related Work 42

vi

Contents

8 Conclusions and Future Work 44

References 45

vii

1 Introduction

In general-purpose computing, the fast execution of programs in most cases is a
desirable property. For safety-critical, hard real-time (embedded) systems, timely
program execution in all cases is strictly required [36]. In such a hard real-time
setting, static analysis methods are therefore employed to derive guarantees for the
timing behaviour of a program – prior to the deployment of the system.
Analysis results at high precision are required to prove the system’s timeliness

without over-provisioning its resources. The timing of a program depends not
only on its inputs such as sensor values, but also on the state of the underlying
hardware platform, e.g. cache contents. A memory access during program execution,
e.g., can be served within a few cycles if the requested memory block is cached,
while taking hundreds of cycles otherwise. In order to obtain precise results, this
microarchitectural influence on the execution time has to be considered during
analysis.
Modern microprocessors have several performance-enhancing features such as

complex pipelining, caching, branch prediction, and speculation. Each of these
features enlarges the microarchitectural state that has to be considered during
analysis to obtain tight timing bounds. Additionally most of these processor
features are also highly interdependent [20] – often enough in a subtle way. These
interdependencies cause interferences between processor features during program
execution – e.g. a speculative memory access influences the cache contents and
thereby the cache’s timing behaviour. Timing analysis for such microprocessors
has become a complex task due to these interferences.
To obtain tight timing bounds, state-of-the-art approaches employ a highly-

integrated, non-compositional analysis that simultaneously keeps track of all the
interferences caused by interdependencies. They explore the space of whole mi-
croarchitectural states that can evolve during program execution and search for
the longest path. Such approaches allow to precisely capture the detailed execu-
tion behaviour of a program – at the cost of significant analysis effort. To allow
for a more compact representation of microarchitectural states, abstractions are
employed. Efficient and sufficiently precise abstractions have been proposed for
some isolated features, e.g. caches [4], while abstractions for other components
and their complex interplay are still to be found. The integrated approach using
abstractions, as implemented in the industry-strength tool aiT [13] by AbsInt
GmbH, is successfully applied to programs that execute uninterruptedly and in
isolation – even on complex processors [33]. Despite the employed abstractions,
the state space exploration is still very expensive in terms of analysis time and
memory consumption. Thus, any change to the analysis setting or any additional
processor feature might render this approach computationally infeasible.

1

1 Introduction

The need for compositionality by two examples In modern and future em-
bedded systems, tasks are scheduled preemptively as this increases the overall
schedulability compared to non-preemptive scheduling. This introduces additional
interferences, as the preempting task might evict useful cache contents that has to
be reloaded by the preempted task.

Multi-core platforms are emerging also in the embedded domain as they offer a
better performance-energy ratio and reduce the total weight compared to multiple
single-core computers. As a consequence, several programs are grouped together to
execute concurrently on different cores sharing common resources such as buses and
memory. Thus, due to resource sharing, interferences with an impact on the timing
behaviour between functionally independent programs are introduced [1]. Keeping
track of this increasing amount of interferences in an integrated analysis will lead
to state space explosion and will finally render the above approach infeasible.

For that reason, complexity, there is a need for a compositional view of (analyses
of) the timing behaviour of a system – moving away from the integrated, non-
compositional view. Recently, efficient and precise analyses have been proposed
that focus on the (timing) behaviour of selected features – not of the whole system
at once. Examples are the analysis of shared buses in a multi-core system [31, 32] as
well as analyses for preemptively scheduled systems [5]. The inherent, underlying
assumption is that the system allows for such a decoupling of analyses. This
assumption is referred to as timing compositionality.

Our Contributions and Overview

Up to now, timing compositionality is a term whose meaning is solely based on
intuition without a rigorous, formal definition. We examine existing approaches
that assume “timing compositionality” with respect to their intuitive understanding
of compositionality in Section 2. Based on our findings, we present a unified formal
definition of timing compositionality (Section 3). A preliminary version of the
definition has been given in [18]. Following our definition, we want to soundly
replace the analysis of a whole system by a combination of independent analyses that
focus only on individual features. We discuss timing compositional architectures as
introduced by [37] and highlight the differences to our definition of compositionality
in Section 3.4.
In the second part – beginning with Section 4 – we focus on the exploitation

of compositionality in execution-time analysis. We describe the integrated, state-
of-the-art approach as well as the compositional approach to timing analysis
and we discuss their respective advantages and shortcomings. We argue that
compositional analyses are possible even for complex processors. Coming at the
price of overestimation, compositionality potentially enables more efficient analyses.

2

In addition, compositionality might even improve precision by enabling more
powerful analyses focusing on individual components, that were prohibitive in an
integrated analysis setting due to their complexity. Concrete example applications
for compositionality are presented in Section 4.6.
How to achieve timing compositionality in general is an unsolved question.

In Section 4.7, we identify challenges for the design of compositional analyses.
Section 5 provides ideas towards a compositional analysis framework, including
the presentation of a generic, compositional analysis based on counting so-called
timing accidents.
Third, we discuss the microarchitectural influence on compositionality in more

detail from the point of view of hardware design. In Section 6, we present a
microarchitectural design guideline that, given a decoupling (e.g. into cache and
pipeline behaviour), enables precise and compositional analyses by construction. In
return, such designs might degrade performance as they restrict the way latencies
can be hidden.
Related work is described in Section 7. We conclude and summarise challenges

and open problems that are subject to future work in Section 8.

3

2 Timing Compositionality by Examples

2 Timing Compositionality by Examples

Recently, approaches have been proposed that make use of a compositional rather
than an integrated view on the timing behaviour of systems. This enables focusing
on the analysis of selected features of a system in isolation while maintaining overall
soundness – given timing compositionality and soundness of the individual analyses.
We give several examples where timing compositionality is assumed or required.

2.1 Resource-Sharing Systems

Schranzhofer et al. [31, 32] are concerned with the analysis of the interference on
a shared bus in a resource-sharing system. As an example, consider a multi-core
system with a shared memory that is accessed via a shared bus as depicted in
Figure 1. A task executes on one core and can access the shared memory through
the shared bus. Each resource/bus access might be blocked until access is granted
by the arbiter (e.g. TDMA arbitration [31] or adaptive arbitration [32]).
Timing compositionality enables the decoupled analysis of the timing contri-

butions of selected features and allows to combine the individual results to a
globally safe result. First, an upper bound on the execution times of the task under
consideration execmax (excluding resource accesses) as well as an upper bound on
the number of resource accesses µmax are computed. With these bounds in mind,
the authors search for the worst distribution of accesses and execution time to
maximise the overall blocking time B that the considered task can incur. In case
of TDMA arbitration, the calculation of the overall blocking time B depends on
the static bus schedule and the initial offset of the task’s start time w.r.t. the bus
schedule. For other arbitration policies such as Round-Robin, the calculation of B
additionally depends on execmax and µmax of the tasks running on the other cores.
In the given scenario, a globally safe bound is computed by

execmax + µmax · a+B,

where the constant a bounds the access time to the resource once access is granted.
The authors explicitly assume a fully timing compositional architecture in the

sense of [37], i.e. an architecture without timing anomalies (Section 3.4). In
general, the absence of timing anomalies allows to prune parts of the abstract state
space that an analysis has to consider and thus affects the efficiency of analyses.
The presence of timing anomalies, however, does not generally preclude timing
compositionality in the sense of decoupled analyses, e.g. as they are described in
the previous paragraph. In contrast to timing compositionality, the absence of any
timing anomaly is not strictly required by the above approach and only constrains
the usable hardware platforms. Most known analyses for modern microprocessors

4

2.2 Preemptively Scheduled Systems

Core 1execmax Core 2 Core 3 Core 4

Shared Memoryµmax · C

Shared BusB

Figure 1: Multi-core system with shared bus and memory. Compositional view of
the worst-case response time of a task running on Core 1.

(except for very simple ones) exhibit timing anomalous behaviour. Therefore,
having a “fully timing compositional architecture” is a quite strong and possibly
overly restrictive assumption. Assuming timing compositionality (see Section 3.2) of
the bus blocking time w.r.t. execution and resource access time is already sufficient.

A detailed discussion of the term “timing compositional architecture” as well as
further details on the relationship between timing anomalies and compositionality
can be found in Section 3.4.

2.2 Preemptively Scheduled Systems

Altmeyer et al. [5] present a response time analysis for systems with fixed priority,
preemptive scheduling in the presence of caches. An example schedule of two tasks
is depicted in Figure 2. The worst-case response time of task 2 is prolonged by
task 1 preempting it.
The response time of a task i is decoupled into (a bound of) its execution

time(s) Ei without preemption, (a bound of) the execution time(s) Ej of tasks j
possibly preempting it, and the preemption cost γi,j, i.e. the additional execution
time of task i due to preemption by task j (and tasks with higher priority than j).
In [5] and [6], Altmeyer et al. focus on the computation of the preemption cost that
results from evicting useful cache blocks by preempting tasks. Other effects, not
related to the cache, are considered constant and are assumed to be incorporated
in the execution time bound. Their analyses approximate the number of additional
cache misses a due to preemption in the worst-case and thus yield γi,j = a·BRT. The
block reload time (BRT) – the penalty that one additional cache miss contributes
to the overall execution time – is assumed to be bounded by a constant. This does
not always have to be the case: one cache miss could trigger a chain reaction in
other parts of the system, whose timing effect is only bounded by the length of the
program’s execution path (so-called domino effects). Note, that chain reactions

5

2 Timing Compositionality by Examples

t

T2

T1 E1

aT1
dT1

E2

aT2

E2

cache re-loads γ2,1

dT2

Figure 2: Compositional view on preemptively scheduled systems: Task 2 is pre-
empted by task 1. Task 1 evicted useful cache contents resulting in
additional cache re-loads. aT i arrival time of task i, dT i deadline of task i,
Ei execution time of task i, γi,j additional cost of task i due to preemption
by task j.

within the cache are already captured by a.
The calculation of the timing contributions Ei, Ej , and γi,j entails possible over-

approximations. As an example consider the block reload time (BRT) that soundly
approximates the timing contribution of one additional cache miss incurred at any
point during execution. Depending on the execution context, e.g. the number of
outstanding bus accesses to main memory, the time needed for one reload varies.
Necessarily, a sound BRT might overestimate the actual reload time.
In case of multiple preemptions, the overall preemption cost depends on the

number of preemptions, which again depends on the response time. Therefore, the
authors employ a fixed point iteration scheme to compute a valid response time
[5]. During an iteration step, the results of the previous iteration step are used to
calculate nj the number of preemptions by task j.

Timing compositionality is required to allow for a decoupling of the computation
of the preemption costs and the execution time of the tasks without preemption.
The combination of the individual analysis results

Ei +
∑

j preempts i
nj · (Ej + γi,j)

leads to a globally sound result – in case of timing compositionality.

2.3 Dynamic Random Access Memory (DRAM)

The use of DRAM (compared to Static RAM) complicates timing analysis as
the behaviour of the DRAM controller has to be additionally modelled. One

6

2.4 The Essence

complication arises from DRAM refreshes that prolong ongoing memory accesses
and appear (in general) asynchronously to program execution. A possibility to
account for these DRAM refreshes in timing analysis is described by Atanassov et al.
in [7]. Let t be a bound on the execution time assuming no DRAM refreshes,
n the maximum number of refreshes occurring during program execution and d the
maximal delay caused by a refresh. They claim that the execution time with
enabled refreshes tDRAM is bounded by t + n · d. Thus, they implicitly assume
timing compositionality because the penalty due to DRAM refreshes n · d and the
execution time without refreshes t are independently computed and then summed
up to obtain a valid bound. Note, that the computation of the maximal number of
refreshes n might involve a fixed point iteration as it depends on tDRAM.

2.4 The Essence

The examples presented above highlight the intuitive understanding of timing
compositionality and thus form the basis for our formal definition in the next
section. Therefore, we summarise the key insights gained in this section.

First, we have a system, e.g. a program executed on a multi-core processor, whose
timing is of interest to us, i.e. the execution time of the program running on the
multi-core. The timing of the system is decomposed into several timing contributions
that capture different shares of the system’s timing behaviour – e.g. the execution
time without bus accesses, the resource access time and the bus blocking time.
Next, the timing contributions are approximated separately by individual analyses.
The individual analysis results are finally combined to a sound upper bound on
the system’s timing.

7

3 Timing Compositionality – Definition

3 Timing Compositionality – Definition

In the previous section, we introduced the intuition behind timing compositionality.
In this section, we want to present our formal definition and discuss it in detail.

3.1 Foundations

First of all, we need a notion of time. The set of possible timings is denoted by T .
There are several possible choices for T . Using T := N0, we can model discrete
processor cycles, while T := R+ could be used to model dense time (e.g. in case of
multiple clock domains).

Timing Behaviour We consider a system, such as a program executed on a multi-
core processor, whose timing is of interest to us. In general, the system’s timing
depends on its internal state (e.g. the processor’s cache contents) as well as on the
inputs to the system (e.g. sensor values). In analogy to finite state machines [2],
we denote the pair of state and remaining input by the term configuration. The set
of possible system configurations is denoted by C.
A description of the system’s timing behaviour is given by a function C → T .

Provided a configuration c, the function returns a (bound on) the overall system’s
timing, i.e. the time needed by the system to reach a final configuration starting
in c. Final means e.g. the termination of the program started in configuration c, or
a configuration such that all tasks were successfully scheduled. Note that there are
several possible functions that describe the system’s timing behaviour in a sound
way.

The system’s timing is decomposed into individual timing contributions that
capture a specific share of the system’s timing. A timing contribution is again
described by a function that returns a (bound on) a specific share of the overall
system’s timing starting in a given configuration.

A timing contribution does not necessarily depend on all the information that is
available from a given configuration. E.g. to compute the execution time without bus
accesses, no information about the bus is needed. Therefore, a timing contribution
is associated with a set of subconfigurations Ci keeping the relevant information
from the system configurations. A timing contribution is thus described by a
function tci : Ci → T .
To obtain a subconfiguration from a given system configuration, we use a

projection function pi : C → Ci that extracts the relevant parts of a system
configuration. Subconfigurations of different timing contributions can share common
information: E.g. to compute the resource access time and the execution time

8

3.2 Timing Compositionality

without bus accesses, information about the executed program is needed in both
cases.

The system’s timing can also be seen as a timing contribution function tc : C → T .

Decomposition of Timing Behaviours Before defining timing compositionality,
we need a notion of decomposition of a system’s timing into individual timing
contributions. For exemplary decompositions, refer to Section 2.1 and 2.2.

Definition 3.1. Let tc : C → T describe the timing of the system under consider-
ation. Furthermore, let (tci : Ci → T)i=1..n be timing contributions that capture
shares of the system’s timing. We call (tci)i=1..n together with a family of pro-
jection functions (pi : C → Ci)i=1..n and a combination function ⊕ : Tn → T , a
decomposition of tc.

The combination function captures the way individual timing contributions are
combined in order to safely bound the system’s timing. In the examples presented
in Section 2, the combination is given by the addition operator, i.e. the individual
timing contributions are added up to obtain an overall timing bound. Other
combination functions are possible. E.g. in case parts of the system work in parallel
and independently from each other, the combination function might compute the
maximum of the timing contributions. In general, the combination function can
be more complex and is determined by the chosen decomposition. For practical
purposes (see Section 4.4), the combination function should be monotonic, i.e. a
larger timing contribution should not lead to a smaller combined result.

3.2 Timing Compositionality

Definition 3.2 (Timing Compositionality). Let tc : C → T describe the tim-
ing of the system under consideration. Furthermore, let the timing contribu-
tion functions (tci : Ci → T)i=1..n together with configuration projection functions
(pi : C → Ci)i=1..n and combination operator ⊕ : Tn → T be a decomposition of
tc : C → T . We call the decomposition timing compositional if and only if

∀c ∈ C. tc(c) ≤
n⊕
i=1

tci(pi(c)).

Dependence on Decomposition Timing compositionality as defined above is a
property that depends on a chosen decomposition of the system’s timing behaviour.
For one system’s timing, there might exist multiple decompositions into different
timing contribution functions, possibly associated with different projection functions
and a different combination operator. Compositionality states that specific shares

9

3 Timing Compositionality – Definition

of the overall system’s timing, as described by timing contribution functions, can
be considered separately. Which shares can be considered separately depends on
the chosen decomposition.
There exist trivial decompositions (e.g. n = 1, C1 = C and tc1 = tc) such that

compositionality becomes a weak statement. Thus the significance of timing com-
positionality strongly relies on the significance of the decomposition. A significant
decomposition will have non-trivial timing contribution functions. Furthermore,
a significant decomposition will allow to obtain a conservative estimate of the
system’s timing more efficiently by separate estimations of timing contributions.
(See paragraph on Complexity Reduction)

Nesting Note that the definition also captures nesting, i.e. that the definition is
again applicable to any timing contribution tci : Ci → T (if considered as “system
timing”) and so on. Thus compositionality can be employed at different levels
within a system.

Complexity Reduction Timing compositionality aims at reducing the computa-
tional complexity of analysing the timing of an entire system by combining the
results of individual, less complex analyses of timing contributions. The projection
functions (pi : C → Ci)i=1..n capture the information need to compute the timing
contributions and thereby the amount of information that individual analyses have
to consider. In case a projection function pi is the identity function (pi(c) = c), the
timing contribution tci requires entire system configurations as input. It has the
same information need as the system’s timing tc, indicating a complex analysis of
timing contribution tci. In general, the smaller the subconfigurations pi(c) ∈ Ci ,
the better for the complexity of the individual analyses.

Approximation So far, timing compositionality (Definition 3.2) makes a statement
solely about the correctness of the combined timings with respect to the system’s
timing. However, there might exist several different timing-compositional decompo-
sitions of one system’s timing into timing contributions. For some decompositions,
the combination of the timing contributions might approximate the overall system’s
timing quite closely, while the system’s timing is considerably overestimated for
other decompositions. To capture the precision of a decomposition, we refine our
definition of timing compositionality as follows.

10

3.3 Compositionality and Composability

Definition 3.3 ((µ, α)-Timing Compositionality). Let tc : C → T describe the
timing of the system under consideration. Furthermore, let the timing contribution
functions (tci : Ci → T)i=1..n together with configuration projection functions
(pi : C → Ci)i=1..n and combination operator ⊕ : Tn → T be a decomposition of
tc : C → T . We call the decomposition (µ, α)-timing compositional where µ ∈ R≥1,
α ∈ R+

0 if and only if

∀c ∈ C. tc(c) ≤
n⊕
i=1

tci(pi(c)) ≤ µ · tc(c) + α.

The additional inequality restricts the Definition 3.2 of timing compositionality
because µ and α are finite constants.

Precision If a decomposition is (µ, α)-timing compositional, we have an upper
bound on the overestimation of the combined timing contributions compared to
the system’s timing. The values µ and α are thus a measure of the precision
of a specific decomposition: the system’s timing is never overestimated by more
than a factor of µ and an additive constant α. For a given decomposition and
timing contribution functions, we are interested in the minimal µ and α such that
compositionality still holds. Furthermore, a decomposition that permits small
constants µ and α within reasonable complexity is preferable.

Next, we introduce some specific notions of timing compositionality based on
Definition 3.3. Consider a (µ, α)-timing-compositional decomposition of a system’s
timing. We call the decomposition

• timing compositional with constant-bounded effects in case µ = 1 and

• fully timing compositional in case µ = 1 and α = 0.

In case of a fully-timing-compositional decomposition, the two inequalities in
Definition 3.3 imply equality,

∀c ∈ C. tc(c) =
n⊕
i=1

tci(pi(c)).

3.3 Compositionality and Composability

Timing compositionality and timing composability are two important properties
with applications in timing analysis. In the following, we present examples to
illustrate the respective properties as well as their relationship.

11

3 Timing Compositionality – Definition

Core 1 Core 2 Core 3 Core 4

Shared Memory
using e.g. partitioning

Shared Bus
using e.g. TDMA

Figure 3: Multi-core system with shared resources: Composability by Temporal
Isolation.

Compositionality Timing compositionality as defined in the previous section is
a property of a decomposition of a given system’s timing behaviour. It states
that the timing behaviour of the system as a whole can be inferred from timing
contributions of parts of the system and the type of composition. This enables a
modular view on the system’s timing behaviour.
As an example, consider the multi-core setting in Figure 1 together with the

analysis presented in Section 2.1. The response time of the program running on
Core 1 is decomposed into the computation time, the memory access time and the
bus blocking time. Given correct timing contribution functions, this decomposition
is compositional.

Composability In contrast, timing composability is a property of a system’s
timing behaviour within a larger environment. It states that the timing behaviour
of the system is independent of the behaviour of the surrounding environment.
The system’s timing behaviour is thus not influenced by the integration with other
systems. As a consequence, it can be analysed in isolation.

Consider the multi-core platform in Figure 3. The timing behaviour of one core,
i.e. the worst-case response time of the program running on the respective core, is
composable, if the timing behaviour is independent of the behaviour (e.g. accesses to
the shared resources) of the other cores. Thus, composability allows for a separate
verification of the timing behaviour of (the program running on) one core without
knowledge about the behaviour of the other cores.

How to achieve Composability (for Multi-Core Processors) It is desirable,
that the timing of the program running on one core is not influenced by other
programs running on other cores – the timing is then composable. However, for
current multi-core architectures this is not true: Interference on the shared bus
as well as possible state changes of the shared memory (e.g. a cache) influence

12

3.4 Timing Compositional Architectures

the timing of programs. One way to achieve composability is to enforce temporal
isolation at the implementation level as depicted in Figure 3. Several approaches
to temporal isolation have been proposed such as TDMA arbitration of the shared
bus and partitioning of the cache. A survey on the interference in multicores as well
as techniques to achieve temporal isolation is given in [1]. Akesson et al. [3] and
Goossens et al. [14] provide an overview of how to achieve temporal isolation in a
system-on-chip setting. Another way to achieve timing composability at the analysis
level is to conservatively account for the possible interference by the environment.
As an example, round-robin arbitration does not achieve temporal isolation at the
implementation level, yet, the latency of bus accesses can be bounded independently
of the number of interfering accesses.

Interplay between Compositionality and Composability There is an interplay
between the properties compositionality and composability. Consider the two
previous examples together: the compositional decomposition of the response time
of the program running on Core 1 (Figure 1), and the composable behaviour of the
cores in the multi-core system (Figure 3). As the cores operate in a composable
fashion, the bus blocking time only depends on the behaviour of the core under
consideration and no longer on the behaviour of the other three cores. Thus, the
computation of the bus blocking time is simplified.

3.4 Timing Compositional Architectures

Previously, there have been attempts towards defining a notion of compositionality.
In [37], Wilhelm et al. give definitions for timing compositional architectures based
on the notion of so-called timing anomalies and domino effects. A timing anomaly
describes a situation during analysis where the locally worst choice (cache miss)
does not lead to the globally worst timing. If the effect of the local choice on
the global result cannot be bounded by a constant, the anomalous situation is
called domino effect. A definition of timing anomalies and domino effects as well as
concrete examples can be found in [28]. Fully timing compositional architectures
are then defined as architectures whose abstract model does not exhibit timing
anomalies (nor domino effects). In case there are timing anomalies but no domino
effects, the architecture is classified as compositional with bounded effects – and
non-compositional otherwise.

Compared to our definition, their notion of timing compositionality is a property
of a model of a system and not of a behavioural decomposition of a model of a
system, which we consider an important aspect. Our definition of compositionality
is always meant with respect to a specific underlying decomposition of a system’s
timing behaviour into timing contributions. In contrast to the definition of timing

13

3 Timing Compositionality – Definition

A

A

Resource 1

Resource 2

Resource 1

Resource 2

C

B C

B

D E

D E

C ready

Figure 4: Scheduling anomaly [28]: Shorter execution of instruction A leads to
longer overall execution. Timing compositionality is not necessarily
affected by anomalous behaviour.

compositional architectures [37], our definition does not forbid arbitrarily complex
timing behaviours within parts of the system. In particular timing-anomalous
behaviour is not forbidden in general. As an example, consider the decomposition
of a processor with out-of-order execution into timing contributions of the pipeline
and the cache. The analysis of the pipeline’s timing contribution might have to take
timing anomalies into account due to dynamic scheduling effects caused by out-of-
order execution – so-called scheduling anomalies (see Figure 4, [28]). However, the
decomposition into timing contributions of the pipeline and the cache can be timing
compositional, e.g. in case the pipeline stalls execution while servicing a cache miss
from main memory. We present a hardware-design guideline by means of a stalling
mechanism in Section 6 that enables compositionality of such decompositions by
construction. The property to be timing compositional is then unaffected by the
anomalous behaviour within parts of the system (such as a pipeline).
Furthermore, the abstract model of an architecture is not uniquely defined. As

already stated in Section 3.1 and Section 3.2, there might exist several decomposi-
tions of a system’s timing; and multiple different functions are possible to describe
the timing of a system. Similarly, several different abstract models exist for one
architecture – some of which may exhibit timing anomalies while others do not.
Therefore, relating the above definition to architectures rather than to specific
formal models is problematic.

3.5 Summary

We started by introducing basic concepts such as configurations, timing contribu-
tions and the decomposition of a system’s timing behaviour. Next, we presented

14

3.5 Summary

our definition of timing compositionality, following the intuition given in Section 2.
A decomposition is called timing compositional if and only if the combination of
individual timing contributions is always an upper bound on the system’s timing.
We later refined this notion to (µ, α)-timing compositionality to incorporate a
notion of precision.

In the following, we distinguished timing compositionality from timing compos-
ability and we described their respective applications in timing analysis.

Finally, we discussed the previous definition of timing compositional architectures
[37]. We sketched the issues that arise from this definition and we highlighted the
differences with respect to our definition of timing compositionality.

15

4 Worst-Case Execution Time Analysis

Fr
eq
ue

nc
y

Execution
time

LB BCET WCET UB

Analysis-guaranteed timing bounds

Possible execution times Overest.

Figure 5: The worst-case execution time problem. Introducing basic notions.

4 Worst-Case Execution Time Analysis

As mentioned earlier, timing compositionality has applications in the context of
timing analysis (Worst-Case Execution Time Analysis). After a short introduction,
we give an overview of the integrated and compositional analysis approach and we
discuss their respective advantages and shortcomings. Furthermore, we present
potential applications of timing compositionality in execution time analysis. This
is complemented by a summary of challenges in compositional timing analysis.

4.1 The Worst-Case Execution Time Problem

In a hard real-time setting, the possible execution times of a given program p
running on a hardware platform are of major interest for proving timeliness of the
system. The execution time of a program varies due to e.g.:

• different inputs leading to different execution times of individual instruc-
tions (variable-latency instructions) or even to different paths through the
program p,

• different initial microarchitectural states such as the varying cache contents
leading to different memory access latencies, and

• different execution environments such as co-running programs on a multi-core
system causing interference on shared resources.

Therefore, we have a distribution of possible execution times as depicted in Figure 5.
We are interested in safe approximations of the execution times – especially

upper bounds on the execution times including the execution time in the worst
case. As a sufficient criterion that such upper bounds exist, the program p is

16

4.1 The Worst-Case Execution Time Problem

assumed to terminate, i.e. the number of loop iterations and the depth of recursive
function calls are known. The bounds should be as tight as possible in order to
avoid over-provisioning of system resources.

One technique to compute such bounds is the exploration of the space of system
configurations within a single (integrated) analysis – possibly employing abstractions
(e.g. value or cache abstractions) to speed up computation. In contrast, timing
compositionality enables the decoupling into multiple, independent analyses. Before
going into detail about this, we define some basic notions in the context of WCET
analysis.

Definition of the WCET The execution time of a program p ∈ Prog depends
on the input (initial values of registers and memory) i ∈ MemReg, the initial
microarchitectural state µa ∈ µArch, and the state of the execution environment
e ∈ Env. Prog denotes the set of program states (the program itself and the
program counter), MemReg the set of register and memory values, µArch the set of
microarchitectural states (e.g. pipeline state and cache contents), and Env the set of
environmental states (e.g. state of co-running cores, shared resources). The whole
system’s configuration space C is then described by Prog×MemReg×µArch×Env.
We call Prog ×MemReg the instruction-set-architectural (ISA) configuration as
it is sufficient to determine the semantics of the program, e.g. which values are
computed during execution.
The timing contribution function of the concrete system tc : C → T maps a

configuration c ∈ C to the number of cycles needed to execute the system from c
to a final configuration, i.e. a configuration in which the initial program terminates.
In case of non-determinism, the timing function gives the maximal possible number
of cycles to reach a final configuration from c. The worst-case execution time of a
program p is then defined as

WCET p := max
i∈MemReg

max
µa∈µArch

max
e∈Env

tc(〈p, pinit〉, i, µa, e), (1)

where pinit denotes the entry point of program p.
In case the possible inputs are restricted to I ⊆ MemReg (analogously for

restrictions on µArch or Env), we can refine the above Equation 1 to

WCET p,I := max
i∈I

max
µa∈µArch

max
e∈Env

tc(〈p, pinit〉, i, µa, e).

Microarchitectural Analysis and Compositionality Microarchitectural analysis,
i.e. the analysis concerned with the microarchitectural influence on execution time,
is a complex task due to the interdependencies in modern processors as described in
the next section. Timing compositionality aims at splitting the microarchitectural

17

4 Worst-Case Execution Time Analysis

Pipeline

Cache

Branch
Prediction

interact

interact

Figure 6: Modern microprocessors feature several performance-enhancing compo-
nents that interact closely. These interactions and possibly occurring
interferences complicate WCET analyses.

analysis into less complex subanalyses that focus on specific features of the hardware
separately. In this setting, individual timing contributions are often associated
with physical, microarchitectural components such as a cache, a pipeline, or a
branch prediction unit. The structural organisation of a microarchitecture into
components guides the decomposition of the microarchitecture’s timing behaviour.
In the following, we focus on compositionality in the context of microarchitectural
analysis.

4.2 Interdependencies in Modern Microprocessors

Modern microprocessors have several performance-enhancing features such as (out-
of-order/ superscalar) pipelines, caches and branch prediction units. They aim
at increasing the number of completed instructions per cycle, e.g. by exploiting
instruction-level parallelism. As an example, pipelining allows to overlap com-
putation and memory accesses, thereby partially hiding latencies such as main
memory access latency. These performance-enhancing features introduce non-
trivial interdependencies that make timing analysis a complex task [20]. Consider
a microprocessor with pipelining, caching and branch prediction as depicted in
Figure 6.

Pipelining and Caching The position of an instruction in the pipeline at a certain
point in time depends on whether the fetch of the instruction itself and the fetch of
its operands hit the cache or not. In the first case, the instruction can be dispatched
and executed early while it has to wait for main memory otherwise. The contents of
the cache are determined by its replacement policy and the memory access history.
The access history is, among others, influenced by out-of-order scheduling (pipeline)
and the interleaving of instruction and data accesses in case of a unified cache.

18

4.3 The Integrated Analysis Approach

Pipelining and Branch Prediction Whether the branch prediction unit specu-
lates on the outcome of a branch depends on the state of the pipeline, e.g. how
far the branch instruction advanced in the pipeline and when the condition can
be evaluated. The condition evaluation can depend on ongoing computations or
data fetches from main memory. Vice versa, the pipeline state is influenced by
the decision of the branch prediction. In case of correct speculation, the latency
introduced by condition evaluation is hidden. Otherwise, a misprediction causes
the pipeline to roll back the incorrect execution of instructions and to redirect the
fetching to the correct target, which is overall expensive.

Transitively, caching and branch prediction are also interdependent, e.g. specula-
tive memory accesses can have detrimental effects on the cache in case of branch
misprediction.
In general, these interdependencies make compositional (also called modular)

analyses more complicated and affect the obtainable precision negatively. Heck-
mann et al. [20] conclude that modular analyses are prohibitive, and only an
integrated approach is feasible. Next, we describe this integrated approach and
outline a compositional approach to timing analysis. Finally, we trade off the
integrated against the compositional approach and discuss the issues of analysis
precision and efficiency in Section 4.5.

4.3 The Integrated Analysis Approach

Overview As already mentioned earlier, the integrated approach to timing analysis
considers configurations of the whole system at once. It starts with an initial set of
possible system configurations and explores the configurations that are reachable by
executing a given program. Thereby, the analysis closely follows the real execution
on a cycle level. Later on, a path analysis is employed to find the longest path
from an initial configuration to a final configuration, taking loop bounds, recursion
depth, etc. into account.
To allow for a more compact representation, similar concrete configurations

are condensed to one abstract configuration. This abstraction step potentially
introduces uncertainty to the analysis w.r.t. the succeeding (abstract) configuration.
In case of analysis uncertainty, e.g. whether a memory access hits the cache or
not, the current abstract system configuration is split into several succeeding
configurations – one configuration per possibility. In the context of finite state
machines, the integrated analysis approach corresponds to the search of a longest
sequence of consecutive configurations from an initial to a final configuration.
Uncertainty during analysis corresponds to non-determinism in the finite state
machine [2]: all possible successor configurations have to be considered.

19

4 Worst-Case Execution Time Analysis

IU1 : —
IU2 : mul, 2
FPU : div, 5

beqz
add

I-Buf

b b
a, c

taken

not taken

1-bit Predictor

Must May
fetch operand a

IU1 : add, 1
IU2 : mul, 1
FPU : div, 4

—
beqz

I-Buf

a

b

a

b

taken

not taken

1-bit Predictor

Must May
operand a

predict taken

IU1 : —
IU2 : mul, 1
FPU : div, 4

beqz
add

I-Buf

b b

c

taken

not taken

1-bit Predictor

Must May
stall (main memory)

Cache hit Cache miss

Figure 7: Example step during the integrated analysis.

In practice, the program to analyse is given in form of a control-flow graph. The
integrated approach as described by Thesing [35] explicitly explores the space of
microarchitectural states that arise during program execution – it does not explicitly
explore the space of whole system configurations. The following discussion therefore
focuses on the exploration of the microarchitectural state space, but it can be
generalised to the exploration of the system’s configuration space.

Example Consider the analysis of a microarchitecture as depicted in Figure 6.
Three possible abstract microarchitectural states that arise during the microarchi-
tectural state space exploration are depicted in Figure 7.

One microarchitectural state comprises the state of the pipeline, branch predic-
tion unit, and cache. The pipeline has an instruction buffer that holds fetched
instructions waiting for dispatch and several functional units that might be occupied
by the execution of an instruction. The branch prediction unit (1-bit dynamic
prediction) can either be in “predict taken” or “predict not taken” mode – de-
pending on the behaviour of the last branch. The concrete cache state records
all memory blocks that are currently cached. Even for caches of moderate size,
enumerating all concrete cache states arising during the state space exploration is
impracticable w.r.t. memory consumption. Fortunately, efficient and sufficiently
precise abstractions have been found for certain cache architectures, e.g. for LRU
caches in terms of must and may analysis [4]. The must cache under-approximates

20

4.4 Towards Compositional Analyses

the concrete cache contents and can be used to predict cache hits. The may cache
over-approximates the concrete cache contents, and its complement can be used to
predict cache misses. For details about the analysis of caches, see [15].
Next, we discuss one example exploration step. Consider the top abstract

microarchitectural state in Figure 7. In the next cycle, the add instruction is about
to be dispatched. Prior, one of its operands, a, has to be fetched from memory. It
is uncertain whether this access hits the cache – it might (may cache) but it does
not have to (must cache). Therefore, the current abstract state is split into the
cache hit case and the cache miss case.
In case of a cache miss, fetching and dispatching (in-order dispatch) is stalled

until the main memory request has been served. In the meantime, the execution of
the mul and div instructions advances and thereby hides the main memory latency.
Note, that the cache information can be refined. The state of the branch predictor
stays unchanged.
In case of a cache hit, the memory request is served within one cycle and the

add instruction can be dispatched. The mul and div instructions also advance
in the execution pipeline in parallel. There is one empty slot in the instruction
buffer, so a new instruction can be fetched. The address of the next instruction
depends on the outcome of the branch beqz. The branch prediction unit speculates
that the branch will be taken and thus determines the next instruction to fetch
(speculatively). As soon as the branch condition is evaluated, the state of the
predictor is adjusted accordingly.

4.4 Towards Compositional Analyses

Instead of analysing the timing behaviour of a microarchitecture in an integrated
fashion, it can also be analysed in a compositional way. We first decompose the tim-
ing behaviour into timing contributions of microarchitectural components. Second,
we analyse (i.e. we compute sound bounds on) the timing behaviour of each com-
ponent individually. Third, we combine the obtained timing contribution bounds
to an overall bound on the microarchitectural timing. Timing compositionality of
this decomposition guarantees the soundness of this result.
In Section 2, we already presented examples for compositional analyses. Now,

we focus more on the analysis framework rather than the individual analyses of the
components. These individual analyses are in general specific to the decomposition
and should therefore be discussed elsewhere.
Consider Figure 8 that provides an overview of the overall structure of the

compositional analysis framework. For a given program p, we want to approximate
the worst-case execution time WCET p (Equation 1). First, a timing-compositional
decomposition of the microarchitectural timing into components’ timing contribu-

21

4 Worst-Case Execution Time Analysis

max
ci∈Ci , s.t.
prog(ci)=p

tci(ci) ≤ Analysisi(p) Timing
Compositionality

WCET p ≤
⊕n

i=1 Analysisi(p)

Component Correctness

Figure 8: Overall structure of compositional analyses.

tions is required. Second, we need to come up with an analysis per component
that soundly approximates the timing contribution of the respective component
when program p is executed (component correctness). Each analysis has knowledge
about the program p under consideration – possibly also about the inputs, initial
microarchitectural states, or the environment if such additional knowledge is avail-
able (e.g. when approximating WCET p,I). Finally, if the combination operator of
the decomposition is monotonic, we can conclude that the worst-case execution
time WCET p as defined in Section 4.1 is soundly approximated by the combination
of the individual analysis results. We go into more detail about possible analysis
frameworks in Section 5.

4.5 Integrated versus Compositional Approach

We described two possible approaches to timing analysis in the previous sections.
We advocate neither the integrated nor the compositional approach in general –
rather a careful trade-off between the two from case to case.

Before we go into details about this trade-off, we want to correlate the two analysis
approaches to methods known in program analysis based on abstract interpretation.
Component-wise combination methods as described in [24] allow to construct an
analysis for a composite structure based on analyses for individual components
of this structure. The independent-attribute method resembles our compositional
approach: Individual analyses are kept separate and their results are combined
by means of a cartesian product. While being efficient, the missing correlation
between individual analyses can lead to precision loss. The relational method
resembles the integrated approach: The overall analysis tracks the correlations
between individual analysis results by employing an expensive power set domain.
In general, the increase in precision comes at the price of decreased efficiency.
Now, we want to discuss the advantages and shortcomings of the integrated as

22

4.5 Integrated versus Compositional Approach

well as the compositional approach. The integrated approach captures the relations
between components at a fine-grained level and is thus able to detect overlapping
effects, such as the hiding of memory latency. This comes at the price of high
analysis time and high memory consumption. Figure 9a depicts an example graph
that might arise during the microarchitectural state space exploration. The circles
denote abstract microarchitectural states and each edge denotes a possible state
evolution during one processor cycle. We start with one initial abstract state and
we split in case of uncertain information e.g. cache hit or miss, or access to an
unknown address. If two abstract states are sufficiently similar (e.g. the states
of pipeline and branch predictor are identical), they can be joined, which helps
efficiency. Nevertheless, the resulting state space is typically still very large. Each
additional processor feature is a further source of uncertainty and might cause
additional splits during analysis.

Theoretically, the integrated approach has the potential to yield the most precise
results possible. However in practice, the obtainable precision is limited by efficiency
concerns. As an example, consider the use of so-called cumulative information in
the integrated analysis. We distinguish local information, i.e. information valid at
a particular point during analysis, and cumulative information, i.e. information
valid for a group of analysis points. An example for local information is “this
access will hit the cache”, whereas “at most one of these accesses will miss the
cache” is an example for cumulative information. Such cumulative information
can be more precise than purely local information. In our example depicted in
Figure 9b, we know that at most one cache miss occurs during execution (cumulative
information). In case we do not know exactly which access misses the cache, we
have to (locally) assume that every access might miss the cache. This leads to a
growth of the state space. The joining of microarchitectural states as described
in the previous paragraph has the detrimental effect, that the subsequent path
analysis identifies the (infeasible) path with two misses as worst case. Integrating
cumulative information as constraints into the path analysis is possible but makes
the analysis less efficient.

At this point compositionality comes into play. As the components are analysed
individually, uncertainty of the individual components does not multiply. Thus we
can avoid the microarchitectural state space explosion problem – even in case that
each component is analysed using state space exploration techniques.
Cumulative information could also be used in an efficient manner. In case of a

timing-compositional decomposition with respect to the cache, the cache timing
contribution in the above example (Figure 9b) is the penalty of one miss. This is a
precision improvement regarding the result of the integrated approach.

Thus, timing compositionality might lead to a more efficient overall analysis, it
enables new types of possibly more precise analyses (those that yield cumulative

23

4 Worst-Case Execution Time Analysis

(a) Complexity. Uncertainty causes
splitting of states leading to
state space explosion.

at most
one miss

mi
ss?

mi
ss?

mi
ss?

(b) Imprecision. How to incorporate
cumulative information?

Figure 9: Shortcomings of the Integrated Analysis Approach. Circles denote ab-
stract microarchitectural states. Edges denote one cycle execution.

statements) and allows for the analysis of currently unsupported features (e.g. write-
back caches or multi-core systems, see Section 4.6 for a list of example applications).
However, achieving timing compositionality – either by analysis or by design – is
not trivial and comes, in general, at the price of overestimation or performance
degradation. Such overestimation can emerge if the compositional analyses are not
able to capture overlapping effects in tightly-coupled systems, e.g. when components
act in parallel. Analyses that capture such overlapping effects have to analyse the
interacting components together, which might be as expensive as an integrated
analysis.

4.6 Example Applications for Compositional Timing Analysis

There are several systems for whom compositional analyses could be beneficial in
terms of increased analysis efficiency, but also increased analysis precision (e.g. if
only cumulative information is available). We already described an analysis of
preemptively scheduled systems [5, 6] and an analysis of shared buses in multi-core
systems [31, 32] in Section 2. In the following, we list some more examples.

• Shared Caches in Multicores. The execution of a program p running on
one core and using a shared cache experiences interference (additional to bus
interference): Co-running programs might evict cache lines that are useful for

24

4.6 Example Applications for Compositional Timing Analysis

p. Due to this interference, it is hard to obtain a local classification of an access
as either hit or miss. Assuming the worst case for each local classification leads
to severe overestimation. If at all, bounding the amount of interference in a
cumulative way rather than locally classifying memory accesses as hit/miss is
more likely feasible in terms of precision and efficiency. The overall system’s
timing is decomposed into execution time without accesses to the shared
cache and the time needed to serve accesses to the shared cache.

• Asynchronous events such as DRAM refreshes. Events that happen
asynchronously w.r.t. program execution introduce uncertainty as to when an
event occurs during program execution. Therefore, it is hard to predict how an
event affects a program’s timing behaviour. DRAM refreshes are an example
for such events: they happen periodically and asynchronously. Whether an
individual DRAM access is affected by a refresh, thereby prolonging the overall
access time, is hard to predict statically. In case the system is compositional
with respect to such events (this can e.g. be achieved by stalling), their overall
effect on the execution time can be considered separately – possibly in a
cumulative way.

• Write Backs in Caches. In contrast to write-through caches, a store
only modifies a cache line, marks it as dirty and delays the main memory
operation until the dirty cache line is evicted – potentially reducing the overall
number of memory accesses. While the memory operation is performed at
a statically known point in time for write-through caches, the write-back
policy introduces uncertainty as to when the memory operation happens.
This is similar to the effects of asynchronous events. This uncertainty renders
the integrated, non-compositional analysis approach infeasible in terms of
complexity. Consider a decomposition into execution time in the absence of
write backs and the overall time needed to perform occurring write backs.
This compositional view enables the use of cumulative information about
the number of performed write backs – independent of the point in time
they happen. The number of potentially performed write backs could be
approximated efficiently by tracking the dirty bit of a cache line during a
separate cache analysis.

• Cache Analysis Cache analyses based on local classifications of accesses as
either hit or miss are well-known and are used in the integrated approach
to avoid splits. However, there are analyses that provide (more precise)
cumulative information about the cache behaviour, e.g. cache persistence
analyses [9, 23]. These are of use in the compositional analysis setting.
There are further examples for analyses computing sound cumulative cache

25

4 Worst-Case Execution Time Analysis

information. Cumulative information for non-LRU cache replacement policies
can e.g. be derived using sound LRU cache analyses and corresponding
relative miss-competitiveness ratios [27]. In [16, 17], Guan et al. present
analyses that compute cumulative information for caches with the FIFO and
MRU replacement policies. Motivated by cache-aware compiler optimisations,
Ghosh et al. [12] and Chatterjee et al. [8] present techniques to cumulatively
predict cache performance in loops. Ghosh et al. use Cache Miss Equations
to model the cache behaviour within a loop while Chatterjee et al. employ
Presburger formulas for the modelling.

4.7 Challenges in Compositional Timing Analysis

Besides the presented opportunities, there are several challenges in the context of
timing compositionality and its use for timing analysis.

Existing Analyses For existing analyses such as described in Section 2, we need
to check the validity of the compositionality assumption. The analyses already
determine an underlying decomposition of the system’s timing into timing con-
tribution functions. However, a formal proof of timing compositionality of this
decomposition w.r.t. the concrete system has yet to be done – as well as correctness
proofs for the individual analyses w.r.t. the timing contribution functions. In many
cases, this requires the computation of sound penalties for individual events, e.g. the
block reload time in case of an additional cache miss. The penalty depends on the
underlying microarchitecture and its behaviour in case such an event (e.g. a cache
miss) occurs. Ideally, the penalty would be computed by a sound static analysis on
a Verilog/VHDL model of the microarchitecture whose timing is preserved during
synthesis.

Designing new Analyses First, obtaining a compositional decomposition of a
system’s timing behaviour into timing contributions is crucial – especially such
that µ and α are small. Typically, we already have a decomposition in mind when
talking about timing compositionality, e.g. into cache timing and pipeline timing,
or into computation and communication time. The timing contribution functions
specify what has to be approximated by sound analyses. The obtained timing
contribution functions enable, in the ideal case, an easy design of sound analyses
and an easy proof of timing compositionality. In the following section, we present
a possible approach to tackle the systematic derivation of compositional timing
contributions for microarchitectural analysis.
Instead of a single integrated analysis, compositionality allows for multiple

individual analyses whose combination upper bounds the execution times of a given

26

4.8 Summary

program. Ideally, these analyses are more efficient in terms of analysis time and
memory consumption than an integrated analysis. An analysis framework comprises
conditions that the respective analyses have to fulfil (“What is approximated?”) and
methods to compute analysis results. We present two possible analysis frameworks
in Section 5.3.

4.8 Summary

In general, neither the integrated nor the compositional approach to execution time
analysis is best. Which type of analysis to choose depends on the behaviour of the
system, the available amount of computational power and memory, and the degree
of overestimation/performance degradation that is tolerable. We advocate the use
of integrated analyses in tightly-coupled systems such as out-of-order processors
for reasons of precision. We advocate the use of compositional analyses on a larger
scale such as multi-core systems or systems with “external” components such as
caches for efficiency reasons – but also for reasons of precision in case only precise
cumulative information is available.

We have presented example applications for the compositional approach to timing
analysis, such as the analysis of write-back caches or shared caches in multicores.
In the next section, we focus on the challenges that have been outlined previously.

27

5 Compositional Timing Analysis

5 Compositional Timing Analysis

As outlined in Section 4.7, finding a suitable decomposition of a system’s timing
behaviour into timing contributions is crucial for the design of new compositional
analyses. In the following, we present one possible approach to the derivation of
timing contribution functions in the context of microarchitectural analysis. This ap-
proach makes use of the underlying structural organisation of the microarchitecture
into components, e.g. caches and pipeline.
The timing contribution functions form the conceptual basis for the design of

individual compositional analyses by determining what to approximate. Conse-
quently, we present a generic, compositional analysis that is based on accident
counting.

Third, we describe two possible analysis frameworks – i.e. how individual analyses
can be combined to obtain overall sound results. We conclude this section by
discussing practical aspects of a new, compositional WCET analysis tool chain.

5.1 Accountability, or: Deriving Timing Contribution Functions

The main idea is to associate each execution cycle with those microarchitectural
components that are considered “accountable” for this cycle. The approach relies
on a description of the system’s (timing) behaviour on a cycle-level, e.g. given
as transition system. We explain it with an example at hand. We have a pro-
cessor system with configuration space C together with two microarchitectural
components A and B with respective configuration spaces CA and CB and pro-
jection functions pi : C → Ci . We assume C = P ×M , where P represents the
instruction-set-architectural configuration and M the micro-architectural configu-
ration. Furthermore, we assume that our system can be modelled as a transition
system with the processor system’s configuration space as set of states and a
transition relation that models one execution cycle of the system. We make no
assumptions on the determinism of the transition system.
Consider the snippet of an example transition system in Figure 10. Some

transitions are annotated with names of components, possibly several names per
transition. A transition is labelled with A if component A is accountable for/causes
this cycle. For example, the cache is considered accountable for the cycles during
which the pipeline is stalled due to a cache miss. These cycles are necessary for
the main memory to serve the requested data. In case of a cache hit, these cycles
would not occur. Hence the according transitions are labelled with the name of the
cache component. Pipelining effects may cause the execution of a functional unit
(e.g. component B) to overlap with the cache miss. In such cases, a transition is
labelled with the names of multiple components.

28

5.1 Accountability, or: Deriving Timing Contribution Functions

p1

m1

m2

A A,B

B
A

p2

m1

m2

A A,B

A
B

Figure 10: Deriving timing contribution functions in the accountability approach
by labelled transition systems. pi denote different programs, mj different
microarchitectural states. (pi,mj) form the system states. The labels A
and B refer to microarchitectural components.

Labelling – An example The labelling could be inferred dynamically during
execution or simulation as follows. A processor pipeline comes with a stall engine
that regulates the instruction flow through the pipeline by stalling specific pipeline
stages in case of hazards (e.g. by inserting pipeline bubbles). In case of hazards,
some input signals to the stall engine are active indicating the reason for a stall.
These hazard signals could be used to annotate the transition system. In case no
hazard signal is active, the transition is not labelled as it is caused by the normal
program execution – and would occur even during an ideal execution. These
transitions are taken into account by a special timing contribution function tc0.

Timing Contributions The derivation of timing contribution functions is based
on the length of paths through the transition system. Let π be a path through
the transition system that starts in π0 and finally ends in πl−1 (every program is
assumed to terminate for each input and initial hardware state). We call |π| := l
the length of this path. By |π|A, we denote the number of transition labelled with A
on path π. The timing contribution tc : C → T of our system is then given as

tc(c) := max
π,π0=c

|π|.

The function tc0 : C → T accounts for the ideal execution and is defined by the
maximal number of unlabelled transitions on any path.

tc0(c) := max
π,π0=c

|π|0 = max
π,π0=c

|π|unlabelled

29

5 Compositional Timing Analysis

We define the timing contribution function tcA : CA → T for component A once –
the function for B can be derived analogously.

tcA(cA) := max
π,pA(π0)=cA

|π|A

The results of the timing contribution functions are then combined in an additive
way.

In case a transition is labelled with multiple components, this transition is also
accounted for multiple times leading to overestimation. This overestimation could
be alleviated by assigning unique priorities to the components. If a transition
is labelled multiple times, it is only accounted for by the component with the
highest priority. As an example, consider a multi-level cache hierarchy where each
cache-level is considered a component and cache lookups are done in parallel. Each
cache-level accounts for the parallel lookup separately, which leads to overestimation.
When assigning higher priorities to higher cache levels, only the highest cache-level
will account for the parallel lookup. Finding analyses that profit from these tighter
timing contribution functions might nevertheless be complicated.
We conclude by proving timing compositionality for decompositions that have

been derived as described above.

Theorem 5.1. Let a system with n components be given together with configuration
spaces C, (Ci)i=1..n and projection functions (pi : C → Ci)i=1..n. Furthermore, let
the timing contribution functions be as described above with the addition in the
time domain as combination operator. The obtained decomposition of the system’s
timing tc is timing compositional:

∀〈p,m〉 ∈ C. tc(〈p,m〉) ≤
n∑
i=0

tci(pi(〈p,m〉)).

Proof. Let a configuration 〈p,m〉 be given. There exists a path π through the
transition system such that tc(〈p,m〉) = |π|. By construction, each transition on
that path is either unlabelled or labelled at least once. Thus, there is a covering of
the path |π| ≤ ∑n

i=0 |π|i. Each timing contribution function takes the maximum
over all paths, so |π|i ≤ tci(pi(〈p,m〉) for all 0 ≤ i < n. Thus, the above inequality
holds and the decomposition is timing compositional.

Summary – Derivation of Timing Contributions In the first place, this approach
provides a conceptual view on the derivation of timing contribution functions for
individual components. The timing contribution of a component should capture the
amount of execution time it is “accountable” for. The definition of “accountability”

30

5.2 Compositional Analysis based on Accident Counting

max
ci∈Ci , s.t.
prog(ci)=p

tci(ci) ≤ Analysisi(p) Timing
Compositionality

WCET p ≤
⊕n

i=1 Analysisi(p)

Component Correctness

Figure 11: Compositional analysis framework. How to obtain individual analyses?

and the identification of accountable components are thereby the key parts. How-
ever, the automatic derivation of timing contributions, given a transition system, a
set of components, and an “accountability metric”, might not be practically feasible
– especially for systems with large configuration spaces. The accountability approach
forms a conceptual basis for the individual analyses in a timing compositional
setting by determining what to approximate.

5.2 Compositional Analysis based on Accident Counting

Besides the compositionality property, we require analyses that individually capture
timing contributions (Figure 11). Now, we want to illustrate one generic type of
compositional analysis that is based on counting so-called timing accidents. A
timing accident is an event that has a detrimental effect on the overall system’s
timing. Possible timing accidents are

• write backs when analysing write-back effects in caches,

• cache misses when analysing the additional cache misses due to preemption,

• accesses to shared resources when analysing communication time sepa-
rately from computation time in a multi-core setting.

First, we have a baseline analysis that captures the timing behaviour B under
the assumption that no timing accidents occur during execution. Second, we
have an analysis that counts the number of accidents n in the worst-case. In a
pre-processing step, we have to compute a sound accident penalty a that captures
the timing effect of one timing accident on the overall system’s timing. Ideally,
this penalty is obtained by a sound (static) analysis of a formal system model
(e.g. given in Verilog/VHDL).

31

5 Compositional Timing Analysis

Thus, we have a timing-compositional decomposition into baseline execution and
timing accidents such that B+n ·a is an upper bound on the overall system’s timing.
The example analyses in Section 2 also follow this form, e.g. the computation of the
preemption cost γi,j. Note, that the penalty might not be bounded by a constant
for some systems. This type of analysis based on accident counting is thus not
feasible in such cases.

5.3 Analysis Frameworks

In this section, we present possible analysis frameworks applicable in a timing-
compositional setting, i.e. how individual timing contributions can be safely
combined (Figure 12). We give necessary conditions that the analysis of each
individual component has to fulfil, to obtain overall sound results. We show that
the WCET p (Equation 1) is safely approximated in these cases.
While a timing contribution function makes a statement about the execution

behaviours starting from one initial configuration (namely the one passed as argu-
ment), an analysis has to compute bounds on the execution behaviours starting from
all possible initial configurations. There are different kinds of analysis uncertainty,
e.g. uncertainty inherent to varying input or unknown initial microarchitectural
state but also introduced by analysis abstractions. We discuss sources of uncertainty
and how to reduce potential overestimation.
We present two possible analysis frameworks. The first one approximates the

maximum of each timing contribution separately. While being a simple and
computationally inexpensive analysis framework (ignoring the cost of the individual
analyses), the drawback of this approach is that it allows for infeasible combinations
of configurations. The component configurations cwc

i that lead to the individual
worst cases are not necessarily compatible, i.e. there is no system configuration
c such that all components behave worst pi(c) = cwc

i . The partitioning approach
refines this separate maxima approach by ruling out infeasible paths.

Separate Maxima Approach

Let the decomposition of a system’s timing behaviour tc : C → T into timing
contributions (tci : Ci → T)i=1..n with an additive combination operator be timing
compositional. Let C, (Ci)i=1..n denote the respective configuration spaces as
described in Section 4.1 with projection functions (pi : C → Ci)i=1..n. We consider
the execution times of a program p with entry point pinit . In the Separate Maxima
Approach, an analysis Ai of the timing of component i is sound if

Ai(〈p, pinit〉) ≥ max
m,µa,e s.t.

〈p,pinit ,m,µa,e〉∈C

tci(pi(〈p, pinit ,m, µa, e〉)) (2)

32

5.3 Analysis Frameworks

max
ci∈Ci , s.t.
prog(ci)=p

tci(ci) ≤ Analysisi(p) Timing
Compositionality

WCET p ≤
⊕n

i=1 Analysisi(p)

Component Correctness

Figure 12: Compositional analysis framework. How to obtain globally sound re-
sults?

holds. Then, the sum of the analysis results soundly approximates the execution
times of program p:

WCET p = max
m,µa,e s.t.

〈p,pinit ,m,µa,e〉∈C

tc(〈p, pinit ,m, µa, e〉) Definition, Equation 1

= tc(〈p, pinit ,m
′, µa′, e′〉) Definition max

(a)
≤

n∑
i=1

tci(pi(〈p, pinit ,m
′, µa′, e′〉)) Compositionality

(b)
≤

n∑
i=1

max
〈p,pinit ,m,µa,e〉∈C

tci(pi(〈p, pinit ,m, µa, e〉)) Definition max

(c)
≤

n∑
i=1

Ai(〈p, pinit〉) Analysis, Equation 2

We call the tuple 〈p, pinit ,m
′, µa′, e′〉 also worst-case configuration for the program p

as this is the configuration that leads to the worst system’s timing.
We have three inequalities that possibly lead to overestimation of the WCET

by the analysis results. Inequality (a) is related to an overestimation introduced
by timing compositionality. This overestimation might be bounded by 〈µ, α〉. It
could be reduced by either choosing a different decomposition or by methods to
obtain more precise timing contribution functions. We have equality in case of a
fully-timing-compositional decomposition.

Inequality (b) is related to the analysis framework. The simple approach considers
all timing contribution functions in isolation and thus allows for infeasible combi-
nations of configurations. This overestimation can be reduced by different analysis
frameworks, e.g. by eliminating infeasible combinations. This is tackled in the next

33

5 Compositional Timing Analysis

section by the Partitioning Approach. Note, that full timing compositionality does
not forbid infeasible combinations.

Last but not least, inequality (c) models the pessimism of the individual analyses.
In order to efficiently compute the required approximation (see Equation 2), analyses
often employ abstractions that lead to a loss of precision. This overestimation is
not bounded in general and could be reduced by the use of more sophisticated
abstractions if available.

Refinement by Partitioning

In the Separate Maxima Approach, an analysis approximates the maximum timing
contribution of an individual component independently of the other analyses.
This allows for infeasible configuration combinations: There might be no system
configuration c such that the projection pi(c) is the worst initial configuration for
all tci.
In order to eliminate such infeasible configuration combinations, we use a par-

titioning approach. A partitioning of C is a set of disjoint sets (partitions)
{Π1, . . . ,Πk} such that C = ⋃· ki=1 Πi. The system configuration space is parti-
tioned and the Separate Maxima Approach is used per partition to obtain a
partition-specific timing bound. The overall result is the maximum partition-
specific timing bound. This rules out infeasible configuration combinations across
partition boundaries. Infeasible combinations are still possible within one partition.

As an example, consider two components A and B such that A/B behaves worst
exclusively in cwc

A /cwc
B and there is no system configuration c ∈ C with pA(c) = cwc

A

and pB(c) = cwc
B . Using the above approach with partitions Π1 = {c | pA(c) = cwc

A }
and Π2 = C \Π1 rules out the possibility that A and B behave worst together and
thus improves the computed bound.

Now, we present the Partitioning Approach in more detail. Similar to the Separate
Maxima Approach, let the decomposition of a system’s timing behaviour tc : C → T
into timing contributions (tci : Ci → T)i=1..n with an additive combination operator
be timing compositional. Let C, (Ci)i=1..n denote the respective configuration spaces
as described in Section 4.1 with projection functions (pi : C → Ci)i=1..n.

An individual analysis now computes a partition-specific timing bound. I.e., the
analysis has to soundly approximate the execution times only when starting from
a system configuration contained in the given partition. Therefore, the analyses
require, besides knowledge about the executed program, additional knowledge
about the partition. We call this additional knowledge the characterisation χ(Πi)
of a partition Πi. The partition characterisation χ(Πi) is passed as argument to the
respective analyses. In the simplest case χ is the identity function – χ(Πi) = Πi –
explicitly enumerating all system configurations contained in this partition. For

34

5.3 Analysis Frameworks

efficiency reasons, χ may provide abstract information about a partition instead of
an explicit enumeration, e.g. “all system configurations such that memory block a
is initially cached”.
A (partition-specific) analysis Ai of the timing of component i is sound, if for

each partition Πl in a partitioning of C
Ai(〈p, pinit , χ(Πl)〉) ≥ max

m,µa,e s.t.
〈p,pinit ,m,µa,e〉∈Πl

tci(pi(〈p, pinit ,m, µa, e〉))

holds. Plugging it all together, we soundly approximate the execution times of
program p for a partitioning {Π1, . . . ,Πk} of C.

WCET p = max
m,µa,e s.t.

〈p,pinit ,m,µa,e〉∈C

tc(〈p, pinit ,m, µa, e〉) Definition

= tc(〈p, pinit ,m
′, µa′, e′〉) Definition max

(a)
≤

n∑
i=1

tci(pi(〈p, pinit ,m
′, µa′, e′〉)) Compositionality

(b)
≤ max

Πl∈{Π1...Πk}

n∑
i=1

max
〈p,pinit ,c〉∈Πl

tci(pi(〈p, pinit , c〉)) Definition max

(c)
≤ max

Πl∈{Π1...Πk}

n∑
i=1

Ai(〈p, pinit , χ(Πl)〉) Analysis

≤
n∑
i=1

Ai(〈p, pinit , χ(C)〉) Separate Maxima

In case there is only one partition Π1 = C, we obtain the Separate Maxima
Approach.

Still, we have three sources of uncertainty as already described in the previous
section. The advantage of this approach is that the overestimation associated with
Inequality (b) can be reduced compared to the Separate Maxima Approach by
eliminating infeasible combinations. Inequality (b) holds, as 〈p, pinit,m′, µa′, e′〉 ∈ C
and thus, according to the definition of the partitioning, ∃l.〈p, pinit,m′, µa′, e′〉 ∈ Πl.
The Partitioning Approach provably never yields worse results than the Separate
Maxima Approach.

The partitioning allows to trade off precision of the results (maximum of sums)
against efficiency in computing (sum of maxima). The more partitions, the more
analysis runs are required (one analysis run per partition and component) while the
precision potentially increases as infeasible configuration combinations are ruled
out.
Trace Partitioning [29] is one possibility to choose an appropriate partition-

ing. Trace partitioning is an analysis technique that distinguishes different ex-
ecution traces during analysis to prevent a loss of information at control-flow

35

5 Compositional Timing Analysis

joins in the program. E.g. it can be used to distinguish different paths follow-
ing a conditional branch by partitioning the outcome of the branch condition,
i.e. Π1 = {c | condition true in c} and Π2 = {c | condition false in c}.

5.4 Practical Considerations

We conclude the section on timing compositionality in WCET analysis with a few
practical considerations and the presentation of a new “compositional” WCET tool
chain.

Information Sharing In our view, individual timing contributions share infor-
mation by having configuration spaces that overlap. For example, most timing
contributions that we considered throughout this article require knowledge about
the executed instructions. Thus, all their configuration spaces contain information
about the ISA configuration that can be used to reconstruct the sequence of in-
structions to execute. From a practical point of view, computing such information
several times (once per timing contribution) is inefficient. Instead, pre-processing
analyses can be employed to derive this information (e.g. the possible sequences of
instructions) only once. Subsequently, their results are provided to each individual
analysis that requires it. Such pre-processing analyses have already been used in
the “traditional” WCET tool chain that has emerged over the years [11] [34] [19].
The individual analyses can also cooperate in order to avoid re-computation of

the same information. Reconsider the multi-core example in Section 2.1. The
first two analyses approximate the computation time and the number of accesses
individually. The third analysis computes the worst-case blocking time that depends
on the computation time and the number of accesses. Instead of re-computing
this information on its own, the third analysis can use the results of the first two
analyses.
Thus, using pre-processing analyses and cooperation between the individual

analyses avoids unnecessary re-computation of information.

A new WCET Tool Chain Taking the ideas of the previous paragraph into
account leads to a new, compositional WCET tool chain as depicted in Figure 13b.
The frontend resembles the one of the “traditional” WCET tool chain that has
developed over the years [11] [34] [19] and is depicted in Figure 13a. First, a
control-flow-graph (CFG) representation is reconstructed from a given program
binary. The control-flow analysis determines infeasible paths, thus restricting the
possible sequences of instructions. The loop bound analysis determines upper
bounds on the number of loop iterations, thus also restricting possible sequences of

36

5.4 Practical Considerations

Binary
Executable

CFG Recon-
struction

Control-flow
Graph

Loop Bound
Analysis

Value
Analysis

Control-flow
Analysis

Annotated
CFG

Basic Block
Timing Info

Micro-
architectural
Analysis

Global
Bound
Analysis

Global
Timing Bound

(a) Traditional, Integrated Approach

Binary
Executable

CFG Recon-
struction

Control-flow
Graph

Loop Bound
Analysis

Value
Analysis

Control-flow
Analysis

Annotated
CFG

Analysis
Component 2

Analysis
Component 1

Analysis
Component 3

⊕
Global

Timing Bound

Legend:

Data

Action

(b) Compositional Approach

Figure 13: Tool Chains for WCET Analysis. Blue indicates the pre-processing
analyses. Red indicates the microarchitectural analyses. Green indicates
the path analysis.

37

5 Compositional Timing Analysis

instructions. The value analysis approximates the contents of registers and memory
cells for each program point.
After this pre-processing steps, we have the actual timing analysis – either

integrated or compositional. In the traditional tool chain, the global bound analysis
obtains a global timing bound given information about possible paths and the timing
of individual basic blocks. The timing information of the individual basic blocks is
computed using an integrated microarchitectural analysis. In the compositional
tool chain, the global bound is obtained by combining the timing contributions
from the individual compositional analyses. Note that part of the traditional global
bound analysis, also known as path analysis, is now done within the individual
analyses if necessary (cf. Analysis of Component 2 in Figure 13b).

38

6 Timing Compositionality by Design

So far, we were concerned with obtaining timing-compositional analyses for a given,
fixed system. Depending on the behaviour of the system, it can be difficult to
obtain compositional timing contribution functions (especially for small µ and α)
or to find precise and efficient analyses. Designing hardware that supports timing
compositionality, i.e. that allows for a compositional decomposition by construction,
might be a solution. The challenge is to find hardware designs that support
compositionality with low or even without performance degradation.
Whether a decomposition is compositional depends on the way hardware com-

ponents are connected and interact with each other. As seen in Section 3.4, the
behaviour within one component is not a concern as long as it does not influence
the interaction with other components. Therefore, hardware designs that support
compositionality has to focus on how hardware components are connected and
interact. In the following, we present one microarchitectural design that supports
timing compositionality.

6.1 Stall on Timing Accidents

We consider a decomposition into an idealised execution and timing accidents. A
timing accident is an event that has a detrimental effect on the overall system’s
timing, e.g. a cache miss, a write back to main memory or a DRAM refresh. The
idealised execution is the execution without any timing accidents.
A simple solution to achieve timing compositionality by design is to stall the

execution until the timing accident is rectified, e.g. until a requested cache line
is fetched from main memory. Stalling means that all parts of the system stop
execution and thus keep their microarchitectural states – except those necessary
for rectifying the timing accident. We get the execution behaviour as depicted
in Figure 14a. In case of a timing accident, its rectification takes a cycles and
afterwards the execution reaches the same microarchitectural state as in the ideal
case – due to stalling. Therefore, the penalty a only needs to capture the direct effect
of the timing accident on the overall execution time, e.g. the time needed to transfer
a cache line from main memory into the cache. In contrast to modern complex
processors, there are no indirect timing effects, e.g. a cache miss additionally
triggering an expensive misspeculation. We can employ the analysis presented in
Section 5.2.
This approach can be seen as a co-design of microarchitecture and timing

contribution functions. First, we want to add a new (performance-enhancing)
feature that speeds up execution in some cases and possibly has detrimental
effects in other cases (timing accident). Second, we choose appropriate timing

39

6 Timing Compositionality by Design

timing accidentideal

accident penalty a

(a) Stalling supports timing compositionality.

m2

m1

timing accidentideal

w

accident penalty a

(b) Relaxation: Overlapping effects are al-
lowed if microarchitectural state m1
leads to an at least as high execution
time (w) than m2.

Figure 14: Achieving timing compositionality by design. The circles denote microar-
chitectural states, the edges denote one processor cycle of execution.

contributions: the speed-up effects are captured by the idealised execution; the
direct effects of the timing accidents are captured separately by counting “accident”
events. Third, the stalling mechanism ensures timing compositionality of the new
decomposition.
The stalling mechanism is not appropriate for all kinds of timing accidents,

e.g. misspeculation. In case misspeculation is detected, the microarchitectural state
has already changed (e.g. cache contents changed due to speculative prefetching).
Reaching the same state as in case of no speculation/correct speculation is more
difficult and cannot be achieved by stalling.

6.2 Relaxation: Monotonicity

While the “simple” stalling mechanism presented above supports timing compo-
sitionality, it has the disadvantage that actual system performance is degraded.
E.g. in case of a cache miss, no arithmetic instruction executes in parallel and thus
cannot hide the main memory latency. Such overlapping effects are not problematic
for timing compositionality in general. Consider the situation depicted in Fig-
ure 14b. As long as the microarchitectural state m1 in the ideal case always leads
to a higher remaining execution time compared to state m2 arising in the “accident”
case, timing compositionality is not affected. We call this property monotonicity.

40

6.3 Summary

Sound analyses designed for the stalling case (Figure 14a) remain sound in the
monotonic setting (Figure 14b) and give the same provable bounds. However, the
actual system performance might profit from this relaxation as overlapping effects
are allowed. Therefore, in the monotonic case, the decomposition might lead to
overestimation in terms of µ ≥ 1.

6.3 Summary

We presented a stalling mechanism as an example of designs that support timing
compositionality. However, this requires hardware changes that might be imprac-
tical due to technical/economical constraints. If used extensively, the stalling
mechanism degrades the actual system performance. Similar to the trade-off be-
tween integrated and compositional analyses in Section 4.5, application of the
stalling mechanism has to be carefully chosen.

41

7 Related Work

7 Related Work

In Section 2, we described approaches that use timing compositionality in order to
decouple analyses of different parts of a system. The topics include the analysis of

• the bus blocking time in resource-sharing systems with shared bus [31, 32],

• the cache-related preemption delay in preemptively scheduled systems [6, 5],
and

• the refreshes in a DRAM system [7].

Wilhelm et al. [37] introduce the notion of timing compositional architecture.
We discussed problems and limitations of this definition in detail in Section 3.4.

In [30], Schliecker et al. present their approach to performance analysis of real-time
multiprocessor systems with resource sharing. They assume timing compositionality
“in the sense that any shared resource delays are additive to the execution times”.
Such additive behaviour may be achieved by the processor stalling execution on
accesses to shared resources (see also Section 6).

In [22], Liu et al. present a precision timed (PRET) architecture for timing pre-
dictability and timing composability. The timing composability enables a modular
verification of systems with concurrent programs. The microarchitectural design
includes a thread-interleaved pipeline, scratchpad memories, and a specialised, pre-
dictable DRAM controller. The design also allows for compositional decompositions
e.g. of a thread’s execution time into computation time and memory access time.
On memory access, the thread continues execution only after the memory access
has completed, thereby clearly separating computation and memory access time
of the thread. Furthermore, their predictable DRAM controller allows for precise
bounds on the latency of a memory access independently of the execution context.
Goossens et al. [14] as well as Akesson et al. [3] give an overview of how to

achieve timing composability in a system-on-chip setting. In [14], the authors
survey their previous work on the CompSOC architecture that provides tempo-
ral isolation between applications by, e.g., employing time-division multiplexing
(TDM) techniques. Besides techniques to achieve composability, the authors of
[3] additionally discuss that composability and predictability (i.e. the ability to
determine precise performance bounds) are orthogonal properties. This discussion
partially resembles our discussion in Section 3.3.

The increasing complexity in real-time software makes composable and composi-
tional methods beneficial to efficiently reason about its timing [26]. Puschner et al. in-
troduce composability of execution times and I/O-compositionality of worst-case
execution times (WCETs) and discuss ways to achieve these properties. The tim-
ing of a task executed on a processor must not be affected by co-running tasks

42

(composability). The WCET of sequentially executed tasks should be the sum of
the WCETs of each task (I/O-compositionality). Their notion of compositionality
is more restrictive than the definition we give in this paper.
In [21], Lee et al. tackle the scalability problems of multiprocessor simulation

for performance estimation. They propose the so-called composable performance
regression that splits multiprocessor simulation as follows. First, a uniprocessor
model estimates the baseline performance assuming no interference from other cores.
Second, a contention model is used to capture the interference effects (e.g. due to
memory accesses) caused by co-running cores. Third, a penalty model combines
the result of the two previous models to estimate the multiprocessor performance.
The models are obtained using regressions on a set of training data.

Compositionality as a property can be found in diverse contexts. In linguistics, the
principle of compositionality (or Frege’s Principle) as described by Partee et al. in
[25] is characterised as follows:

The meaning of a complex expression is determined by the meanings
of its constituent expressions and rules to combine meanings.

In (functional) programming languages, the evaluation of expressions follows this
compositionality principle. First, the respective subexpressions are evaluated and
the results are combined according to the employed operator to obtain the overall
result.
In the context of the verification of concurrent programs, de Roever et al. [10]

discuss compositional and non-compositional proof methods. Compositionality in
this context of program correctness is defined as follows:

“That a program meets its specification should be verified on the
basis of specifications of its constituent components only, without ad-
ditional need for information about the interior construction of those
components.” [10]

The authors discuss the respective advantages and shortcomings of compositional
as well as non-compositional proof techniques. They indicate possible scalability
problems of non-compositional verification approaches, but they also point out that
such approaches can be more successful, e.g. in “tightly-coupled [. . .] systems” ([10,
page 60]) such as mutual exclusion algorithms based on shared-variable communi-
cation. Note, that we encountered a similar trade-off between compositional and
non-compositional methods in the context of execution time analysis in Section 4.5.

43

8 Conclusions and Future Work

8 Conclusions and Future Work

Modern hard real-time systems tend to become more complex thereby complicating
the derivation of guarantees on the systems’ timeliness. E.g. the increasing
microarchitectural complexity of the employed processors will render current state-
of-the-art, non-compositional approaches to execution time analysis infeasible in
terms of computational effort and memory consumption.

This trend makes it necessary to move from these non-compositional approaches
towards compositional methods as done e.g. in [31] for resource-sharing systems
or [5] for preemptively scheduled systems. This paper presents a formal definition
of timing compositionality that is based on the previous, intuitive understandings.
The definition will serve as a foundation for correctness proofs of compositional
analyses. We have discussed the definition in detail and contrasted it with the
definition of timing compositional architectures [37].
The second part of the paper addresses compositionality in the context of

execution time analysis. We have discussed the advantages and shortcomings of
both the integrated and the compositional approach to timing analysis. Possible
applications of timing compositionality in timing analysis have been highlighted,
e.g. the analysis of write-back caches. A conceptual approach to the derivation of
timing contribution functions based on the accountability of components has been
presented. We have described a generic compositional analysis based on accident
counting as well as methods to soundly combine the individual results to an overall
timing bound. Furthermore, we have presented a simple microarchitectural design
to achieve timing compositionality by design in specific scenarios.

Future Work One line of future research is to come up with sufficient and
practically testable conditions for timing compositionality of a decomposition. This
involves concrete methods to compute sound penalties of an individual timing
accident based on a formal specification of the underlying system, e.g. given as
VHDL/Verilog models.

The proposed stalling mechanism to achieve compositionality by design will, in
general, degrade the system’s performance as overlapping effects are eliminated.
More sophisticated design guidelines are required that achieve compositionality and
show good performance. The estimation of the respective degradation of provable
as well as actual system performance is considered future work.

44

References

[1] Andreas Abel, Florian Benz, Johannes Doerfert, Barbara Dörr, Sebastian
Hahn, Florian Haupenthal, Michael Jacobs, Amir H. Moin, Jan Reineke,
Bernhard Schommer, and Reinhard Wilhelm. Impact of resource sharing on
performance and performance prediction: A survey. In CONCUR, August
2013. On pages 2 and 13.

[2] Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing, Translation,
and Compiling. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1972. On
pages 8 and 19.

[3] Benny Akesson, Anca Molnos, Andreas Hansson, Jude Ambrose Angelo, and
Kees Goossens. Multiprocessor System-on-Chip: Hardware Design and Tool
Integration, chapter 2, pages 25–56. Springer, November 2010. On pages 13
and 42.

[4] Martin Alt, Christian Ferdinand, Florian Martin, and Reinhard Wilhelm.
Cache behavior prediction by abstract interpretation. In Proceedings of SAS’96,
Static Analysis Symposium, volume 1145 of LNCS. Springer Verlag, 1996. On
pages 1 and 20.

[5] Sebastian Altmeyer, Robert I. Davis, and Claire Maiza. Cache related pre-
emption aware response time analysis for fixed priority pre-emptive systems.
In Robert I. Davis and Nathan Fisher, editors, Proceedings of the 32nd IEEE
Real-Time Systems Symposium, pages 261–271, December 2011. On pages 2,
5, 6, 24, 42, and 44.

[6] Sebastian Altmeyer, Claire Maiza, and Jan Reineke. Resilience analysis:
Tightening the CRPD bound for set-associative caches. In Proceedings of the
ACM SIGPLAN/SIGBED conference on Languages, compilers, and tools for
embedded systems, pages 153–162, New York, NY, USA, April 2010. ACM. On
pages 5, 24, and 42.

[7] Pavel Atanassov and Peter Puschner. Impact of DRAM refresh on the execution
time of real-time tasks. In Proceedings of the IEEE International Workshop on
Application of Reliable Computing and Communication, pages 29–34, December
2001. On pages 7 and 42.

[8] Siddhartha Chatterjee, Erin Parker, Philip J. Hanlon, and Alvin R. Lebeck.
Exact analysis of the cache behavior of nested loops. In Proceedings of the
ACM SIGPLAN 2001 Conference on Programming Language Design and

45

References

Implementation, PLDI ’01, pages 286–297, New York, NY, USA, 2001. ACM.
On page 26.

[9] Christoph Cullmann. Cache persistence analysis: Theory and practice. ACM
Trans. Embed. Comput. Syst., 12(1s):40:1–40:25, March 2013. On page 25.

[10] Willem P. de Roever, Frank S. de Boer, Ulrich Hannemann, Jozef Hooman,
Yassine Lakhnech, Mannes Poel, and Job Zwiers. Concurrency verification:
introduction to compositional and noncompositional methods, volume 54 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, New York, NY, USA, 2001. On page 43.

[11] Andreas Ermedahl. A modular tool architecture for worst-case execution time
analysis. PhD thesis, Uppsala University, 2003. On page 36.

[12] Somnath Ghosh, Margaret Martonosi, and Sharad Malik. Cache miss equations:
An analytical representation of cache misses. In In Proceedings of the 1997
ACM International Conference on Supercomputing, pages 317–324, 1997. On
page 26.

[13] AbsInt Angewandte Informatik GmbH. aiT Worst-Case Execution Time
Analyzers http://www.absint.com/ait/, October 2014. On page 1.

[14] Kees Goossens, Arnaldo Azevedo, Karthik Chandrasekar, Manil Dev Gomony,
Sven Goossens, Martijn Koedam, Yonghui Li, Davit Mirzoyan, Anca Molnos,
Ashkan Beyranvand Nejad, Andrew Nelson, and Shubhendu Sinha. Virtual
execution platforms for mixed-time-criticality applications: the CompSOC
architecture and design flow. In Proceedings of the 5th Workshop on Composi-
tional Theory and Technology for Real-Time Embedded Systems, pages 23–30,
December 2012. On pages 13 and 42.

[15] Daniel Grund. Static Cache Analysis for Real-Time Systems – LRU, FIFO,
PLRU. PhD thesis, Saarland University, 2012. On page 21.

[16] Nan Guan, Mingsong Lv, Wang Yi, and Ge Yu. WCET analysis with MRU
caches: Challenging LRU for predictability. In Proceedings of the 2012 18th
IEEE Real-Time and Embedded Technology and Applications Symposium, pages
55–64, April 2012. On page 26.

[17] Nan Guan, Xinping Yang, Mingsong Lv, and Wang Yi. FIFO cache analysis
for WCET estimation: a quantitative approach. In Design, Automation and
Test in Europe, DATE 13, pages 296–301, March 2013. On page 26.

46

http://www.absint.com/ait/

References

[18] Sebastian Hahn, Jan Reineke, and Reinhard Wilhelm. Towards composition-
ality in execution time analysis – definition and challenges. In Proceedings
of the 6th Workshop on Compositional Theory and Technology for Real-Time
Embedded System, December 2013. On pages iv, v, and 2.

[19] Christopher A. Healy, , David B. Whalley, and Marion G. Harmon. Integrating
the timing analysis of pipelining and instruction caching. In Proceedings of the
16th IEEE Real-Time Systems Symposium, pages 288–297, 1995. On page 36.

[20] Reinhold Heckmann, Marc Langenbach, Stephan Thesing, and Reinhard
Wilhelm. The influence of processor architecture on the design and the results
of WCET tools. Proceedings of the IEEE, 91(7):1038–1054, July 2003. On
pages 1, 18, and 19.

[21] Benjamin C. Lee, Jamison Collins, Hong Wang, and David Brooks. CPR:
Composable performance regression for scalable multiprocessor models. In
Proceedings of the 41st annual IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO 41, pages 270–281. IEEE Computer Society, 2008. On
page 43.

[22] Isaac Liu, Jan Reineke, and Edward A. Lee. A PRET architecture supporting
concurrent programs with composable timing properties. In Conference Record
of the Forty Fourth Asilomar Conference on Signals, Systems and Computers
(ASILOMAR), pages 2111–2115. IEEE, 2010. On page 42.

[23] Kartik Nagar. Cache analysis for multi-level data caches. Master’s thesis,
Indian Institute of Science, June 2012. On page 25.

[24] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of
program analysis (2. corr. print). Springer, 2005. On page 22.

[25] Barbara H. Partee, Alice ter Meulen, and Robert E. Wall. Mathematical
Methods in Linguistics. Kluwer, Dordrecht, 1990. On page 43.

[26] Peter Puschner, Raimund Kirner, and Robert G. Pettit. Towards composable
timing for real-time programs. In Software Technologies for Future Dependable
Distributed Systems, pages 1–5. IEEE, 2009. On page 42.

[27] Jan Reineke and Daniel Grund. Relative competitive analysis of cache re-
placement policies. In LCTES ’08: Proceedings of the 2008 ACM SIGPLAN-
SIGBED conference on Languages, compilers, and tools for embedded systems,
pages 51–60, New York, NY, USA, June 2008. ACM. On page 26.

47

References

[28] Jan Reineke and Rathijit Sen. Sound and efficient WCET analysis in the
presence of timing anomalies. In Proceedings of 9th International Workshop
on Worst-Case Execution Time (WCET) Analysis, June 2009. On pages 13
and 14.

[29] Xavier Rival and Laurent Mauborgne. The trace partitioning abstract domain.
ACM Trans. Program. Lang. Syst., 29(5), August 2007. On page 35.

[30] Simon Schliecker and Rolf Ernst. Real-time performance analysis of multi-
processor systems with shared memory. ACM Trans. Embed. Comput. Syst.,
10(2):22:1–22:27, January 2011. On page 42.

[31] Andreas Schranzhofer, Jian-Jia Chen, and Lothar Thiele. Timing analysis for
TDMA arbitration in resource sharing systems. In Proceedings of the 2010
16th IEEE Real-Time and Embedded Technology and Applications Symposium,
pages 215–224, April 2010. On pages 2, 4, 24, 42, and 44.

[32] Andreas Schranzhofer, Rodolfo Pellizzoni, Jian-Jia Chen, Lothar Thiele, and
Marco Caccamo. Timing analysis for resource access interference on adaptive
resource arbiters. In Proceedings of the 2011 17th IEEE Real-Time and
Embedded Technology and Applications Symposium, pages 213–222, April 2011.
On pages 2, 4, 24, and 42.

[33] Lili Tan. The worst case execution time tool challenge 2006: The external
test. In Tiziana Margaris, Anna Philippou, and Bernhard Steffen, editors,
2nd International Symposium on Leveraging Applications of Formal Methods),
Paphos, Cyprus, November 2006. On page 1.

[34] Henrik Theiling, Christian Ferdinand, and Reinhard Wilhelm. Fast and precise
WCET prediction by separate cache and path analyses. Real-Time Systems,
18(2/3), May 2000. On page 36.

[35] Stephan Thesing. Safe and Precise WCET Determination by Abstract Inter-
pretation of Pipeline Models. PhD thesis, Universität des Saarlandes, 2004.
On page 20.

[36] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan
Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold
Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner,
Jan Staschulat, and Per Stenström. The worst-case execution time problem—
overview of methods and survey of tools. ACM Transactions on Embedded
Computing Systems (TECS), 7(3), 2008. On page 1.

48

References

[37] Reinhard Wilhelm, Daniel Grund, Jan Reineke, Marc Schlickling, Markus
Pister, and Christian Ferdinand. Memory hierarchies, pipelines, and buses for
future architectures in time-critical embedded systems. IEEE Transactions on
CAD of Integrated Circuits and Systems, 28(7):966–978, July 2009. On pages
2, 4, 13, 14, 15, 42, and 44.

49

	1 Introduction
	2 Timing Compositionality by Examples
	2.1 Resource-Sharing Systems
	2.2 Preemptively Scheduled Systems
	2.3 Dynamic Random Access Memory (DRAM)
	2.4 The Essence

	3 Timing Compositionality – Definition
	3.1 Foundations
	3.2 Timing Compositionality
	3.3 Compositionality and Composability
	3.4 Timing Compositional Architectures
	3.5 Summary

	4 Worst-Case Execution Time Analysis
	4.1 The Worst-Case Execution Time Problem
	4.2 Interdependencies in Modern Microprocessors
	4.3 The Integrated Analysis Approach
	4.4 Towards Compositional Analyses
	4.5 Integrated versus Compositional Approach
	4.6 Example Applications for Compositional Timing Analysis
	4.7 Challenges in Compositional Timing Analysis
	4.8 Summary

	5 Compositional Timing Analysis
	5.1 Accountability, or: Deriving Timing Contribution Functions
	5.2 Compositional Analysis based on Accident Counting
	5.3 Analysis Frameworks
	5.4 Practical Considerations

	6 Timing Compositionality by Design
	6.1 Stall on Timing Accidents
	6.2 Relaxation: Monotonicity
	6.3 Summary

	7 Related Work
	8 Conclusions and Future Work
	References

