
saarland-informatics-campus.de

Warping Cache Simulation of
Polyhedral Programs

Canberk Morelli, Saarland University
Jan Reineke, Saarland University

This project has received funding from the
European Research Council (ERC) under the
European Union’s Horizon 2020 research
and innovation programme (grant
agreement No 101020415)”

Caches appear to be important

AMD Zen 3

L3 Cache

Image credit: @Locuza_ via Twitter https://twitter.com/Locuza_/status/1325534004855058432/photo/1 2

L2
Cache

L1 D-Cache

L1 I-Cache

Cache behavior is non-obvious
Example: Matrix multiplication
for (int i = 0; i < 1024; i++)

for (int j = 0; j < 1024; j++)
for (int k = 0; k < 1024; k++)

C[i][j] += A[i][k] * B[k][j];

for (int i = 0; i < 1024; i++)
for (int k = 0; k < 1024; k++)

for (int j = 0; j < 1024; j++)
C[i][j] += A[i][k] * B[k][j];

L1 cache misses: 169.590.674
L2 cache misses: 166.667.689

28 seconds

L1 cache misses: 9.996.842
L2 cache misses: 397.890

5.7 seconds

… on an Intel Core i9-10980XE (Cascade Lake)
3

1. Trace-based cache simulators

Program

L1 Misses,
L2 Misses,

…

Cache
Simulator

Explicit
Access
Trace

Program
Simulator

Supports arbitrary programs + cache configurations

Analysis time is proportional to trace length
4

=
“Polyhedral
Programs”

=
Presburger
Formulas

=
Presburger
Formulas

+
Barvinok’s
Algorithm

2. Analytical cache models

Program

L1 Misses,
L2 Misses,

…

Analytical
Cache Model

+ Counting

Implicit
Representation
of Access Trace

Extract
Model

5

2. Analytical cache models

Program

L1 Misses,
L2 Misses,

…

Analytical
Cache Model

+ Counting

Implicit
Representation
of Access Trace

Extract
Model

Analysis time decoupled from trace length

Limited to restricted cache models
+ classes of programs

6

State of the art

7

PolyCache (Bao et al., POPL 2018)
multi-level, non-inclusive set-associative caches with

least-recently-used (LRU) replacement

[1] Bao, Krishnamoorthy, Pouchet, Sadayappan. Analytical modeling of cache behavior for affine programs. POPL 2018

HayStack (Gysi et al., PLDI 2019)
multi-level, inclusive fully-associative caches with

least-recently-used (LRU) replacement

[2] Gysi, Grosser, Brandner, Hoefler. A fast analytical model of fully associative caches. PLDI 2019

Real-world cache configurations

Intel Core i5-1035G1 (Ice Lake):
• L1: 48 KiB, 12-way, LRU3PLRU4
• L2: 512 KiB, 8-way, SRRIP-HP [*] variant
• non-inclusive hierarchy

AMD Zen 3:
• L1: 32 KiB, 8-way, policy?
• L2: 512 KiB, 8-way, policy?
• inclusive hierarchy

Intel i9-10980XE (Cascade Lake):
• L1: 32 KiB, 8-way, Tree-PLRU
• L2: 1 MiB, 16-way, SRRIP-HP [*] variant
• non-inclusive hierarchy

[*] Jaleel, Theobald, Steely, Emer. High Performance Cache Replacement Using Re-reference Interval Prediction (RRIP). ISCA 2010
8

Our goal: “Best of both worlds”

Analysis time decoupled from trace length

Limited to restricted classes of programs

Support real-world cache configurations
+

9

Our approach in a nutshell

10

Program

Implicit
Representation
of Access Trace

Extract
Model

Cache
Simulator

L1 Misses,
L2 Misses,

…

Analytical
Warping

Example: 1D stencil computation

11

for (int i = 1; i < 999; i++)
B[i-1] = (A[i-1] + A[i])/2;

-

-

i = 1

MRU

LRU

B[0]

A[1]

i = 2A[0]
A[1]
B[0]

3M

B[1]

A[2]

i = 3A[1]
A[2]
B[1]

1H, 2M

B[2]

A[3]

i = 4A[2]
A[3]
B[2]

1H, 2M

B[997]

A[998]

i = 999A[3]
A[4]
B[3]

995 x
(1H, 2M)

A[997]
A[998]
B[997]

…

“Warping”

Example revisited

12

-

-

MRU

LRU

B[0]

A[1]

A[0]
A[1]
B[0]

3M

B[1]

A[2]

A[1]
A[2]
B[1]

1H, 2M

B[2]

A[3]

A[2]
A[3]
B[2]

1H, 2M

B[997]

A[998]

A[3]
A[4]
B[3]

995 x
(1H, 2M)

A[997]
A[998]
B[997]

…

𝝅(x) = x+1 𝝅

𝝅

𝝅
𝝅995(x) = x+995

i = 1 i = 2 i = 3 i = 4 i = 999

𝝅
…

for (int i = 1; i < 999; i++)
B[i-1] = (A[i-1] + A[i])/2;

Key property: Data independence

13

c
σ

c’

d

𝝅

σ'

𝝅

d’

𝝅

Key property: Data independence

14

c
σ

c’d
σ'

d’

𝝅

𝝅

𝝅

Data independence is also satisfied by
• cache replacement policies other than LRU
• set-associative caches
• cache hierarchies, e.g. L1+L2+L3

• Data independence of

• Symbolic simulation + hashing
to efficiently detect “matches”

• Checking necessary conditions via
polyhedral techniques

In our paper + technical report

Warpin
g Cach

e Sim
ulatio

n of Po
lyhed

ral Pr
ogram

s∗

CANB
ERK MOREL

LI, Saa
rland

Unive
rsity,

Germ
any

JAN REINE
KE, Sa

arland
Unive

rsity,
Germ

any

Techn
iques

to eva
luate a

progra
m’s cach

e perf
ormance f

all int
o two

camps: 1.
Tradit

ional t
race-b

ased c
ache

simulator
s prec

isely a
ccoun

t for s
ophist

icated
real-w

orld c
ache m

odels
and su

pport
arbitra

ry wo
rkload

s, but

their r
untim

e is pr
oporti

onal t
o the

number of
memory ac

cesses
perfor

med by
the pr

ogram
under

analys
is.

2. Rely
ing on

implicit
workl

oad ch
aracte

rizatio
ns suc

h as the
polyh

edral
model, a

nalyti
cal ap

proach
es ofte

n

achiev
e prob

lem-size-i
ndepe

ndent
runtim

es, bu
t so fa

r have
been limited to

idealiz
ed cac

he models.

We intro
duce a

hybrid
appro

ach, w
arping

cache
simulatio

n, that
aims to ac

hieve
applic

ability
to rea

l-worl
d

cache
models a

nd pro
blem-size-i

ndepe
ndent

runtim
es. As

prior a
nalyti

cal app
roache

s, we f
ocus o

n prog
rams in

the po
lyhedr

al model, w
hich a

llows
to reas

on abo
ut the

sequen
ce of m

emory ac
cesses

analyt
ically.

Combining

this an
alytica

l reaso
ning w

ith inform
ation

about
the ca

che be
havior

obtain
ed fro

m explic
it cach

e simulatio
n

allows
us to s

oundl
y fast-

forwa
rd the

simulatio
n. By

this pr
ocess

of war
ping, w

e acce
lerate

the sim
ulatio

n so

that it
s cost

is ofte
n indepe

ndent
of the

number of
memory ac

cesses
.

CCS C
oncep

ts: • So
ftware

and its eng
ineeri

ng!
Softw

are pe
rform

ance;
Autom

ated static
analy

sis.

Additi
onal K

ey Words a
nd Ph

rases:
cache

model, s
imulatio

n, per
formance a

nalysi
s, data

indepe
ndenc

e

1 INTR
ODUCT

ION

Tradit
ionally

, the e
�ciency

of an algori
thm has be

en determ
ined b

y eval
uating

its tim
e com

plexity
.

Today
, evalu

ating
an algori

thm’s cach
e perf

ormance h
as bec

ome equa
lly im

portan
t. Ove

r the p
ast

thirty
years,

the in
creasi

ng pro
cessor

-memory ga
p has

led to
the in

troduc
tion of com

plex m
emory

hierar
chies c

onsist
ing, in

partic
ular, o

f multiple
cache

levels.
As a c

onseq
uence

, a pro
gram’s runt

ime

on modern
hardw

are he
avily d

epend
s on how well it

exploi
ts the

under
lying

memory hi
erarch

y.

Howe
ver, un

like ti
me com

plexit
y, cach

e perf
ormance c

annot
easily

be gau
ged in

a com
positio

nal

manner
from a prog

ram’s par
ts, i.e.

, the c
ompositi

on of two
cache

-e�cient
parts

may be
cache

ine�cient,
and vi

ce ver
sa.

This c
alls fo

r auto
matic m

ethods
to eva

luate a
progra

m’s cach
e perf

ormance, t
o info

rm progra
m-

mers an
d com

pilers
so tha

t they
can make in

formed cho
ices ab

out da
ta-loc

ality t
ransfo

rmations
.

Cache
perfor

mance a
nalysi

s has a
lready

receiv
ed con

sidera
ble att

ention
. Prior

work
can rough

ly

be div
ided in

to two
camps:

1. Tra
dition

al cac
he sim

ulator
s, such

as Din
ero IV

[20] o
r CAS

PER [38], s
imulate

a prog
ram’s

cache
behav

ior by
explic

itly ite
rating

over t
he tra

ce of m
emory ac

cesses
genera

ted by
the pr

ogram
.

The a
dvant

age of
this ap

proach
is that

it is ap
plicab

le to a
rbitra

ry wo
rkload

s and
it is po

ssible
to

precis
ely model m

odern
memory hi

erarch
ies, in

cludin
g soph

isticat
ed cac

he rep
lacem

ent po
licies,

such as Pse
udo-L

RU [3] or
Quad-

age LR
U [39, 40

] foun
d in real-w

orld m
icroar

chitec
tures

[2, 65]
.

The m
ain drawb

ack of
traditi

onal s
imulator

s is th
at the

ir run
time is pr

oporti
onal t

o the n
umber of

memory ac
cesses

a prog
ram perfor

ms. As a
conse

quenc
e, the

simulatio
n of pro

grams oper
ating

on

large a
mounts

of dat
a may tak

e wee
ks or m

ore.

2. Ana
lytical

cache
models [

7, 11,
14, 15

, 25, 2
6, 34,

59, 60
], on the ot

her ha
nd, e.g

. PolyC
ache [

7]

or Ha
yStack

[34], a
im to achiev

e anal
ysis ti

mes tha
t are i

ndepe
ndent

of the
number of

memory

access
es per

formed by
the pr

ogram
under

analys
is. To

this en
d, they

rely on
implicit r

eprese
ntatio

ns

of a p
rogram

’s memory access
es. A

prominent
such progr

am repres
entati

on is the
polyh

edral

∗ Exten
ded ve

rsion
of PLD

I 2022
paper.

Autho
rs’ add

resses
: Canb

erk M
orelli,

Saarla
nd Un

iversit
y, Saa

rland
Inform

atics C
ampus, S

aarbrü
cken,

Germany, s8
camore@

stud.u
ni-saa

rland.
de; Jan

Reinek
e, Saa

rland
Unive

rsity,
Saarla

nd Inf
ormatics C

ampus, S
aarbrü

cken,
Germany, r

eineke
@cs.

uni-sa
arland

.de.

ar
X

iv
:2

20
3.

14
84

5v
1

 [c
s.P

L]
 2

8
M

ar
 2

02
2

Experimental
evaluation

• Set-associative caches
• Hierarchical caches, e.g. L1+L2+L3

Experimental evaluation

Performance: Is warping effective?

Does it matter to accurately model real-world caches?

16

Performance: Speedup due to warping

17

PolyBench -
problem size L

stencil kernels

8-way 32 KiB L1 cache under
LRU replacement

Performance: Speedup due to warping

18

8-way 32 KiB L1 cache under
LRU, FIFO, Tree-PLRU, SRRIP-HP

PolyBench -
problem size L

Does it matter to model real-world caches?

19

Fully-associative LRU, Tree-PLRU, SRRIP-HP, FIFO
relative to set-associative LRU

PolyBench -
problem size M

Questions?

The End

Program

Implicit
Representation
of Access Trace

Extract
Model

Concrete
Cache

Simulator

L1 Misses,
L2 Misses,

…

Generic
Analytical
Warping

Backup Slides

Scaling behavior

22

PolyBench -
problem size (L)

vs problem size (XL)

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Canberk Morelli and Jan Reineke

100 101 102 103 104 105 106 107 108
100

101

102

103

104

105

106

107

108

non-warping simulation time [ms]

w
ar
pi
ng

si
m
ul
at
io
n
tim

e
[m

s]

L
XL

Fig. 7. L1 warping and non-warping simulation times for problem sizes L and XL.

6.2 Warping vs Non-Warping Simulation
Warping vs non-warping simulation. We �rst simulate the L1 cache of the test system for problem
size L. To investigate the e�ect of the replacement policy on the warping performance, in addition
to the Pseudo-LRU policy of the test system, we also simulate LRU, FIFO, and Quad-age LRU.
Figure 6 shows for each benchmark the speedup of warping simulation compared to the non-

warping simulation (bottom) and the share of non-warped accesses (top). The reported times
correspond to the time spent executing the implementations of Algorithms 1 and 2, i.e., they do
not include the overhead of extracting the internal representation of the benchmarks via isl. This
overhead, which is identical for warping and non-warping simulation, lies between 62 and 245 ms
depending on the benchmark and is thus dominated by the simulation time for most benchmarks.
The �rst observation is that the speedup is roughly inversely proportional to the share of non-

warped accesses. For, e.g. adi, about 0.3% of all accesses cannot be warped and we observe a speedup
of about 300G .

The stencil kernels adi, fdtd-2d, heat-3d, jacobi-2d, and seidel-2d exhibit large speedups. Stencils
have uniformly generated references [? ?], and thus give rise to recurring patterns in the cache
if there are enough accesses relative to the cache size. As we discussed earlier, warping aims to
exploit these patterns to accelerate the simulation. The consistent speedups for the stencil kernels
show that warping simulation is indeed able to achieve this. The jacobi-1d kernel does not bene�t
from warping since its working set is too small to �ll the cache.

While there are many kernels that bene�t fromwarping, there are others that do not. We observed
that there were no (or very few) symbolically equivalent cache states during the simulation of these
kernels, and thus, no (or very few) opportunities for warping. As we show later, some of these
kernels bene�t from warping when simulating a di�erent cache. However, for the current cache
con�guration, we conclude that warping does not decrease the simulation times of these kernels.

Overall, the di�erences between the replacement policies are fairly small, with LRU, Pseudo-LRU,
and FIFO often exhibiting similar speedups. Quad-age LRU is scan- and thrash-resistant [?], which
may result in “old” memory blocks remaining in the cache, while scanning through new ones,
which in some cases results in a greater number of classic simulation steps before detecting warping
opportunities.

, Vol. 1, No. 1, Article . Publication date: May 2022.

Warping vs HayStack

23

PolyBench -
problem size L+XL

KH
DW
��
G

DG
L

MD
FR
EL
��
G

GR
LWJ
HQ

VH
LG
HO
��
G

GH
ULF
KH P
YW

JH
VX
P
P
Y

EL
FJ

IG
WG
��
G

�P
P

�P
P

DW
D[

GX
UE
LQ

JH
P
YH
U

WU
LV
RO
Y

MD
FR
EL
��
G

V\
P
P

JH
P
P

FK
RO
HV
N\

V\
U�
N

V\
UN

WU
P
P

JU
DP
VF
KP
LG
W

QX
VV
LQ
RY

OX
GF
P
S OX

FR
UU
HO
DW
LR
Q

FR
YD
ULD
QF
H

IOR
\G
�Z
DU
VK
DO
O

NHUQHO

��ಜ�
��ಜ�

��ಜ�
��ಜ�
��ಜ�

���
���

VS
HH
GX
S

ODUJH
[ODUJH

32 KiB fully-associative LRU

Warping vs PolyCache

24

PolyBench -
problem size L

GX
UE
LQ

IG
WG
��
G

MD
FR
EL
��
G

DG
L

JH
P
YH
U

JH
VX
P
P
Y

VH
LG
HO
��
G

WU
LV
RO
Y

P
YW

DW
D[

EL
FJ

MD
FR
EL
��
G

V\
P
P

V\
U�
N

OX
GF
P
S

V\
UN

FK
RO
HV
N\

WU
P
P

FR
YD
ULD
QF
H

JU
DP
VF
KP
LG
W

FR
UU
HO
DW
LR
Q

�P
P

�P
P

GR
LWJ
HQ

IOR
\G
�Z
DU
VK
DO
O

JH
P
P OX

NHUQHO

��ಜ�
��ಜ�

���
���

VS
HH
GX
S

L1: 32 KiB 4-way set-associative LRU
L2: 256 KiB 4-way set-associative LRU

Accuracy relative to measurements

25

“small”

“medium”

“large”

System: Intel i9-10980XE (Cascade Lake) with PLRU replacement
Measurements using PAPI

problem
size:

�

���

UH
O��
HU
UR
U�>
�
@

'LQHUR,9
:DUSLQJ
+D\6WDFN

�P
P

�P
P DG
L

DW
D[

EL
FJ

FK
RO
HV
N\

FR
UU
HO
DW
LR
Q

FR
YD
ULD
QF
H

GH
ULF
KH

GR
LWJ
HQ

GX
UE
LQ

IG
WG
��
G

IOR
\G
�Z
DU
VK
DO
O

JH
P
P

JH
P
YH
U

JH
VX
P
P
Y

JU
DP
VF
KP
LG
W

KH
DW
��
G

MD
FR
EL
��
G

MD
FR
EL
��
G OX

OX
GF
P
S

P
YW

QX
VV
LQ
RY

VH
LG
HO
��
G

V\
P
P

V\
U�
N

V\
UN

WU
LV
RO
Y

WU
P
P

NHUQHOV

���

���

���

���

���

DE
V�
�H
UU

�

��

UH
O��
HU
UR
U�>
�
@

'LQHUR,9
:DUSLQJ
+D\6WDFN

�P
P

�P
P DG
L

DW
D[

EL
FJ

FK
RO
HV
N\

FR
UU
HO
DW
LR
Q

FR
YD
ULD
QF
H

GH
ULF
KH

GR
LWJ
HQ

GX
UE
LQ

IG
WG
��
G

IOR
\G
�Z
DU
VK
DO
O

JH
P
P

JH
P
YH
U

JH
VX
P
P
Y

JU
DP
VF
KP
LG
W

KH
DW
��
G

MD
FR
EL
��
G

MD
FR
EL
��
G OX

OX
GF
P
S

P
YW

QX
VV
LQ
RY

VH
LG
HO
��
G

V\
P
P

V\
U�
N

V\
UN

WU
LV
RO
Y

WU
P
P

NHUQHOV

���

���

���

���

���

���

���

DE
V�
�H
UU

�

��

UH
O��
HU
UR
U�>
�
@

'LQHUR,9
:DUSLQJ
+D\6WDFN

�P
P

�P
P DG
L

DW
D[

EL
FJ

FK
RO
HV
N\

FR
UU
HO
DW
LR
Q

FR
YD
ULD
QF
H

GH
ULF
KH

GR
LWJ
HQ

GX
UE
LQ

IG
WG
��
G

IOR
\G
�Z
DU
VK
DO
O

JH
P
P

JH
P
YH
U

JH
VX
P
P
Y

JU
DP
VF
KP
LG
W

KH
DW
��
G

MD
FR
EL
��
G

MD
FR
EL
��
G OX

OX
GF
P
S

P
YW

QX
VV
LQ
RY

VH
LG
HO
��
G

V\
P
P

V\
U�
N

V\
UN

WU
LV
RO
Y

WU
P
P

NHUQHOV

���

���

���

���

���

���

���

���

DE
V�
�H
UU

