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Caches appear to be important

AMD Zen 3

L3 Cache
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Cache behavior is non-obvious
Example: Matrix multiplication
for (int i = 0; i < 1024; i++)

for (int j = 0; j < 1024; j++)
for (int k = 0; k < 1024; k++)

C[i][j] += A[i][k] * B[k][j];

for (int i = 0; i < 1024; i++)
for (int k = 0; k < 1024; k++)

for (int j = 0; j < 1024; j++)
C[i][j] += A[i][k] * B[k][j];

L1 cache misses: 169.590.674
L2 cache misses: 166.667.689

28 seconds

L1 cache misses: 9.996.842
L2 cache misses:    397.890

5.7 seconds

… on an Intel Core i9-10980XE (Cascade Lake)
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1. Trace-based cache simulators

Program

# L1 Misses,
# L2 Misses, 

…

Cache 
Simulator

Explicit 
Access 
Trace

Program 
Simulator

Supports arbitrary programs + cache configurations

Analysis time is proportional to trace length
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=
“Polyhedral 
Programs”

=
Presburger
Formulas

=
Presburger
Formulas

+
Barvinok’s
Algorithm

2. Analytical cache models

Program
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…

Analytical
Cache Model 
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of Access Trace

Extract
Model
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2. Analytical cache models

Program

# L1 Misses,
# L2 Misses, 

…

Analytical
Cache Model 

+ Counting

Implicit 
Representation 
of Access Trace

Extract
Model

Analysis time decoupled from trace length

Limited to restricted cache models
+ classes of programs 

6



State of the art
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PolyCache (Bao et al., POPL 2018)
multi-level, non-inclusive set-associative caches with 

least-recently-used (LRU) replacement

[1] Bao, Krishnamoorthy, Pouchet, Sadayappan. Analytical modeling of cache behavior for affine programs. POPL 2018

HayStack (Gysi et al., PLDI 2019)
multi-level, inclusive fully-associative caches with 

least-recently-used (LRU) replacement

[2] Gysi, Grosser, Brandner, Hoefler. A fast analytical model of fully associative caches. PLDI 2019



Real-world cache configurations

Intel Core i5-1035G1 (Ice Lake):
• L1: 48 KiB, 12-way, LRU3PLRU4
• L2: 512 KiB, 8-way, SRRIP-HP [*] variant
• non-inclusive hierarchy

AMD Zen 3:
• L1: 32 KiB, 8-way, policy?
• L2: 512 KiB, 8-way, policy?
• inclusive hierarchy

Intel i9-10980XE (Cascade Lake):
• L1: 32 KiB, 8-way, Tree-PLRU
• L2: 1 MiB, 16-way, SRRIP-HP [*] variant
• non-inclusive hierarchy

[*] Jaleel, Theobald, Steely, Emer. High Performance Cache Replacement Using Re-reference Interval Prediction (RRIP). ISCA 2010
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Our goal: “Best of both worlds”

Analysis time decoupled from trace length

Limited to restricted classes of programs

Support real-world cache configurations
+
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Our approach in a nutshell
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Program

Implicit 
Representation 
of Access Trace

Extract
Model

Cache 
Simulator

# L1 Misses,
# L2 Misses, 

…

Analytical 
Warping



Example: 1D stencil computation
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for (int i = 1; i < 999; i++)
B[i-1] = (A[i-1] + A[i])/2;

-

-

i = 1

MRU

LRU

B[0]

A[1]

i = 2A[0] 
A[1] 
B[0]

3M

B[1]

A[2]

i = 3A[1] 
A[2] 
B[1]

1H, 2M

B[2]

A[3]

i = 4A[2] 
A[3] 
B[2]

1H, 2M

B[997]

A[998]

i = 999A[3] 
A[4] 
B[3]

995 x 
(1H, 2M)

A[997] 
A[998] 
B[997]

…

“Warping”



Example revisited
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-

-

MRU

LRU

B[0]

A[1]

A[0] 
A[1] 
B[0]

3M

B[1]

A[2]

A[1] 
A[2] 
B[1]
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B[2]

A[3]

A[2] 
A[3] 
B[2]
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A[998]

A[3] 
A[4] 
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A[997] 
A[998] 
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…

𝝅(x) = x+1 𝝅

𝝅

𝝅
𝝅995(x) = x+995

i = 1 i = 2 i = 3 i = 4 i = 999

𝝅
…

for (int i = 1; i < 999; i++)
B[i-1] = (A[i-1] + A[i])/2;



Key property: Data independence
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Key property: Data independence
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Data independence is also satisfied by 
• cache replacement policies other than LRU
• set-associative caches
• cache hierarchies, e.g. L1+L2+L3



• Data independence of

• Symbolic simulation + hashing 
to efficiently detect “matches”

• Checking necessary conditions via 
polyhedral techniques

In our paper + technical report
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Experimental 
evaluation

• Set-associative caches
• Hierarchical caches, e.g. L1+L2+L3



Experimental evaluation

Performance: Is warping effective?

Does it matter to accurately model real-world caches?
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Performance: Speedup due to warping

17

PolyBench -
problem size L

stencil kernels

8-way 32 KiB L1 cache under 
LRU replacement



Performance: Speedup due to warping
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8-way 32 KiB L1 cache under 
LRU, FIFO, Tree-PLRU, SRRIP-HP

PolyBench -
problem size L



Does it matter to model real-world caches?
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Fully-associative LRU, Tree-PLRU, SRRIP-HP, FIFO
relative to set-associative LRU

PolyBench -
problem size M



Questions?

The End
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Scaling behavior
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PolyBench -
problem size (L)

vs problem size (XL)
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Fig. 7. L1 warping and non-warping simulation times for problem sizes L and XL.

6.2 Warping vs Non-Warping Simulation
Warping vs non-warping simulation. We �rst simulate the L1 cache of the test system for problem
size L. To investigate the e�ect of the replacement policy on the warping performance, in addition
to the Pseudo-LRU policy of the test system, we also simulate LRU, FIFO, and Quad-age LRU.
Figure 6 shows for each benchmark the speedup of warping simulation compared to the non-

warping simulation (bottom) and the share of non-warped accesses (top). The reported times
correspond to the time spent executing the implementations of Algorithms 1 and 2, i.e., they do
not include the overhead of extracting the internal representation of the benchmarks via isl. This
overhead, which is identical for warping and non-warping simulation, lies between 62 and 245 ms
depending on the benchmark and is thus dominated by the simulation time for most benchmarks.
The �rst observation is that the speedup is roughly inversely proportional to the share of non-

warped accesses. For, e.g. adi, about 0.3% of all accesses cannot be warped and we observe a speedup
of about 300G .

The stencil kernels adi, fdtd-2d, heat-3d, jacobi-2d, and seidel-2d exhibit large speedups. Stencils
have uniformly generated references [? ? ], and thus give rise to recurring patterns in the cache
if there are enough accesses relative to the cache size. As we discussed earlier, warping aims to
exploit these patterns to accelerate the simulation. The consistent speedups for the stencil kernels
show that warping simulation is indeed able to achieve this. The jacobi-1d kernel does not bene�t
from warping since its working set is too small to �ll the cache.

While there are many kernels that bene�t fromwarping, there are others that do not. We observed
that there were no (or very few) symbolically equivalent cache states during the simulation of these
kernels, and thus, no (or very few) opportunities for warping. As we show later, some of these
kernels bene�t from warping when simulating a di�erent cache. However, for the current cache
con�guration, we conclude that warping does not decrease the simulation times of these kernels.

Overall, the di�erences between the replacement policies are fairly small, with LRU, Pseudo-LRU,
and FIFO often exhibiting similar speedups. Quad-age LRU is scan- and thrash-resistant [? ], which
may result in “old” memory blocks remaining in the cache, while scanning through new ones,
which in some cases results in a greater number of classic simulation steps before detecting warping
opportunities.

, Vol. 1, No. 1, Article . Publication date: May 2022.



Warping vs HayStack
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PolyBench -
problem size L+XL
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Warping vs PolyCache
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PolyBench -
problem size L
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Accuracy relative to measurements
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“small”

“medium”

“large”

System: Intel i9-10980XE (Cascade Lake) with PLRU replacement
Measurements using PAPI

problem 
size:
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