
Learning Cache Models by
Measurements

Jan Reineke

joint work with Andreas Abel

Uppsala University
December 20, 2012

computer science

saarland
university

Jan Reineke, Saarland 2

The Timing Analysis Problem

Embedded Software

Timing Requirements
?	

Our Vision: PRET Machines

PREcision-Timed processors: Performance & Predicability

+ = PRET

(Image: John Harrison’s H4, first clock to solve longitude problem)

Precision-Timed (PRET) Machines – p. 11/19

Microarchitecture

+	

Jan Reineke, Saarland 3

What does the execution time of a
program depend on?

Input-dependent
control flow

Microarchitectural State

+
Complex

CPU
L1

Cache

Complex
CPU

L1
Cache

...
L2

Cache
Main

Memory

Pipeline,
Memory Hierarchy,
Interconnect

Reineke et al., Berkeley 4

What does the execution time of a

program depend on?

Input-dependent

control flow
Microarchitectural State

+

Complex
CPU

L1
Cache

Complex
CPU

L1
Cache

...
L2

Cache
Main

Memory

Pipeline,

Memory Hierarchy,

Interconnect

Jan Reineke, Saarland 4

Example of Influence of
Microarchitectural State

Motorola PowerPC 755

Reineke et al., Berkeley 5

Example of Influence of

Microarchitectural State computer science

saarland
universityAccess Time

x=a+b;
LOAD r2, _a
LOAD r1, _b
ADD r3,r2,r1

MPC5xx PPC755

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 5 / 63

computer science

saarland
universityAccess Time

x=a+b;
LOAD r2, _a
LOAD r1, _b
ADD r3,r2,r1

MPC5xx PPC755

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 5 / 63

Motorola PowerPC 755

Courtesy of Reinhard Wilhelm.

Reineke et al., Berkeley 5

Example of Influence of

Microarchitectural State computer science

saarland
universityAccess Time

x=a+b;
LOAD r2, _a
LOAD r1, _b
ADD r3,r2,r1

MPC5xx PPC755

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 5 / 63

computer science

saarland
universityAccess Time

x=a+b;
LOAD r2, _a
LOAD r1, _b
ADD r3,r2,r1

MPC5xx PPC755

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 5 / 63

Motorola PowerPC 755

Courtesy of Reinhard Wilhelm.

Jan Reineke, Saarland 5

Typical Structure of Timing Analysis Tools computer science

saarland
universityTiming Analysis Framework

Input
Executable

CFG
Reconstruction

Value
Analysis

Control
Flow

Analysis

Micro-
architectural

Analysis

Global
Bound

Analysis

WCET Bound

B Reconstructs a control flow
graph from the binary.

B Determines invariants for
the values in registers and in
memory.

B Determines constraints on the
control flow, by

B determining loop bounds, and

B identifying infeasible paths.

B Determines bounds on
execution times of basic blocks.

B Based on an abstract model
of the microarchitecture, includ-
ing detailed models of

B the pipeline, and

B the memory hierarchy.

B Determines a worst-case
path and an upper bound on
the execution time.

B Usually formulated as integer
linear program.

Jan Reineke Timing Analysis and Timing Predictability 2. April 2012 7 / 54

ISA-specific
analysis parts

Microarchitecture-
specific part

computer science

saarland
universityTiming Analysis Framework

Input
Executable

CFG
Reconstruction

Value
Analysis

Control
Flow

Analysis

Micro-
architectural

Analysis

Global
Bound

Analysis

WCET Bound

B Reconstructs a control flow
graph from the binary.

B Determines invariants for
the values in registers and in
memory.

B Determines constraints on the
control flow, by

B determining loop bounds, and

B identifying infeasible paths.

B Determines bounds on
execution times of basic blocks.

B Based on an abstract model
of the microarchitecture, includ-
ing detailed models of

B the pipeline, and

B the memory hierarchy.

B Determines a worst-case
path and an upper bound on
the execution time.

B Usually formulated as integer
linear program.

Jan Reineke Timing Analysis and Timing Predictability 2. April 2012 7 / 54

Jan Reineke, Saarland 6

Construction of Timing Models

Needs to accurately
model all aspects of the
microarchitecture that
influence execution time.

Our Vision: PRET Machines

PREcision-Timed processors: Performance & Predicability

+ = PRET

(Image: John Harrison’s H4, first clock to solve longitude problem)

Precision-Timed (PRET) Machines – p. 11/19

Timing
Model

Micro-
architecture

Jan Reineke, Saarland 7

Construction of Timing Models Today

Jan Reineke, Saarland 8

Construction of Timing Models Tomorrow

Jan Reineke, Saarland 9

Cache Models

¢  Cache Model is important part of Timing Model
¢  Caches have simple interface: loads+stores
¢  Can be characterized by a few parameters:

l  ABC: associativity, block size, capacity
l  Replacement policy

DataTag

DataTag

DataTag

DataTag

A = Associativity

DataTag

DataTag

DataTag

DataTag

...

DataTag

DataTag

DataTag

DataTag

N = Number of Cache Sets

B = Block Size

Jan Reineke, Saarland 10

High-level Approach

¢  Generate memory access sequences
¢  Determine number of cache misses on these

sequences
l  using performance counters, or
l  by measuring execution times.

¢  Infer property from measurement results.

Jan Reineke, Saarland 11

Warm-up I: Inferring the Cache Capacity

Notation:

4.1. CACHE SIZE/ASSOCIATIVITY

Algorithm 1: Cache Size

measurements[maxSize]
curSize 1
while curSize < maxSize do

~p h0, 16, ..., curSize ⇤ 1024i
~a h0, 16, ..., curSize ⇤ 1024i100
measurements[curSize] measure(~p,~a)
if jump(measurements, curSize) then

return curSize� 1
curSize curSize+ 1

Figure 4.1: Result of running the simple algorithm for determining the cache
size on an Intel Core 2 Duo E6750 (32kB L1 Cache)

If curSize exceeds the cache size, we expect to see a sharp increase in the
number of misses.
Figure 4.1 shows the results of running this algorithm on an Intel Core 2 Duo
E6750 (32kB 8-way associative L1 Cache).
The left diagram was created using hardware performance counters. Here,
the ”jump” at 32kB is clearly visible (at this stage of the development pro-
cess, we analyzed the graphs manually to detect the jumps; we will describe
how to do this automatically when we describe our final algorithm in sec-
tion x). The diagram also shows a second jump at 36kB (i.e. 32kB + 4kB,
where 4kB is the way size of the cache). The reason for this behavior is that
between 32kB and 36kB some cache accesses lead to cache hits and other
accesses to cache misses; if the memory area is larger than 36kB, all memory
accesses lead to cache misses.
The right diagram shows the result of the time-based algorithm. Here, the
jump is hardly visible. A number of factors can contribute to this behavior:

13

Preparatory
accesses

Accesses to
measure

Basic idea:
l  Access sets of memory blocks A once.
l  Then access A again and count cache misses.
l  If A fits into the cache, no misses will occur.

A 2 Associativity = N The associativity of the cache.
B 2 BlockSize = N The block size in bytes.
N 2 NumberOfSets = N The number of cache sets.
C = A ·B ·N The cache capacity in bytes.
P 2 Policy The set of replacement policies.

addr 2 Address ✓ N Set of memory addresses.
tag 2 Tag ✓ N Set of tags.
v, w 2 Way = {0, . . . , A� 1} Set of cache ways.

i 2 Index = {0, . . . , N � 1} Set of indices.

Figure 1: Parameters and basic domains.

2 Cache Organization

~p = ~a = h0, . . . , sizei

~p = h0,W, 2 ·W, . . . , A/2 ·W i
~q = hB0

, B

0
+W,B

0
+ 2 ·W, . . . , B

0
+ (A/2 + 1) ·W i

measureC(~p · ~q, (~p · ~q)n)

measureC(~p · ~q, (~p · ~q)n) =
(
0 if B0

> B

n · (A+ 1) otherwise

In this section we introduce caches and their parameters
intuitively and formally. The formalization allows us to pre-
cisely state the problem in the following section.

2.1 Intuition and Parameters

Caches are fast but small memories that store a subset
of the main memory’s contents to bridge the latency gap
between CPU and main memory. To profit from spatial
locality and to reduce management overhead, main mem-
ory is logically partitioned into a set of memory blocks of
block size B. Blocks are cached as a whole in cache lines
of the same size. Usually, the block size is a power of
two. This way, the block number is determined by the
most significant bits of a memory address, more generally:
blockB(address) = baddress/Bc.

When accessing a memory block, the cache logic has to
determine whether the block is stored in the cache (“cache
hit”) or not (“cache miss”). To enable an efficient look-
up, each block can only be stored in a small number of
cache lines. For this purpose, caches are partitioned into
N equally-sized cache sets. The size of a cache set is
called the associativity A of the cache. A cache with
associativity A is often called A-way set-associative. It
consists of A ways, each of which consists of one cache
line in each cache set. In the context of a cache set, the
term way thus refers to a single cache line. Usually, also

the number of cache sets N is a power of two such that
the set number, also called index, is determined by the
least significant bits of the block number. More gener-
ally: indexB,N (address) = blockB(address) mod N.

The remaining bits of an address are known as the tag:
tagB,N (address) = bblockB(address)/Nc. To decide
whether and where a block is cached within a set, tags are
stored along with the data.

Since the number of memory blocks that map to a set is
usually far greater than the associativity of the cache, a so-
called replacement policy must decide which memory block
to replace upon a cache miss. Replacement policies try to
exploit temporal locality and base their decisions on the his-
tory of memory accesses. Usually, cache sets are treated
independently of each other such that accesses to one set
do not influence replacement decisions in other sets. Well-
known replacement policies in this class are least-recently
used (LRU); pseudo-LRU (PLRU), a cost-efficient variant
of LRU; first-in first-out (FIFO), also known as ROUND
ROBIN; and not-most-recently used (NMRU) [?]. An ex-
ception to the rule of treating cache sets independently,
used in several ARM and MOTOROLA processors [?], is
PSEUDO ROUND ROBIN, which maintains a single “FIFO
pointer” for all cache sets.

2.2 Formalization of Caches and a

Cache Template

A cache can be modeled as a 4-tuple C =

(CacheStateC , s
0
C , upC , hitC), where CacheStateC is the

cache’s set of states, s

0
C is its initial state, upC :

CacheStateC ⇥ Address ! CacheStateC models the
change in state upon a memory access, and hit :

CacheStateC⇥Address ! B, determines whether a mem-
ory access results in a cache hit or a cache miss.

Similarly, a replacement policy can be modeled as a tuple
P = (PolStateP , s

0
P , evictP , upP), where PolStateP is

the set of states of the policy, s0P 2 PolStateP is the initial
state of the policy, evictP : PolStateP ! Way determines
which memory block to evict upon a cache miss, and upP :

PolStateP ⇥(Way[{miss}) ! PolStateP computes the

Measure with .

Jan Reineke, Saarland 12

Example: Intel Core 2 Duo E6750,
 L1 Data Cache

CHAPTER 4. ALGORITHMS

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950

L1 Misses

Figure 4.2: Result of running the simple algorithm with pointer chasing on
an Intel Intel Core 2 Duo E6750 (32kB L1 Cache)

• Non-blocking caches:

• Out-of-order execution:

• Prefetching:

• Other optimizations like way-prediction:

To minimize the e↵ects of non-blocking caches and out-of-order execution,
we can we serialize memory accesses by using a form of “pointer chasing”
where each memory location contains the address of the next access (for more
details on this see section x).

Figure 4.2 shows the result of this modification. Now, a slight jump in the
diagram for the time based approach is visible. But it is hard to find the
exact location of the jump. Moreover, there is also already a small jump
between 31kB and 32kB in the left diagram.

The following algorithm shows our first approach at inferring the associativ-
ity.

The algorithm uses the fact that the cache size is always a multiple of the
way size. Thus, when accessing the memory with a stride of cache size many
bytes, all accesses map to the same cache set. If curAssoc exceeds the actual
associativity, the cache can no longer store all accessed memory locations,
and so we expect to see a jump in the number of misses.

Figures 4.3 and 4.4 show the result of running this algorithm on the same
architecture as above, both with and without pointer chasing.

14

Capacity = 32 KB

Way Size = 4 KB

|Misses|

|Size|

Jan Reineke, Saarland 13

Warm-up II: Inferring the Block Size

Given: way size W and associativity A
Wanted: block size B

A 2 Associativity = N The associativity of the cache.
B 2 BlockSize = N The block size in bytes.
N 2 NumberOfSets = N The number of cache sets.
C = A ·B ·N The cache capacity in bytes.
P 2 Policy The set of replacement policies.

addr 2 Address ✓ N Set of memory addresses.
tag 2 Tag ✓ N Set of tags.
v, w 2 Way = {0, . . . , A� 1} Set of cache ways.

i 2 Index = {0, . . . , N � 1} Set of indices.

Figure 1: Parameters and basic domains.

2 Cache Organization

~p = h0,W, 2 ·W, . . . , A/2 ·W i
~q = hB0

, B

0
+W,B

0
+ 2 ·W, . . . , B

0
+ (A/2 + 1) ·W i

measureC(~p · ~q, (~p · ~q)n)

measureC(~p · ~q, (~p · ~q)n) =
(
0 if B0

> B

n · (A+ 1) otherwise

In this section we introduce caches and their parameters
intuitively and formally. The formalization allows us to pre-
cisely state the problem in the following section.

2.1 Intuition and Parameters

Caches are fast but small memories that store a subset
of the main memory’s contents to bridge the latency gap
between CPU and main memory. To profit from spatial
locality and to reduce management overhead, main mem-
ory is logically partitioned into a set of memory blocks of
block size B. Blocks are cached as a whole in cache lines
of the same size. Usually, the block size is a power of
two. This way, the block number is determined by the
most significant bits of a memory address, more generally:
blockB(address) = baddress/Bc.

When accessing a memory block, the cache logic has to
determine whether the block is stored in the cache (“cache
hit”) or not (“cache miss”). To enable an efficient look-
up, each block can only be stored in a small number of
cache lines. For this purpose, caches are partitioned into
N equally-sized cache sets. The size of a cache set is
called the associativity A of the cache. A cache with
associativity A is often called A-way set-associative. It
consists of A ways, each of which consists of one cache
line in each cache set. In the context of a cache set, the
term way thus refers to a single cache line. Usually, also
the number of cache sets N is a power of two such that
the set number, also called index, is determined by the

least significant bits of the block number. More gener-
ally: indexB,N (address) = blockB(address) mod N.

The remaining bits of an address are known as the tag:
tagB,N (address) = bblockB(address)/Nc. To decide
whether and where a block is cached within a set, tags are
stored along with the data.

Since the number of memory blocks that map to a set is
usually far greater than the associativity of the cache, a so-
called replacement policy must decide which memory block
to replace upon a cache miss. Replacement policies try to
exploit temporal locality and base their decisions on the his-
tory of memory accesses. Usually, cache sets are treated
independently of each other such that accesses to one set
do not influence replacement decisions in other sets. Well-
known replacement policies in this class are least-recently
used (LRU); pseudo-LRU (PLRU), a cost-efficient variant
of LRU; first-in first-out (FIFO), also known as ROUND
ROBIN; and not-most-recently used (NMRU) [?]. An ex-
ception to the rule of treating cache sets independently,
used in several ARM and MOTOROLA processors [?], is
PSEUDO ROUND ROBIN, which maintains a single “FIFO
pointer” for all cache sets.

2.2 Formalization of Caches and a

Cache Template

A cache can be modeled as a 4-tuple C =

(CacheStateC , s
0
C , upC , hitC), where CacheStateC is the

cache’s set of states, s

0
C is its initial state, upC :

CacheStateC ⇥ Address ! CacheStateC models the
change in state upon a memory access, and hit :

CacheStateC⇥Address ! B, determines whether a mem-
ory access results in a cache hit or a cache miss.

Similarly, a replacement policy can be modeled as a tuple
P = (PolStateP , s

0
P , evictP , upP), where PolStateP is

the set of states of the policy, s0P 2 PolStateP is the initial
state of the policy, evictP : PolStateP ! Way determines
which memory block to evict upon a cache miss, and upP :

PolStateP ⇥(Way[{miss}) ! PolStateP computes the
change in state upon a cache hit to a particular cache way or
upon a miss. Parameters and basic domains used here and

A 2 Associativity = N The associativity of the cache.
B 2 BlockSize = N The block size in bytes.
N 2 NumberOfSets = N The number of cache sets.
C = A ·B ·N The cache capacity in bytes.
P 2 Policy The set of replacement policies.

addr 2 Address ✓ N Set of memory addresses.
tag 2 Tag ✓ N Set of tags.
v, w 2 Way = {0, . . . , A� 1} Set of cache ways.

i 2 Index = {0, . . . , N � 1} Set of indices.

Figure 1: Parameters and basic domains.

2 Cache Organization

~p = h0,W, 2 ·W, . . . , A/2 ·W i
~q = hB0

, B

0
+W,B

0
+ 2 ·W, . . . , B

0
+ (A/2 + 1) ·W i

measureC(~p · ~q, (~p · ~q)n)

measureC(~p · ~q, (~p · ~q)n) =
(
0 if B0

> B

n · (A+ 1) otherwise

In this section we introduce caches and their parameters
intuitively and formally. The formalization allows us to pre-
cisely state the problem in the following section.

2.1 Intuition and Parameters

Caches are fast but small memories that store a subset
of the main memory’s contents to bridge the latency gap
between CPU and main memory. To profit from spatial
locality and to reduce management overhead, main mem-
ory is logically partitioned into a set of memory blocks of
block size B. Blocks are cached as a whole in cache lines
of the same size. Usually, the block size is a power of
two. This way, the block number is determined by the
most significant bits of a memory address, more generally:
blockB(address) = baddress/Bc.

When accessing a memory block, the cache logic has to
determine whether the block is stored in the cache (“cache
hit”) or not (“cache miss”). To enable an efficient look-
up, each block can only be stored in a small number of
cache lines. For this purpose, caches are partitioned into
N equally-sized cache sets. The size of a cache set is
called the associativity A of the cache. A cache with
associativity A is often called A-way set-associative. It
consists of A ways, each of which consists of one cache
line in each cache set. In the context of a cache set, the
term way thus refers to a single cache line. Usually, also
the number of cache sets N is a power of two such that
the set number, also called index, is determined by the

least significant bits of the block number. More gener-
ally: indexB,N (address) = blockB(address) mod N.

The remaining bits of an address are known as the tag:
tagB,N (address) = bblockB(address)/Nc. To decide
whether and where a block is cached within a set, tags are
stored along with the data.

Since the number of memory blocks that map to a set is
usually far greater than the associativity of the cache, a so-
called replacement policy must decide which memory block
to replace upon a cache miss. Replacement policies try to
exploit temporal locality and base their decisions on the his-
tory of memory accesses. Usually, cache sets are treated
independently of each other such that accesses to one set
do not influence replacement decisions in other sets. Well-
known replacement policies in this class are least-recently
used (LRU); pseudo-LRU (PLRU), a cost-efficient variant
of LRU; first-in first-out (FIFO), also known as ROUND
ROBIN; and not-most-recently used (NMRU) [?]. An ex-
ception to the rule of treating cache sets independently,
used in several ARM and MOTOROLA processors [?], is
PSEUDO ROUND ROBIN, which maintains a single “FIFO
pointer” for all cache sets.

2.2 Formalization of Caches and a

Cache Template

A cache can be modeled as a 4-tuple C =

(CacheStateC , s
0
C , upC , hitC), where CacheStateC is the

cache’s set of states, s

0
C is its initial state, upC :

CacheStateC ⇥ Address ! CacheStateC models the
change in state upon a memory access, and hit :

CacheStateC⇥Address ! B, determines whether a mem-
ory access results in a cache hit or a cache miss.

Similarly, a replacement policy can be modeled as a tuple
P = (PolStateP , s

0
P , evictP , upP), where PolStateP is

the set of states of the policy, s0P 2 PolStateP is the initial
state of the policy, evictP : PolStateP ! Way determines
which memory block to evict upon a cache miss, and upP :

PolStateP ⇥(Way[{miss}) ! PolStateP computes the
change in state upon a cache hit to a particular cache way or
upon a miss. Parameters and basic domains used here and

Jan Reineke, Saarland 14

Inferring the Replacement Policy

There are infinitely many conceivable
replacement policies…
è  For any set of observations, multiple policies

remain possible.
è  Need to make some assumption on possible

policies to render inference possible.

Jan Reineke, Saarland 15

A Class of Replacement Policies:
Permutation Policies

¢  Permutation Policies:
l  Maintain total order on blocks in each cache set
l  Evict the greatest block in the order
l  Update the order based on the position of the

accessed block in the order

l  Can be specified by A+1 permutations
Associativity-many “hit” permutations
one “miss” permutation

¢  Examples: LRU, FIFO, PLRU, …

Jan Reineke, Saarland 16

Permutation Policy LRU

LRU (least recently used):
 order on blocks based on recency of last access

a
b
c
d

c
a
b
d

c

e
c
a
b

e

most-recently-used

least-recently-used

“hit” permutation 3 “miss” permutation

Jan Reineke, Saarland 17

Permutation Policy FIFO

FIFO (first-in first-out):
 order on blocks based on order of cache misses

a
b
c
d

a
b
c
d

c

e
a
b
c

e

last-in

first-in

“hit” permutation 3 “miss” permutation

Jan Reineke, Saarland 18

Inferring Permutation Policies

Strategy to infer permutation i:
 1) Establish a known cache state s
 2) Trigger permutation i
 3) “Read out” the resulting cache state s’.
 Deduce permutation from s and s’.

Jan Reineke, Saarland 19

1) Establishing a known cache state

Assume “miss” permutation of FIFO, LRU, PLRU:

?
?
?
?

d
?
?
?

c
d
?
?

b
c
d
?

a
b
c
d

d c b a

Jan Reineke, Saarland 20

2) Triggering permutation i

Simply access ith block in cache state.

E,g, for i = 3, access c:

a
b
c
d

?
?
?
?

?
c

Jan Reineke, Saarland 21

3) Reading out a cache state

Exploit “miss” permutation to determine position
of each of the original blocks:

If position is j then A-j+1 misses will evict the
block, but A-j misses will not.

?
?
?
c

?
?
c
?

?
?
?
?

After 1 miss,
c is still cached.

After 2 misses,
c is not cached

Jan Reineke, Saarland 22

Inferring Permutation Policies:
Example of LRU, Permutation 3

a
b
c
d

c
a
b
d

c

most-recently-used

least-recently-used

1) Establish known state
2) Trigger permutation 3

3) Read out
resulting state

Jan Reineke, Saarland 23

Implementation Challenges

¢  Interference
¢  Prefetching
¢  Instruction Caches
¢  Virtual Memory
¢  L2+L3 Caches:

l  Strictly-inclusive
l  Non-inclusive
l  Exclusive

¢  Shared Caches:
l  Coherence

Jan Reineke, Saarland 24

Experimental Results

Table 1: Results of replacement policy inference.

L1 Data L1 Instruction L2 Unified
Architecture Size Assoc. Policy Size Assoc. Policy Size Assoc. Policy
Intel Atom D525 24kB 6 ATOM 32kB 8 PLRU 512kB 8 PLRU
Intel Pentium 3 900 16kB 4 PLRU 16kB 4 PLRU 256kB 8 PLRU
Intel Core 2 Duo E6300 32kB 8 PLRU 32kB 8 PLRU 2048kB 8 PLRU
Intel Core 2 Duo E6750 32kB 8 PLRU 32kB 8 PLRU 4096kB 16 Section 6.2
Intel Core 2 Duo E8400 32kB 8 PLRU 32kB 8 PLRU 6144kB 24 Section 6.2
Intel Core i5 460M 32kB 8 PLRU 32kB 4 Section 6.2 256kB 8 PLRU
Intel Xeon W3550 32kB 8 PLRU 32kB 4 Section 6.2 256kB 8 PLRU
AMD Athlon 64 X2 4850e 64kB 2 LRU 64kB 2 LRU 512kB 16 Section 6.2
AMD Opteron 8360SE 64kB 2 LRU 64kB 2 LRU 512kB 16 Section 6.2

same way size as their first-level caches. Our current algo-
rithm is not able to infer their replacement policy.

Intel Core i5 460M and Xeon W3550 Our implementa-
tion could not infer the replacement policies of the instruc-
tion caches of these two Nehalem-based processors. This
might be due to the Micro-Op buffer first introduced in this
architecture5.

6.3 Experimental Setup

The experiments were performed on different versions of
Ubuntu (with kernels � 2.6.32), depending on what was al-
ready installed on the machines we examined. Aside from
enabling support for huge pages, we did not perform any
modifications to the operating system. In particular, we did
not stop background processes or disable interrupts, which
may be useful to reduce interference. However, our goal is
for our implementation to be as robust as possible, so that it
can be easily applied in any context. To get access to per-
formance counter data, we used PAPI in version 4.2.1. The
code was compiled with GCC at optimization level 0, to
avoid compiler optimizations that could influence the mea-
surement results. The execution time of our algorithm was
usually less than one minute.

7 Related Work
Measurement of Memory Hierarchy Parameters Sev-
eral publications have presented approaches for determin-
ing parameters like the cache size, the associativity and the
block size of data caches through measurements. Some
of these approaches use hardware performance counters to
perform the measurements [13, 9, 8] while the others use
timing information [22, 23, 14, 4, 21, 5, 7].

5http://www.bit-tech.net/hardware/cpus/2008/11/
03/intel-core-i7-nehalem-architecture-dive/5.

Only few [23, 8, 5] have also analyzed these parame-
ters for instruction caches. However, in contrast to our im-
plementation, the approach described in[23] generates and
compiles C source code dynamically, thus requiring access
to the compiler at runtime. On the other hand, [8] relies
on specific features of the GCC compiler. Blanquer and
Chalmers [5] do not give a detailed description of their im-
plementation.

Some of these approaches make assumptions as to the
underlying replacement policy (e.g. [18] and [21] assume
that LRU replacement is used). However, only a few publi-
cations have tried to determine the cache replacement poli-
cies as well. The approaches described in [8] and [5] are
able to detect LRU-based policies but treat all other policies
as random. John and Baumgartl [13] use performance coun-
ters to distinguish between LRU and several of its deriva-
tives. Moreover, the presented algorithms could be adapted
to other strategies. However, the implementation requires a
special real-time operating system environment and needs
to be adapted to every different processor architecture. Ad-
ditionally, they only consider data caches and assume the
other cache parameters to be known and to be powers of
two, which is not the case on several of the processors we
used in our evaluation.

Template-based Synthesis Our work can be seen as a
form of template-based synthesis [19, 10]. In the terms of
Godefroid and Taly [10], our algorithm is based on smart
sampling, as the set of measurements is independent of in-
termediate measurement results.

Machine Learning Caches as defined in Section 2.2 de-
fine a formal language: a sequence of memory accesses is
a member of the language if the final memory access in the
sequence results in a cache hit, if the sequence is fed to the
cache starting in its initial state. Thus it would be interesting
to apply methods to learn formal languages.

Given an infinite set of memory addresses, caches are
infinite-state systems. However, replacement policies as de-

Undocumented
variant of LRU

Nehalem introduced
“L0” micro-op buffer

Exclusive
hierarchy

Surprising
measurements ;-)

Jan Reineke, Saarland 25

L2 Caches on some Core 2 Duos

⇧

ATOM
0 = (0, 1, 2, 3, 4, 5)

⇧

ATOM
1 = (1, 0, 2, 4, 3, 5)

⇧

ATOM
2 = (2, 0, 1, 5, 3, 4)

⇧

ATOM
3 = (3, 1, 2, 0, 4, 5)

⇧

ATOM
4 = (4, 0, 2, 1, 3, 5)

⇧

ATOM
5 = (5, 0, 1, 2, 3, 4)

Figure 3: Permutation vectors for Intel Atom D525.

second-level cache, our algorithm accesses all other cache
sets. So all memory accesses lead to misses in the first-level
cache and are thus passed to the second-level cache.

Virtual Memory Most current platforms have physically-
indexed L2 caches. As the way size of these caches is usu-
ally larger than the page size, consecutive virtual addresses
need not map to consecutive cache sets, and virtual ad-
dresses that are way size-apart need not map to the same
cache set. We deal with this problem by allocating huge
pages3. This allows us to allocate physically-contiguous
memory areas that are significantly larger than the standard
page size of 4 kB and usually a multiple of the way size of
large caches.

6 Experimental Evaluation

Using our algorithms, we were able to successfully de-
termine the replacement policies of a number of different
x86 CPUs that were introduced in the last twelve years. Ta-
ble 1 shows the results for first-level instruction and data
caches as well as for unified second-level caches.

6.1 Intel Atom D525 Replacement Policy

The Intel Atom D525 CPU features a 24 kB L1 data
cache with associativity 6. Using our approach, we obtained
the permutation vector shown in Figure 3 for its L1 replace-
ment policy. We were not able to find any detailed infor-
mation about the replacement policies used in Intel Atom
CPUs in the documentation or elsewhere, so to the best of
our knowledge, this is the first publicly-available descrip-
tion of this policy. Obviously, the policy is not a strict
LRU policy but it seems to approximate LRU. Previously
described implementations of pseudo-LRU [1] were based
on perfect binary trees and thus required the associativity to
be a power of two.

Using RELACS4 [16], we have determined that this re-
placement policy is (1, 0)-competitive relative to LRU at
associativity 4. This means that all cache analyses previ-
ously developed for LRU can be immediately applied in
WCET analyses of the Intel Atom D525.

3http://en.wikipedia.org/wiki/Page_size.
4http://rw4.cs.uni-saarland.de/˜reineke/relacs.

Figure 4: Experimental analysis of L2 cache behavior of the
Intel Core 2 Duo E6750, E6300 and E8400.

6.2 Di�culties

Intel Core 2 Duo E6750 and E8400 The L2 replace-
ment policy could not be inferred by our algorithm on
both an Intel Core 2 Duo E6750 (4 MB, 16-way set-
associative) and an Intel Core 2 Duo E8400 (6 MB, 24-
way set-associative), i.e., the new positions determined by
newPosOfBlockInPerm did not form a permutation.
However, on an Intel Core 2 Duo E6300 (2 MB, 8-way
set-associative), the PLRU replacement policy was inferred.
According to Intel, all of these CPUs “use some variation of
a pseudo LRU replacement algorithm” [17]. To further in-
vestigate why our algorithm could not infer the policy of
the two processors mentioned above, we designed an exper-
iment, which:

1. Clears the L2 cache.
2. For each cache set, accesses one memory block that

maps to this set.
3. Accesses n other memory blocks in each cache set.
4. Counts the L2 cache misses when accessing the mem-

oryblocks from step 2 again.
Under the PLRU policy, and all other permutation policies,
we would expect to get zero misses if n is smaller than the
associativity of the L2 cache and number of cache sets many
misses otherwise. Figure 4 shows that this is indeed almost
the case on the E6300. The slight jump at n = 7 is likely
due to interfering memory accesses. However, on the other
two Core 2 Duo machines, the results look different. On the
E6750, the curve can roughly be modeled by the function
4096 ·

⇣
1�

�
1
2

�bn/8c⌘, where 4096 is the number of cache
sets. So far, we have not been able to find a conclusive
explanation for this behavior.

AMD Athlon 64 X2 4850e and Opteron 8360SE Both
AMD CPUs have exclusive second-level caches with the

|misses|

n

Number
of cache
sets, 4096

associativities

Core 2 Duo E6300, 2 MB, 8 ways

Core 2 Duo E6750,
4 MB, 16 ways

Core 2 Duo E8400,
6 MB, 24 ways

Jan Reineke, Saarland 26

Replacement Policy of the Intel Atom D525

Discovered to our knowledge undocumented
“hierarchical” policy:

a b
c d
e f

d c
a b
e f

d

x e
d c
a b

x

ATOM = LRU(3, LRU(2))
PLRU(2k) = LRU(2, PLRU(k))

Jan Reineke, Saarland 27

Conclusions and Future Work

¢  Inference of cache models I
¢  More general class of replacement policies,

e.g. by inferring canonical register automata.
¢  Shared caches in multicores, coherency

protocols, etc.
¢  Deal with other architectural features:

translation lookaside buffers, branch
predictors, prefetchers

¢  Infer abstractions instead of “concrete” models

Jan Reineke, Saarland 28

Questions?

Measurement-based Modeling of the Cache Replacement Policy
A. Abel and J. Reineke
RTAS, 2013 (to appear).

