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The Context: Hard Real-Time Systems 

Safety-critical applications: 
¢  Avionics, automotive, train industries, manufacturing 

¢  Embedded controllers must finish their tasks within 
given time bounds. 

¢  Developers would like to know the Worst-Case 
Execution Time (WCET) to give a guarantee. 
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The Timing Analysis Problem 

Embedded Software 

Timing Requirements 
?	  

Our Vision: PRET Machines

PREcision-Timed processors: Performance & Predicability

+ = PRET

(Image: John Harrison’s H4, first clock to solve longitude problem)

Precision-Timed (PRET) Machines – p. 11/19

Microarchitecture 

+	  
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saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Simple 
CPU

Memory
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Example of Influence of  
Microarchitectural State 

PowerPC 755 

Reineke et al., Berkeley 5 
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Example of Influence of Corunning Tasks 
in Multicores 

Radojkovic et al. (ACM TACO, 2012) on Intel Atom 
and Intel Core 2 Quad: 

 up to 14x slow-down due to interference 
 on shared L2 cache and memory controller 
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Challenges 

1.  Modeling 
How to construct sound timing models? 

2.  Analysis 
How to precisely & efficiently bound the WCET? 

3.  Design 
How to design microarchitectures that enable 
precise & efficient WCET analysis? 
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The Modeling Challenge 

Timing model = Formal specification of  
   microarchitecture’s timing 

  
Incorrect timing model  

  à possibly incorrect WCET bound. 

Our Vision: PRET Machines

PREcision-Timed processors: Performance & Predicability

+ = PRET

(Image: John Harrison’s H4, first clock to solve longitude problem)

Precision-Timed (PRET) Machines – p. 11/19

Timing 
Model

Micro-
architecture

?	  
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Current Process of Deriving Timing Model 
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Current Process of Deriving Timing Model 

à Time-consuming, and 
à error-prone. 
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1. Future Process of Deriving Timing Model Our Vision: PRET Machines

PREcision-Timed processors: Performance & Predicability
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Derive timing model automatically from formal 
specification of microarchitecture. 
 

à  Less manual effort, thus less time-consuming, and 
à  provably correct. 
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2. Future Process of Deriving Timing Model Our Vision: PRET Machines
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Proof-of-concept: 
Automatic Modeling of the Cache Hierarchy 

¢  Cache Model is important part of Timing Model 
¢  Can be characterized by a few parameters: 

l  ABC: associativity, block size, capacity 
l  Replacement policy 

 
 

chi [Abel and Reineke, RTAS 2013] derives all of 
these parameters fully automatically. 

DataTag

DataTag

DataTag

DataTag

A = Associativity

DataTag

DataTag

DataTag

DataTag

...

DataTag

DataTag

DataTag

DataTag

N = Number of Cache Sets

B = Block Size
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Example: Intel Core 2 Duo E6750, 
         L1 Data Cache 

CHAPTER 4. ALGORITHMS
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L1 Misses

Figure 4.2: Result of running the simple algorithm with pointer chasing on
an Intel Intel Core 2 Duo E6750 (32kB L1 Cache)

• Non-blocking caches:

• Out-of-order execution:

• Prefetching:

• Other optimizations like way-prediction:

To minimize the e↵ects of non-blocking caches and out-of-order execution,
we can we serialize memory accesses by using a form of “pointer chasing”
where each memory location contains the address of the next access (for more
details on this see section x).

Figure 4.2 shows the result of this modification. Now, a slight jump in the
diagram for the time based approach is visible. But it is hard to find the
exact location of the jump. Moreover, there is also already a small jump
between 31kB and 32kB in the left diagram.

The following algorithm shows our first approach at inferring the associativ-
ity.

The algorithm uses the fact that the cache size is always a multiple of the
way size. Thus, when accessing the memory with a stride of cache size many
bytes, all accesses map to the same cache set. If curAssoc exceeds the actual
associativity, the cache can no longer store all accessed memory locations,
and so we expect to see a jump in the number of misses.

Figures 4.3 and 4.4 show the result of running this algorithm on the same
architecture as above, both with and without pointer chasing.

14

|Misses| 

|Size| 
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Replacement Policy 

Approach inspired by methods to learn finite 
automata. Heavily specialized to problem domain. 
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Replacement Policy 

Approach inspired by methods to learn finite 
automata. Heavily specialized to problem domain. 
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c d 
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d c 
a b 
e f 

d 

x e 
d c 
a b 

x 

More information: http://embedded.cs.uni-saarland.de/chi.php 

Discovered to our knowledge undocumented 
policy of the Intel Atom D525: 
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Modeling Challenge: Future Work 

Extend automation to other parts of the 
microarchitecture: 
¢  Translation lookaside buffers, branch 

predictors 
¢  Shared caches in multicores including their 

coherency protocols 
¢  Out-of-order pipelines? 
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The Analysis Challenge 

Precise & Efficient 
Timing Analysis 

Our Vision: PRET Machines

PREcision-Timed processors: Performance & Predicability

+ = PRET

(Image: John Harrison’s H4, first clock to solve longitude problem)

Precision-Timed (PRET) Machines – p. 11/19

Timing 
Model

Micro-
architecture

?	  !	  

1. INTRODUCTION

WCETH(P ) := max

i2Inputs
max

h2States(H)
ETH(P, i, h)

2. REFERENCES

Consider all 
possible 
program 
inputs 

Consider all 
possible initial 
states of the 

hardware 
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The Analysis Challenge 

1. INTRODUCTION

WCETH(P ) := max

i2Inputs
max

h2States(H)
ETH(P, i, h)

2. REFERENCES

Consider all 
possible 
program 
inputs 

Consider all 
possible initial 
states of the 

hardware 

Explicitly evaluating ET for all inputs and all 
hardware states is not feasible in practice: 
¢  There are simply too many. 
è  Need for abstraction and thus approximation! 
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The Analysis Challenge: 
State of the Art 
Component Analysis Status 

Caches, 
Branch Target 
Buffers 

Precise & efficient abstractions, for  
•  LRU [Ferdinand, 1999] 
Not-so-precise but efficient abstractions, for 
•  FIFO, PLRU, MRU [Grund and Reineke, 

2008-2011] 

Complex 
Pipelines 

Precise but very inefficient; little abstraction 
 Major challenge: timing anomalies 

Shared 
resources, e.g. 
busses, shared 
caches, DRAM 

No realistic approaches yet 
 Major challenge: interference between 
hardware threads 
 à execution time depends on corunning tasks 
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A

A

Resource 1

Resource 2

Resource 1

Resource 2

C

B C

B

D E

D E

Scheduling Anomaly 

Timing Anomalies 

Timing Anomaly =  
Local worst-case does not imply Global worst-case 
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Timing Anomalies 

Timing Anomaly =  
Local worst-case does not imply Global worst-case 

A

A

Cache Miss

Cache Hit

C

Branch Condition 
Evaluated

Prefetch B - Miss C

Speculation Anomaly 
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The Design Challenge 

Wanted: 
Multi-/many-core architecture with 
¢  No timing anomalies  
à  precise & efficient analysis of individual cores 
¢  Temporal isolation between cores 
à  independent/incremental development & analysis 

   and high performance! 
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Approaches to the Design Challenge 

At the level of individual cores: 
¢  Simple in-order pipelines, with static or no 

branch prediction 
¢  Scratchpad Memories or LRU Caches 

Software-
controlled 

caches 
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Approaches to the Design Challenge 

For resources shared among multiple cores: 
¢  Temporal partitioning, e.g.  

l  TDMA arbitration of buses, shared memories 
l  Thread-interleaved pipeline in PRET 

¢  Spatial partitioning, e.g. 
l  Partition shared caches 
l  Partition shared DRAM 

à  Temporal isolation 
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Design Challenge: Predictable Pipelining 

from Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 2007. 

Pipeline It!

Hennessey and Patterson, Computer Architecture: A Quantitative Approach, 2007.
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Pipelining: Hazards 

from Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 2007. 

Great Except for Hazards

Hennessey and Patterson, Computer Architecture: A Quantitative Approach, 2007.
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Forwarding helps, but not all the time… 
...But It Does Not Solve Everything...

LD R1, 45(r2)

DADD R5, R1, R7

BE R5, R3, R0

ST R5, 48(R2)

Unpipelined F D E M W F D E M W F D E M W F D E M W

F D E M W

The Dream F D E M W

F D E M W

F D E M W

F D E M W

The Reality F D E M W Memory Hazard

F D E M W Data Hazard

F D E M W Branch Hazard
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Solution: PTARM Thread-interleaved Pipelines 
[Lickly et al., CASES 2008] 

Our Solution: Thread-Interleaved Pipelines

+

An old idea from the 1960s

T1: F D E M W F D E M W

T2: F D E M W F D E M W

T3: F D E M W F D E M W

T4: F D E M W F D E M W

T5: F D E M W F D E M W

But what about memory?

Lee and Messerschmitt,
Pipeline Interleaved
Programmable DSPs,
ASSP-35(9), 1987.

Our Solution: Thread-Interleaved Pipelines

+

An old idea from the 1960s

T1: F D E M W F D E M W

T2: F D E M W F D E M W

T3: F D E M W F D E M W

T4: F D E M W F D E M W

T5: F D E M W F D E M W

But what about memory?

Lee and Messerschmitt,
Pipeline Interleaved
Programmable DSPs,
ASSP-35(9), 1987.

Each thread occupies only one stage of the pipeline at a time 
 à No hazards; perfect utilization of pipeline 
 à Simple hardware implementation (no forwarding, etc.) 
 à Each instruction takes the same amount of time 
 à Temporal isolation between different hardware threads 
 
Drawback: reduced single-thread performance 
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Design Challenge: DRAM Controller 

Translates sequences of memory accesses by Clients (CPUs and I/O) into 
legal sequences of DRAM commands 

l  Needs to obey all timing constraints 
l  Needs to insert refresh commands sufficiently often 
l  Needs to translate “physical” memory addresses into row/column/

bank tuples 
 

CPU1
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...

DRAM 
Module

Interconnect 
+ Arbitration

Memory 
Controller
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Dynamic RAM Timing Constraints 
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DRAM Memory Controllers have to conform to different timing constraints 
that define minimal distances between consecutive DRAM commands. 
 
Almost all of these constraints are due to the sharing of resources at 
different levels of the hierarchy: 
 

Needs to insert 
refresh 
commands 
sufficiently often 

Rows within a 
bank share 
sense amplifiers 

Banks within a 
DRAM device 
share I/O gating 
and control logic 

Different ranks 
share data/address/
command busses 
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General-Purpose DRAM Controllers 

¢  Schedule DRAM commands dynamically 
¢  Timing hard to predict even for single client: 

l  Timing of request depends on past requests: 
•  Request to same/different bank? 
•  Request to open/closed row within bank? 
•  Controller might reorder requests to minimize latency 

l  Controllers dynamically schedule refreshes 
¢  No temporal isolation. Timing depends on 

behavior of other clients: 
l  They influence sequence of “past requests” 
l  Arbitration may or may not provide guarantees 
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Thread 2 
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General-Purpose DRAM Controllers 
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PRET DRAM Controller: Three Innovations 
[Reineke et al., CODES+ISSS 2011] 

¢  Expose internal structure of DRAM devices: 
l  Expose individual banks within DRAM device as 

multiple independent resources 

¢  Defer refreshes to the end of transactions 
l  Allows to hide refresh latency 

¢  Perform refreshes “manually”: 
l  Replace standard refresh command with multiple reads 

CPU1

CPU1

I/O

...

Interconnect 

+ Arbitration

PRET DRAM 

Controller DRAM 

Module

DRAM 

Module

DRAM 

Module

DRAM 

Bank
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PRET DRAM Controller: Exploiting 
Internal Structure of DRAM Module 

l  Consists of 4-8 banks in 1-2 ranks 
•  Share only command and data bus, otherwise independent 

l  Partition banks into four groups in alternating ranks 
l  Cycle through groups in a time-triggered fashion 
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PRET DRAM Controller: Exploiting 
Internal Structure of DRAM Module 

l  Consists of 4-8 banks in 1-2 ranks 
•  Share only command and data bus, otherwise independent 

l  Partition banks into four groups in alternating ranks 
l  Cycle through groups in a time-triggered fashion 
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•  Successive accesses to 
same group obey timing 
constraints 
•  Reads/writes to different 
groups do not interfere 
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PRET DRAM Controller: Exploiting 
Internal Structure of DRAM Module 

l  Consists of 4-8 banks in 1-2 ranks 
•  Share only command and data bus, otherwise independent 

l  Partition banks into four groups in alternating ranks 
l  Cycle through groups in a time-triggered fashion 
 

Bank 
0 

Bank 
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2 

Bank 
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Rank 0: 

Bank 
0 

Bank 
1 

Bank 
2 

Bank 
3 

Rank 1: 

•  Successive accesses to 
same group obey timing 
constraints 
•  Reads/writes to different 
groups do not interfere 

Provides four 
independent and 
predictable resources 



Jan Reineke, Saarland 55 

Conventional DRAM Controller (DRAMSim2) 
vs PRET DRAM Controller:  
Latency Evaluation 

256 512 768 1,024 1,280 1,536 1,792 2,048
0

200

400

600

800 Benefit of burst length 8 over burst length 4

size of transfer [bytes]

la
te

nc
y

[c
yc

le
s]

Shared Predator, BL = 4, accounting for all refreshes
DLr(x): PRET, BL = 4, accounting for all refreshes
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DLr(x): PRET, BL = 8, accounting for all refreshes

Figure 8: Latencies of Predator and PRET for request sizes up
to 2KB under burst lengths 4 and 8.

5.4 Bandwidth
We describe the peak bandwidth achieved by the PRET DRAM

controller. In the case of the burst length being 4, disregarding
refreshes, we send out four CAS commands every 13 cycles. Each
CAS results in a transfer of a burst of size 8 ·4 = 32 bytes over the
period of two cycles5. The memory controller and the data bus are
running at a frequency of 200 MHz. So, disregarding refreshes the
controller would provide a bandwidth of 200 MHz· 4

13 · 32 bytes ⇥
1.969GB/s. We issue a refresh command in every 60th slot. This
reduces the available bandwidth to 59

60 · 1.969GB/s ⇥ 1.936GB/s,
which are 60.5% of the data bus bandwidth.

For burst length 8, we transfer 8 · 8 = 64 bytes every five cycles
and perform a refresh in every 39th slot, resulting in an available
bandwidth of 200MHz · 38

39 ·
1
5 · 64 bytes ⇥ 2.494GB/s, or 77.95%

of the data bus bandwidth.

6. EXPERIMENTAL EVALUATION
We present experimental results to verify that the design of the

PRET DRAM controller honors the derived analytical bounds. We
have implemented the PRET DRAM controller, and compare it
via simulation with a conventional DRAM controller. We use the
PTARM simulator6 and extend it to interface with both memory
controllers to run synthetic benchmarks that simulate memory ac-
tivity. The PTARM simulator is a C++ simulator that simulates
the PRET architecture with four hardware threads running through
a thread-interleaved pipeline. We use a C++ wrapper around the
DRAMSim2 simulator [17] to simulate memory access latencies
from a conventional DRAM controller. A first-come, first-served
queuing scheme is used to queue up memory requests to the DRAM-
Sim2 simulator. The PRET DRAM controller was also written in
C++ based on the description in Section 4. The benchmarks we use
are all written in C, and compiled using the GNU ARM cross com-
piler. The DMA transfer latencies that are measured begin when
the DMA unit issues its first request and end when the last request
from the DMA unit is completed.

6.1 Experimental Results
We setup our experiment to show the effects of interference on

memory access latency for both memory controllers. We first setup
our main thread to run different programs that initiate fixed-size

5In double-data rate (DDR) memory two transfers are performed
per clock cycle.
6The PTARM simulator is available for download at http://
chess.eecs.berkeley.edu/pret/release/ptarm.
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Figure 9: Latencies of conventional and PRET memory con-
troller with varying interference from other threads.

DMA transfers (256, 512, 1024, 2048 and 4096 bytes) at random
intervals. The DMA latencies of the main thread is what is mea-
sured and shown in Figure 9 and Figure 10. To introduce interfer-
ence within the system, we run a combination of two programs on
the other hardware threads in PTARM simulator. The first program
continuously issues DMA requests of large size (4096 bytes) in or-
der to fully utilize the memory bandwidth. The second program
utilizes half the memory bandwidth by issuing DMA requests of
size 4096 bytes half as frequently as the first program. In Figure 9,
we define thread occupancy on the x-axis as the memory bandwidth
occupied by the combination of all threads. 0.5 means we have one
thread running the second program along side the main thread. 1.0
means we have one thread running the first program along side the
main thread. 1.5 means we have one thread running the first pro-
gram, one thread running the second program, and both threads are
running along side the main thread, and so on. 3 is the maximum
we can achieve because the PTARM simulator has a total of four
hardware threads (the main thread occupies one of the four). We
measured the latency of each fixed size transfer for the main thread
to observe the transfer latency in the presence of interference from
memory requests by other threads.

In Figure 9, we show measurements taken from two different
DMA transfer sizes, 1024 and 4096 bytes. The marks in the figure
show the average latency measured over 1000 iterations. The error
bars above and below the marks show the worst-case and best-case
latencies of each transfer size over the same 1000 iterations. In both
cases, without any interference, the conventional DRAM controller
provides better access latencies. This is because without any inter-
ference, the conventional DRAM controller can often exploit row
locality and service requests immediately. The PRET DRAM con-
troller on the other hand uses the periodic pipelined access scheme,
thus even though no other threads are accessing memory, the mem-
ory requests still need to wait for their slot to get access to the
DRAM. However, as interference is gradually introduced, we ob-
serve increases in latency for the conventional DRAM controller.
This could be caused by the first-come, first-served buffer, or by
the internal queueing and handling of requests by DRAMSim2.
The PRET DRAM controller however is unaffected by the inter-
ference created by the other threads. In fact, the latency values
that were measured from the PRET DRAM controller remain the

0 1,000 2,000 3,000 4,000

0

1,000

2,000

3,000

transfer size [bytes]

av
er

ag
e

la
te

nc
y

[c
yc

le
s]

Conventional controller
PRET controller

Figure 10: Latencies of conventional and PRET memory con-
troller with maximum load by interfering threads and varying
transfer size.

same under all different thread occupancies. This demonstrates the
temporal isolation achieved by the PRET DRAM controller. Any
timing analysis on the memory latency for one thread only needs
to be done in the context of that thread. We also see the range of
memory latencies for the conventional DRAM controller increase
as the interference increases. But the range of access latencies for
the PRET DRAM controller not only remains the same through-
out, but is almost negligible for both transfer sizes7. This shows the
predictable nature of the PRET DRAM controller.

In Figure 10 we show the memory latencies under full load (thread
occupancy of 3) for different transfer sizes. This figure shows that
under maximum interference from the other hardware threads, the
PRET DRAM controller is less affected by interference even as
transfer sizes increase. More importantly, when we compare the
numbers from Figure 10 to Figure 8, we confirm that the theoret-
ical bandwidth calculations hold even under maximum bandwidth
stress from the other threads.

7. CONCLUSIONS AND FUTURE WORK
In this paper we presented a DRAM controller design that is

predictable with significantly reduced worst-case access latencies.
Our approach views the DRAM device as multiple independent re-
sources that are accessed in a periodic pipelined fashion. This elim-
inates contention for shared resources within the device to provide
temporally predictable and isolated memory access latencies. We
refresh the DRAM through row accesses instead of standard re-
freshes. This results in improved worst-case access latency at a
slight loss of bandwidth. Latency bounds for our memory con-
troller, determined analytically and confirmed through simulation,
show that our controller is both timing predictable and provides
temporal isolation for memory accesses from different resources.

Thought-provoking challenges remain in the development of an
efficient, yet predictable memory hierarchy. In conventional multi-
core architectures, local memories such as caches or scratchpads
are private, while access to the DRAM is shared. However, in
the thread-interleaved PTARM, the instruction and data scratchpad
memories are shared, while access to the DRAM is not. We have
demonstrated the advantages of privatizing parts of the DRAM for
worst-case latency. It will be interesting to explore the consequences
of the inverted sharing structure on the programming model.

We envision adding instructions to the PTARM that allow threads
to pass ownership of DRAM resources to other threads. This would,

7The range (worst-case latency - best-case latency) was approxi-
mately 90ns for 4096 bytes transfers and approximately 20ns for
1024 byte transfers.

for instance, allow for extremely efficient double-buffering imple-
mentations. We also plan to develop new scratchpad allocation
techniques, which use the PTARM’s DMA units to hide memory
latencies, and which take into account the transfer-size dependent
latency bounds derived in this paper.
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Select a microarchitecture that 
a)  satisfies all timing requirements, and 
b)  minimizes cost/size/energy. 
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Thank you for your attention! 


