Hardware-Software Contracts for
Secure Speculation

e®

Jan Reineke @ "HHHHN"

UNIVERSITAT
DES
SAARLANDES

Joint work with
NVarco Guamiert, Pepe Vila @ IMDEA Software, Madrid
S0ris Kopt @ Microsoft Research, Cambridge, UK

Supported by the European Research Council and an
Intel Strategic Research Alliance (ISRA)

The Need for HW/SW Contracts

ISA: Benefits

>
HIgNn-level language .

Instruction set architecture (ISA)

Can program independently of
microarchitecture

Can implement arbitrary

, optimizations as long as
NMicroarchitecture . ISA semantics are obeyed

Inadequacy of the ISA: Side channels

>
HIgNn-level language .

Instruction set architecture (ISA)

A
| Impossible to program securely
cryptographnic algorthms'?
sandboxing untrusted code’?

No guarantees
about side channels

oy ¥ | Can implement arbitrary insecure
3& optimizations as long as
ISA IS Implemented correctly

\Microarcnhitecture

o

14
-

A Way Forward: HW/SW Security Contracts

A

Can program securely on top of contract
iIndependently of microarchitecture

Succinctly captures

HVW/SW contract = IoA + X possible information leakage

Can implement arbitrary taseeudre optimizations
as long as contract is obeyed

A Concrete Challenge: Spectre

Exploits speculative
execution

4y

SPECTRE

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, Y. Yarom —
Spectre Attacks: Exploiting Speculative Execution — S&P 2019 !

Almost al/l modern CPUs
are affected

Example: Spectre vl Gadget

x is out of bounds Executed speculatively

i (:lc A size) /

<
g_x] —————— Access “secret” A[x]

y*olZ]
N

Yy
Z
end

Transmit A|x] via data cache

Hardware Countermeasures P

2 T
S NCReT
. . . . P&‘ac}\‘ \@q,&zfow\\g\\\% 0%\‘
InvisiSpec: Making Speculative ¥ Joo® e RRL
. : - C \\
P *© - \O
Invisible in the Cacb a{\\'ee e ’&C\,x\ -\c’{‘O“ RIS
.\ y \C
Mengjia Yan', Jiho Choil, Dimitrios Skarlatos, Ad- SQGC\)\ \@‘\ﬂ O’_&N\\c\\ %‘5‘\;\\3 O&N% o (%) ?’ (eé P’\\O:;x’&‘] O&SQ(&
University of Illinois »* ~ g &t \ W© 5
{myan8, jchoi42, skayrlatZ} G “(\(\% 0(\\“ ¢ 0&\] C\)\a‘ q a\\)e 00\ N\\ﬁé{b’\’&?ﬁ '06
c Cc oS
. ? (eq - «66‘§020 . b\e SQ “ . ‘(&S ‘bS
ﬁo P ﬁ\(ﬁi 6\;\'@“ s (&\’zﬁ?' &W&% o e\a\l s\w&w\“ aet o0
O WY ot ““\0. &é\ﬂ ° \(\ e . 1C o &(&»{\0 \30‘\]6 e O A& ¢
o o e AW S AT que (o ((OP S

Cy ﬁ(\c‘e e\e‘c o oo NN we‘“’ﬁo%‘l S
an,, e 5 S e o o

P SPeC < e e Ve @

ur Urq S Un d 9 S IS\ <@ ANO
Sury;... . ail O
Geop . 4. Csh
Igiq Inszjtf,t@:é’at cb.e‘;:’f pproa h Speculative Taint Tracking (STT): A Comprehensive Protection
Of hogy, lo Saf. for Speculatively Accessed Data
Y @
Mengjia Y Artem Khyzh
Moiy,, ©€Cllyy; Wi P Cepeua
G Mo, d]]) K ! On Urbana-(.?h.ampaign artkhyzha@mail.tau.ac.il
eofgia In tjfo) Qar ch. ureS [)j myan8@illinois.edu
u

Josep Torrellas Christopher W. Fletcher

Examples Delay loads until

they can be retired
[Sakalis et al., ISCA’19]

1f (x < A size)~

y = AlX] —__ Delay loads until they cannot
z = Bly*>o12] be squashed
end [Sakalis et al., ISCA’19]

S

Taint speculatively loaded data

+ delay tainted loads
[STT and NDA, MICRO’19]

10

Examples Delay loads until

they can be retired
[Sakalis et al., ISCA'19]

y = A[X] —
1

f (x < A _size) Delay loads until they cannot
z = Bly*512] be squashed

end 'Sakalis et al., ISCA'19]

N

Taint speculatively loaded data

+ delay tainted loads
[STT and NDA, MICRO’19]

11

What security
properties do HW
countermeasures

enforce?

How can we program
securely?

A Proof of Concept

M. Guarnieri, B. Kopf, J. Reineke, and P. Vila

Hardware-Software Contracts for Secure Speculation
S&P (Oakland) 2021

13

Hardware-Software Contracts

HW/SW Contracts for Secure Speculation

Secure
Programming
Constant-time Sandboxing
HW/SW Contracts . simple mechanism-independent
. Desiderata: . ")
for Secure Speculation precise at “ISA level
Hardware No speculation
Countermeasures Load Delay Taint Tracking

No countermeasures

15

HW/SW Contracts for Secure Speculation

Contracts specity which program executions a side-channel
adversary cannot distinguish

Contract
% SA + cbservationgl———> _,_vunat leaks
S about an execution

Contract traces: |§(p, o)

Attacker observes

Contracts seqguences of yarch states
Contract ’F"a" dv‘var ed » \
% ISA + observations Ormal model of
DrOCESSOr

Contract traces:(E(p, o) Hardware traces . (p, 0) r

Contract satisfaction
Hardware 8 satisties contract rf er all programs p an r

states ¢, 6" r (0)

Contracts for Secure Speculation

Co ntract =
Execu tl de

}l

- Observ |

What is visible about the

How are programs executed? .
execution?

Contracts for Secure Speculation

Contract =
Execution Mode|-

))

l

Observer Mode

seq — sequential execution

spec — mispredict branch instructions

Contracts for Secure Speculation

Contract =
Execution Mode - Observer

J

nc — only program counter

ct — pc + addr. of loads and stores

arch — ct + loaded values

A Lattice of Contracts Leaks “nothing

Leaks all data

seq-Ct ——>p |
adaccesse d NOoN- / T A, .

speculatively seq-arch

Séq-ct+spec-pc Le ks addresses
T of hon-spec.
/ spec-ct loads/stores/
| —— spec-arch instruction
fetches

\ Leaks addresses of all
Leaks “everything” loads/stores/instruction fetches

Example: seqg-ct

Assume x < A_size

22

Example: seqg-arch

Assume x < A_size

23

Example: spec-ct

Assume x > A_size

start
pCc l
if (x < A size) —
y = A[X load A+x [©
zZ = Bly.
end load B+A[x] |

(

rollback ™
pc 4

24

Hardware Countermeasures

A Simple Processor 3-stage pipeline

(fetch, execute, retire)

Speculative and out-of-order execution

Parametric in branch predictor and
memory hierarchy

Different schedulers for different
countermeasures

26

Disabling Speculative Execution

! 4
- Instructions are executed sequentially:

(fetch, execute, retire)*®

N\

No speculative leaks *

Satisfies seq-ct

Eager Load Delay [Sakalis et al., ISCA’19]

Security guarantees?

Eager Load Delay [Sakalis et al., ISCA’19]

ﬁ

1L

(x < A size)
X

Bz

z
Y

A

A[x]and B[z] delayed until

X<A sizeis resolved

-2
" No speculative leaks ‘75

Eager Load Delay [Sakalis et al., ISCA’19]

B[z] delayed until

X<A sizeis resolved

) A -
“#* No speculative leaks "2+

Eager Load Delay [Sakalis et al., ISCA’19]

ﬁ

1f (z==0) is not delayed

1 f (x < A size)
1if (z==0) Program speculatively

skip

leaks A|x| =

Observation: Can only leak data Satisfies seq-arch
accessed non-speculatively *

Satisfies seq-ct+spec-pc

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

- e - Taint speculatively loaded data

Security guarantees?

Delay tainted operations

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

A [x] tainted as unsafe
B[z] delayed until
if (x < A size) A [x] is safe

No speculative leaks *

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

A [x]tagged as safe

z = Alx] B[z] not delayed
1

Program speculatively

» Also satisfies seq-arch leaks A|x| &

No Countermeasure [The World until 2018]

Leaks addressed of speculative
and non-speculative accesses

ﬁ

1f (x < A size)
Zz = A|lx
y = Blz

» Satisfies spec-ct

Security Guarantees 0

~—" speculation

/ Seq-Ct

- Load
- Delay

seq-arch
seq-ct+spec-pc

Taint
e Trackin g

spec-ct

spec-arch

e n o
countermeasure

36

Secure Programming

Two Flavors of Secure Programming

Constant-time Sandboxing

Two Flavors of Secure Programming

|

4

|
\
{

- Constant-time

Secure Programming: Foundations
Specify secret data

Program p s non-mterferent vvrt contract |+l and

pohcyyz J‘
f for all arch. states o, 6”: if| o - [pl(o) = [pl(c)

34 hen

Theorem

f p is non-interferent wrt contract || - || and policy
and hardware { - |} satisfies || -], then
p is non-interferent wrt hardware { - |} and policy x.

40

Sandboxing

Programs never access secret
-7 memory locations (out-of-sandbox)

Traditional SB wrt policy

7Z'E non-interference wrt seqg-arch and

General SBwrtrand ||| =
Traditional SB wrt & + non-interference wrt - and || - ||

41

Checking Sandboxing

General sandboxing

[raditional sandoboxing
(= non-interference wrt seq-arch)

seq-ct

spec-ct .. + weak SN

Constant-time Programming

~ Control flow and memory accesses
do not depend on secrets

non-interference wrt seq-ct and

General CT wrt wand [| - || = non-interference wrt || - || and &

43

Checking Constant-time Programming

General constant-time

lraditional constant-time

seq-ct |
A (= non-interference wrt seq-ct)
| No access to
seqg-arch Non-interference wrt seg-arch
secrets!
spec-ct .. + Spec. non-interference

[Spectector, S&P 20

44

Work in progress:

Contracts meet “the real world”

Contracts for Real ISAs + Real CPUs

3-stage pipeline

Microarchitecture

Register transfer level
designs

Manual proof

Automatic
proof

46

Toy ISA (6 instr.)
+ observer modes

Contract

Real ISA
+ observer modes

Contracts for Real ISAs + Real CPUs

Microarchitecture

Register transfer level
designs

Open-source

RISC-V cores

Automatic
proof

SMT solvers
+ |Invariant
inference

Contract

Real ISA
+ observer modes

Separate ISA from

observer mode

Separating Observer from ISA satisfaction

Contract satisfaction
Hardware B8 satisfies contract E if for all programs p and arch.

states o, o if E(p, 6)=E(p, o) then B (p, o) = (p, 6')

ISA satisfaction + Observer satisfaction

48

Observer Inference

GGiven:

Vianted:

Microarchitecture

1

Weakest
Observer

49

r

.

~

J

Trivial

Observer

v

r

\.

~

J

Candidate
Observer

Observer

Refinement

T

—_—

P —

Microarchitecture

:

Observer

Verification

|X

Counterexample
= Program +
Pair of inputs

v

—_—

Conclusions

Need to rethink hardware-software contracts
with security in mind

Find out more in our paper:

M. Guarnieri, B. Kopf, J. Reineke, and P. Vila

Hardware-Software Contracts for Secure Speculation
S&P (Oakland) 2021

