
Hardware-Software Contracts for
Secure Speculation

Jan Reineke @

Joint work with

Marco Guarnieri, Pepe Vila @ IMDEA Software, Madrid

Boris Köpf @ Microsoft Research, Cambridge, UK

Supported by the European Research Council and an  
Intel Strategic Research Alliance (ISRA)

The Need for HW/SW Contracts

2

ISA: Benefits

3

High-level language

Microarchitecture

Instruction set architecture (ISA)

Can program independently of  
microarchitecture

Can implement arbitrary  
optimizations as long as  
ISA semantics are obeyed

Inadequacy of the ISA: Side channels

4

High-level language

Microarchitecture

Instruction set architecture (ISA)

Can implement arbitrary insecure  
optimizations as long as  
ISA is implemented correctly

No guarantees  
about side channels

Impossible to program securely 
 cryptographic algorithms?

 sandboxing untrusted code?

A Way Forward: HW/SW Security Contracts

5

Can program securely on top of contract 
independently of microarchitecture

Can implement arbitrary insecure optimizations  
as long as contract is obeyed

Succinctly captures

possible information leakage HW/SW contract = ISA + X

A Concrete Challenge: Spectre

6

Exploits speculative
execution

Almost all modern CPUs

 are affected

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, Y. Yarom — | 
Spectre Attacks: Exploiting Speculative Execution — S&P 2019 7

Executed speculativelyx is out of bounds

Example: Spectre v1 Gadget

8

1. if (x < A_size)

2. y = A[x]

3. z = B[y*512]

4. end

Transmit A[x] via data cache

Access “secret” A[x]

Hardware Countermeasures

9

Examples

10

1. if (x < A_size)

2. y = A[x]

3. z = B[y*512]

4. end

Delay loads until 
they can be retired  

[Sakalis et al., ISCA’19]

Delay loads until they cannot
be squashed 

[Sakalis et al., ISCA’19]

Taint speculatively loaded data
+ delay tainted loads 

[STT and NDA, MICRO’19]

Examples

11

1. y = A[x]

2. if (x < A_size)

3. z = B[y*512]

4. end

Delay loads until 
they can be retired  

[Sakalis et al., ISCA'19]

Delay loads until they cannot
be squashed 

[Sakalis et al., ISCA'19]

Taint speculatively loaded data
+ delay tainted loads 

[STT and NDA, MICRO’19]

12

What security
properties do HW
countermeasures

enforce?

How can we program
securely?

A Proof of Concept

13

M. Guarnieri, B. Köpf, J. Reineke, and P. Vila
Hardware-Software Contracts for Secure Speculation
S&P (Oakland) 2021

Hardware-Software Contracts

14

HW/SW Contracts for Secure Speculation

15

HW/SW Contracts  
for Secure Speculation

SandboxingConstant-time

Secure
Programming

No countermeasures

Load Delay
Taint Tracking

No speculationHardware
Countermeasures

simple mechanism-independent
preciseDesiderata: at “ISA level”

HW/SW Contracts for Secure Speculation

16

Contracts specify which program executions a side-channel
adversary cannot distinguish

 
Contract
ISA + observations

Contract traces: (p, σ)

“What leaks” 
about an execution

 
Contract
ISA + observations

Contracts

17

 
 

Contract satisfaction

Hardware satisfies contract if for all programs and arch.
states , : if then

p
σ σ′￼ (p, σ)= (p, σ′￼) (p, σ) = (p, σ′￼)

Attacker observes
sequences of μarch states

Contract traces: (p, σ)

Hardware
Formal model of  
processor

Hardware traces: (p, σ)

Contracts for Secure Speculation

18

Contract =  
 Execution Mode · Observer Mode

How are programs executed? What is visible about the
execution?

seq — sequential execution

spec — mispredict branch instructions

Contracts for Secure Speculation

19

Contract =  
 Execution Mode · Observer Mode

Contract =  
 Execution Mode · Observer Mode

pc — only program counter

ct — pc + addr. of loads and stores

arch — ct + loaded values  

Contracts for Secure Speculation

20

A Lattice of Contracts

21
Leaks “everything”

Leaks “nothing”

Leaks addresses
of non-spec.
loads/stores/

instruction
fetches

Leaks all data  
accessed non-
speculatively

Leaks addresses of all  
loads/stores/instruction fetches

spec-ct

seq-ct
seq-arch

spec-arch

seq-ct+spec-pc

⟙

⟘

Example: seq-ct

22

1. if (x < A_size)

2. y = A[x]

3. z = B[y]

4. end

Assume x < A_size

😈
pc 2

load A+x

load B+A[x]

load B+A[x],B[A[x]]

Example: seq-arch

23

1. if (x < A_size)

2. y = A[x]

3. z = B[y]

4. end

Assume x < A_size

😈
pc 2

load A+x,A[x]

Example: spec-ct

24

rollback
pc 4

start
pc 2

load A+x

load B+A[x]

1. if (x < A_size)

2. y = A[x]

3. z = B[y]

4. end

Assume x > A_size

😈

Hardware Countermeasures

25

A Simple Processor

Parametric in branch predictor and
memory hierarchy

3-stage pipeline  
(fetch, execute, retire)

Speculative and out-of-order execution

26

Different schedulers for different
countermeasures

Disabling Speculative Execution

27

Instructions are executed sequentially: 
(fetch, execute, retire)*

🥳 No speculative leaks 🥳

Satisfies seq-ct

Eager Load Delay [Sakalis et al., ISCA’19]

28

Delaying loads until all sources of
speculation are resolvedSecurity guarantees?

Eager Load Delay [Sakalis et al., ISCA’19]

29

if (x < A_size) 
	 z = A[x] 
	 y = B[z]

A[x]and B[z] delayed until  
x < A_size is resolved

🥳 No speculative leaks 🥳

Eager Load Delay [Sakalis et al., ISCA’19]

30

B[z] delayed until  
x < A_size is resolved

🥳 No speculative leaks 🥳

z = A[x]  
if (x < A_size) 
	 y = B[z]

Eager Load Delay [Sakalis et al., ISCA’19]

31

z = A[x]

if (x < A_size) 
	 if (z==0) 
	 	 skip

if (z==0) is not delayed

Program speculatively  

leaks A[x] 😞

Observation: Can only leak data
accessed non-speculatively

Satisfies seq-arch

Satisfies seq-ct+spec-pc

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

32

Propagate taint through computation

Delay tainted operations

Taint speculatively loaded data

Security guarantees?

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

33

if (x < A_size) 
	 z = A[x] 
	 y = B[z]

A[x]tainted as unsafe 
B[z] delayed until  

A[x] is safe

🥳 No speculative leaks 🥳

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

34

z = A[x]  
if (x < A_size) 
	 y = B[z]

A[x]tagged as safe 
 

B[z] not delayed

Program speculatively  

leaks A[x] 😞Also satisfies seq-arch

No Countermeasure [The World until 2018]

35

Leaks addressed of speculative
and non-speculative accesses

if (x < A_size) 
	 z = A[x] 
	 y = B[z]

Satisfies spec-ct

Security Guarantees

36

spec-ct

seq-ct
seq-arch

spec-arch

seq-ct+spec-pc

no
speculation

Load
Delay

Taint
Tracking

no
countermeasure

Secure Programming

37

Two Flavors of Secure Programming

38

SandboxingConstant-time

Two Flavors of Secure Programming

39

SandboxingConstant-time

Secure Programming: Foundations

40

Program is non-interferent wrt contract and policy  
if for all arch. states , : if then

p [[⋅]] π
σ σ′￼ σ ≈π σ′￼ [[p]](σ) = [[p]](σ′￼)

Specify secret data

If is non-interferent wrt contract and policy ,  
and hardware satisfies , then  

 is non-interferent wrt hardware and policy .

p [[⋅]] π
{| ⋅ |} [[⋅]]

p {| ⋅ |} π

 Theorem

Sandboxing

41

Traditional SB wrt policy non-interference wrt seq-arch and π ≡ π

 General SB wrt and  
 Traditional SB wrt + non-interference wrt and

π [[⋅]] ≡
π π [[⋅]]

Programs never access secret
memory locations (out-of-sandbox)

General sandboxing

Checking Sandboxing

42

Traditional sandboxing 
(= non-interference wrt seq-arch)

Traditional sandboxing

... + weak SNI

seq-arch

seq-ct

spec-ct

Constant-time Programming

43

Traditional CT wrt policy non-interference wrt seq-ct and π ≡ π

 General CT wrt and non-interference wrt and π [[⋅]] ≡ [[⋅]] π

Control flow and memory accesses  
do not depend on secrets

General constant-time

Checking Constant-time Programming

44

Traditional constant-time 
(= non-interference wrt seq-ct)

Non-interference wrt seq-arch

… + Spec. non-interference  
[Spectector, S&P’20]

seq-arch

seq-ct

spec-ct

No access to
secrets!

Work in progress: 
Contracts meet “the real world”

45

46

3-stage pipeline

Microarchitecture Contract

Toy ISA (6 instr.)  
+ observer modes

⊨
Manual proof

Automatic
proof

Register transfer level
designs

Real ISA 
+ observer modes

Contracts for Real ISAs + Real CPUs

Contracts for Real ISAs + Real CPUs

47

Microarchitecture Contract
⊨

Automatic
proof

Register transfer level
designs

Real ISA 
+ observer modes

Open-source 
RISC-V cores

Separate ISA from
observer mode

SMT solvers

+ Invariant
inference

Separating Observer from ISA satisfaction

48

Contract satisfaction

Hardware satisfies contract if for all programs and arch.
states , : if then

p
σ σ′￼ (p, σ)= (p, σ′￼) (p, σ) = (p, σ′￼)

ISA satisfaction Observer satisfaction+

Observer Inference

49

Microarchitecture

Given:

Wanted:
Weakest
Observer

⊨
Observer

Verification
Candidate
Observer

✓

Counterexample
= Program +
Pair of inputs

✗
Observer

Refinement

Trivial
Observer Microarchitecture

Conclusions

50

Find out more in our paper:
M. Guarnieri, B. Köpf, J. Reineke, and P. Vila
Hardware-Software Contracts for Secure Speculation
S&P (Oakland) 2021

Need to rethink hardware-software contracts

with security in mind

