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Abstract 

This paper presents a generalized model of 
tlghtly-coupled multlprocessor systems which is then 
simplified to form a stochastic model for the study of 
interference. Analysis is performed on the resource 
contention which is characteristic of such systems in 
order to find a measure of system performance. After 
reviewing the problem of memory interference, the 
analysis is extended to contention in other individual 
resources, then combined to form a model for the 
interacting effects of contention in systems where 
processors contend for several shared resources. 

i. Introduction 

Recent design proposals and realizations [4,10,11] 
have included multiprocessors in attempts to meet the 
expanding demand for hlgh-performance systems. A 
solution to the need for improved efficiency lles in 
the distribution, duplication and sharing of hardware 
resources. Unfortunately this leads to situations 
in which a given unit may receive several simultaneous 
requests for service (e.g. a memory module). The 
result is degraded performance, or interference, 
measured by comparing actual machine performance to 
the ideal case for which there is no contention. This 
paper presents a generalized model of tlghtly-coupled 
multlproeessors with highly shared computing resources. 
Analysis is then performed on the resource contention 
in order to find a measure of system performance. 

The best known contention problem is when proces- 
sors and I0 controllers interfere in their access to 
main storage. Analytic models with exact solutions 
exist for two processor systems [8] via Markov chain 
methods, but the general case becomes too complex, 
precluding a precise solution. For a solution in 
closed-form one has to introduce simplifying assump- 
tions in order to prevent the analysis from becoming 
unwieldy. A series of models have been introduced 
in which a prototype instruction is assumed and its 
execution rate (IER) analyzed for a variety of multi- 
processor types [9]. Closed-form solutions are 
obtained for IER in terms of parameters which relate 
typical design characteristics of the memories and 
processors. In addition, cache memories may be intro- 
duced to the processor-memory interface [3]. In this 
paper, we extend previous formulas [9] to include 
cache memories, and then propose a more general one 
for systems in which processors contend for several 
resource classes as well as primary memory. 

2. The Machine Model 

2.1 A General Shared Resource Multiproeessor 
Figure 1 shows a general model of a shared 

resource multlprocessor (SRM) in PMS notation [2]. 
The example was chosen purely for ease in description 
and conservation of space, with the design of more 
specific configurations being one of the objectives 
of the model. 8 central processors P.c share 16 
modules of primary memory M.p'through a central 
processor-memory switch S.mp. Each P.c possesses 
some local memory M.c and a set of mapping registers 
D.map which define its access to main memory. 
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The P.c's have no arithmetic power, performing 
only load, store and branch instructions. Other 
instructions are memely fetched and decoded, while 
operands are sent to a shared set of pipelined 
execution units D.e via a common request bus L.req. 
The P.c's are arranged into 2 time-shared rings by 
S.ring, which creates a maximum overlap of computing 
with a minimum bandwidth required in the request 
bus [4]. Input-output is initiated to IO controllers 
in the same way as a request for a D.e. When an "IO" 
instruction is executed, a request is sent to an 
appropriate K.io and the P.c is allowed to continue. 
IO-completion interrupts cause the appropriate P.e to 
be interrupted [5]. 

A special controller K.sched is provided for 
assigning new tasks to P.c's, with two options for 
flexibility in the scheduling mechanism. In the 
"floating control" scheme [5,7] P.e's perform their 
own scheduling under the control of K. sehed. Under 
"fixed control", K. sched serves each request by 
returning the entry point of the new task in memory, 
while a dedicated processor P.sched (with associated 
M.a for the scheduling tables) constantly supplie~ 
K.sched with the next task to be assigned for 
execution. 

2.2 Examples of the Model 
The generality and versitility of the model may 

be illustrated by examining some current designs. 
C.mmp [ii] is a set of 16 asynchronously executing 
PDP-II's (each with local memory) which access main 
memory through D.map's and S.mp. The ring structure 
and D.e's are missing since each P.c has its own 
complete processing capability. C.mmp's I0 system 
is similar to its memory system in that the P.e's are 
connected to busses supporting the IO controllers by 
the S.kp switch. Scheduling is handled by the oper- 
ating system without any additional hardware. 

Figure 2 is a conception of Texas Instruments' 
ASC [i0]. A single P.e feeds instructions to 4 high- 
speed pipelined D.e's which consume streams of vector 
operands under the control of resisters found in M.c. 
The most interesting feature is the "peripheral 
processor" which performs the control and data-manage- 
ment functions for the ASC, and is actually a ring 
of "virtual processors" (P.v). 

Figure 3 emphasizes the ring structure aspects 
by modeling Flynn's SRM [4]. It has 4 rings of 8 
P.c's, and uses L.req and D.e's as in the model. The 
P.c's have no D.map or S.mp, but access memory 
through buffers. Cache memory M.c is associated with 
each ring. No mention is made of IO, and scheduling 
is done under program control through a standard 
fork-join construct. 

2.3 The Simplified Machine Model 
The model described thus far requires too much 

detail to be studied at the instruction level, hence 
we capture some of its generality into a more manage- 
able form in Figure 4. Centrally located is S.mp 
which provides access by the P.e's and K.io's to the 
M.p modules. The specialized scheduling processor 
P.s (with memory M.a) makes all policy decisions 
regarding the activation of user and operating system 
tasks as well as allocating the system's resources. 
IO consists of three subsystems, representing the 
common IO speeds anticipated. 
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The multiprocessing resources consist of synchro- 
nized processor rings (3 in the figure) with a set of 
independent pipe-lined D.e's which are capable of per- 
forming all arithmetic functions (except divides) with 
the same latency. Each ring consists of skeleton P.c's 
and corresponding M.c's connected by a processor-ring 
switch S.p. The purpose of the time-multiplexed 
switch [4] is to select the P.c that is to be con- 
sidered "active" during each time-slice of the ring, 
and to coordinate all communication between the P.c's 
and the D.e's and the remainder of the system. 

The instruction units use an instruction set which 
is patterned after the SRM [4]. Each of the 8 skeleton 
P.c's begins its instruction-fetch sequence one minor 
cycle behind its predecessor on the ring. In one major 
cycle each P.c will prepare one instruction for execu- 
tion to take place during the subsequent one. A 60ns 
minor cycle is assumed [i,i0], resulting in a 480ns 
major cycle which provides ample time (120ns) for 
finding operands in an implicit cache. In the case 
where an access to main memory is required ("miss" on 
the cache), 600ns should be more than sufficient to 
perform the transfer (120ns plus one major-cycle delay) 
and still maintain the synchronous timing of the 
processor ring. 

3. The Resource Contention Model 

3.1 The Memory Interference Problem 
In this section, we introduce an analytic model 

for general resource contention used to estimate the 
losses due to interference between processors re- 
questing identical resources. We begin by examining 
memory interference (the request by more than one P.c 
for the same M.p module) using expected values for the 
number and types of instructions executed. The com- 
bined effects of the hardware speed and memory con- 
flicts are characterized by a single entity, the in- 
struction execution rate (IER), for which we calculate 
and estimate. 

The P.c's and M.p's are viewed as a stochastic 
service system in which the M.p's represent m servers, 
each capable of serving one of k P.c's. Each server 
handles only those requests directed toward it, 
serving them in order of arrival and queuing those 
occurring when it is busy. The M.p's are characterized 
by a constant service time (access time) followed by an 
interval of unavailability (rewrite time) before sub- 
sequent requests can be serviced. P.c's are character- 
ized by the amount of elapsed time between the comple- 
tion of service on one memory request and the genera- 
tion of the next one. 

The problem is made more tractable with a few 
simplifying assumptions. Although processor behavior 
varies with different instruction types, the probabil- 
ity distribution of instructions, the average frequency 
of memory requests, and the average time required to 
execute one instruction can be determined. The access 
pattern of each processor is assumed to be random, and 
no distinction is made between read and write requests. 
We simplify further by considering each instruction to 
be a series of instances of a "unit instruction" con- 
sisting of one memory access followed by a fixed (mean) 
interval of processor activity. 

3.2 An Analytic Model for Memory C~ntention 
In Strecker's formulas for the "unit execution 

rate" [9], the execution sequence is considered as a 
Markov process, consisting of a series of "unit 
instructions", from which we may calculate the rate 
of memory service. (The principle parameters are 
defined in Table i.) The unit instruction begins when 
an address is received by one of the m modules of M.p 
at S.mp. Ta is the time required for the memory 
control to set up the switch and for data to be 
delivered. Tw is the time required for the module to 
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recover and become ready for the next request. Tp 
begins for each of the k active P.c's when it receives 
data from an M.p, extending through the computation 
until the P.c has a new data address. The "computa- 
tion" done in this "unit instruction" may be an 
instruction decode, an (indirect) address computation, 
or the actual execution of a machine instruction. 
Several of these unit instructions comprise one com- 
plete machine instruction. 

The unit execution rate (UER) is the number of 
unit instructions executed per unit time. In terms of 
the service times Sm and Sp [9] 

UER = m * [i - (l-Pm/m) k] / Sm 
such that 

Pm = i - (m/k) * (Sp/Sm) * [i - (l-Pm/m)k]. 
The analysis is split into three cases (bases upon the 
relationship between Tp and Tw) which may be combined 
to form composite equations for the service times as 

Sp = TpSTw and Sm = Ta+Tw - (TwSTp) * (l-Pm/m) k 
(where aSb = a-b if a>b, and aSb = 0 if aSb). The 
complete equation for the unit execution rate is then 

UER = m * [i - (l-Pm/m) k] 

Ta+Tw - (TwSTp) * (l-Pm/m) k 
where 

Pm = 1 - (m/k) * (TpSTw) * [I - (l_Pm/m)k]. 

Ta+Tw - (Tw@Tp) * (l-Pm/m) k 
In order to solve the Pm equation, we examine the two 
cases Tp~Tw and Tp>Tw. In the first case Pm=l and 
we are done. In the second case the denominator 
simplifies to Ta+Tw, resulting in a k-th order poly- 
nomial in Pm. Since the two sides of the equation are 
monotonic in opposite directions on the interval [0,I], 
for a given set of parameters we may solve for Pm in 
this interval and obtain the UER from the first 
equation above. 

We extend this model by associating with each P.c 
a cache memory with access time Tb and "hit ratio" Pb. 
Tke effect of this addition is that with probability 
Pb, the memory request will be satisfied in the cache 
(hence no M.p service) while with probability l-Pb, 
a normal memory cycle will be required. For the case 
where TpaTw it has been shown [3] that 

Sp = Pb*(Tp+Tb) + (l-Pb)*(Tp-Tw) 
and 

Sm = Pb*( 0 ) + (l-Pb)*(Ta+Tw) 
such that Pm equals 

1 - m*[Pb*(Tp+Tb)+(l-Pb)*(Tp-Tw)] * [l-(l-Pm/m)k]. 
k * (l-Pb) * (Ta+Tw) 

This new Pm equation has a single solution in the 
interval [0,i] as in the previous case. We may 
generalize this formulation to include the case 
where Tp<Tw [6], but the memory being considered in 
this model is relatively fast, so the case Tp~Tw is 
sufficient, yielding 

UER = m * [i - (l-Pm/m) k] 
(l-Pb) * (Ta+Tw) 

where Pm is determined from the above formula. 

3.3 Modeling Multiple-Resource Systems 
Previously, a unit instruction was defined in 

terms of memory access frequency, with all other 
aspects of the instruction being considered as 
"processor activity", or Tp. Using the same analysis 
as above we can determine the effects of multi- 
processor contention for other shared resources by 
extending the notion of a unit instruction to repre- 
sent one "access" to a resource of any given class 
(e.g. pipelined D.e's) followed by the average 
processing time between requests for that resource 
class. The period of time comprising one unit 
instruction will, in all cases but for M.p, include 
several machine instructions. For example requests 
for floating-point multiplies occur in approximately 



13% of the instructions for a scientific mix [6], such 
that one unit instruction for the multiply resource 
becomes 1/0.13 times the length of one machine 
instruction. 

When main memory is considered as the sole con- 
tendable resource, the IER of a system is computed by 
first estimating the UER of memory, then dividing by 
the number of memory references per instruction. The 
UER of memory is computed using Strecker's approxima- 
tion which assumes an otherwise constant P.c processing 
time. A similar set of assumptions will allow the UER 
to be calculated for the floating-point multiply units 
(or any other resource), given that some fixed value 
can be derived for the remaining "processor activity" 
between requests for the multiply units (of. section 
3.4). The IER can then be calculated by dividing by 
the frequency of multiply instructions. 

In order to model the UER of other resources, the 
parameters used in the contention model must be gener- 
alized. Table 1 defines the set of resource conten- 
tion parameters a-z which will be used in the remainder 
of this paper. The correspondence in parameter names 
for the memory interference example is given in the 
table and is illustrated here functionally. 

UER (k,m,Tp,Ta,Tw,Tb,Pb) = h(k,m,t,a,w,b,p) 
Table 2 illustrates typical figures for these param- 
eters applied to a variety of harware resources. 

With the introduction of pipelined D.e's, the 
number of stages v in the pipelines becomes of impor- 
tance. So far we have assumed that all k P.c's 
actively contend for the system's resources at all 
times such that UER=h(k,...). In our machine model, 
however, the P.c's are intentionally arranged into 
time-phased rings of v P.c's each, so that they only 
contend with corresponding P.c's from other rings on 
the same time-slot, increasing the IER of the system. 
If the system contains k P.c's which are all active, 
then there are v separate contentions (one per time- 
slice on the processor ring) among goups of k/v P.c's. 
In this situation (for a single-resource system) 
UER=V*h(k/v,...) such that 

IER = v * h(k/v,m,t,a,w,b,p) / f. 
Suppose now that some P.c's are idle such that 

k is less than the total number of P.c's in the system. 
The approximation above is optimistic in that it 
assumes the k active P.c's to be optimally distributed 
over the v time-slots. In particular, if k<v, it 
computes the IER to be better than optimal! The 
invalidating factor is that not all v time-slots 
necessarily contain active processors. If we assume 
the k active P.c's to be randomly distributed, then 
c, the expected number of currently active time-slots, 
may be determined as was the expected number of busy 
memories: 

c = v * [I - (l-i/v) k] 
and hence 

IER = c * h(k/c,m,t,a,w,h,p)~/f. 

3.4 The Model for Combined Resources 
We have shown how the UER of each resource class 

may be determined, from which we calculate the'per- 
formance measure IER=UER/f. In order to combine the 
analyses of the individual resources, we normalize this 
measure to the number of processors by the "processor 
execution rate" PER=IER/k. We also define the "effec- 
tive execution rate" EER=IER(k)/IER(1) which measures 
the performance in terms of the number of effective 
processors, and the "multlprocessor efficiency" 
EFF=EER/k, which gives a direct measure of the 
degradation caused by contention in the system. 

We now combine the analyses of the individual 
resources to form a model for the interacting effects 
of contention. Consider a system of k processors with 
n resource classes, each characterized by a set of 
parameters (m,v,a,w,b,p} (e.g. Table 2). We calculate 
the UER for each resource class i (assuming that we 

know ti, the average time hetween the completion of 

service and the generation of the next request for 
resource i) by substituting the appropriate parameters 
into 

h i = h ( z i , m i , t i , a i , w i , b i , P i ) .  
Allowing the unknowns z i and ti, an equation for L, 

the expected length of one complete machine instruc- 
tion, may be obtained from L=I/PER in terms of the UER 
of the i-th resource: 

I/L = (hi/fi) / z i 

with zi, the average number of processors in contention 
for resource i, being computed as 

z i = k/c.1 where c i = v i * [i - (l-1/vl)k ]. 
The remaining unknown t. was defined earlier 

I 
(for systems with t i a w i such that one unit instruc- 

tion for class i has length ti+a i. (We have assumed 

for simplicity that Pi=0. Otherwise a i may be re- 

placed by the appropriate expression in a i, b i and 

pi.) However, t i is not a function solely of the i-th 

resource (as assumed earlier), but rather of the execu- 
tion rates of the n-i other resources. Thus the 
equation above contains two unknowns, L and t i. In 

order to eleminate t., we repeat the above equation 
I 

for the n resource classes and add a constraint to 
form a system of n+l equations in n+l unknowns 
{tl,t2,...,tn,L}. The constraint is that L must be 

the sum of the access times per instruction of each of 
the n shared resources, plus the service time of the 
non-shared resources in the skeleton processor (time 
required todecode, index, and issue instructions). 

To obtain an equation for this constraint, con- 
sider the example of Figure 5. Shown is a six- 
instruction sequence for a system with three resource 
classes: two M.p modules, an add and a multiply unit. 
(We assume an access time of 3 minor cycles and a 
rewrite time of 2 minor cycles for M.p, for a major 
cycle time of 8 minor cycles.) The time occupied by 
cou~nunicatlon a i between the processor and each re- 
source is shown by solid lines in the figure, with 
dashed lines representing the other activities w.. i 
Occasional delays di, represented by dotted-lines, are 
caused when the requested resource is busy serving 
requests from another processor (e.g. the first 
multiply is delayed i major cycle). Requests to 
functional units are sent on the last minor cycle of 
the instruction, with the result available exactly 
one major cycle later (cf. a2's and a3's and their 
associated w2's  and w3's  ) . The ske le ton  p rocessor  
looks only one instruction ahead and hence need not 
worry about potential register conflicts. This was 
also subsumed in our concept of a unit instruction. 

The individual times may be summed in order to 
form a constraint on the length of each machine in- 
struction, as demonstrated in Table 3. The total 
elapsed time for one unit instruction on resource i is 

t i + a i + d i , 
where d I is the average delay due to contention for 

the i-th resource. (Thus the table entries for t i may 

be found by subtracting a i and d I from the total time 

elapsed). We use this expression to determine an 
expected value for the length of one complete machine 
instruction L in terms of the i-th resource 

L = (t i + a i + di) * fi" 

The i-th resource occupies time (a i + di) *fi out of 

each instruction, which may be solved from the equation 
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above to yield 

(ai + dl) * fl = L - t i * fi" 

If we let Lo be the time required per machine instruc- 
tion by the skeleton processor, we have as our con- 
straint equation n 

L = Lo + E { L - ti*f i }. 
~=I 

This completes our system of equations, which has 
a unique solution that may be determined numerically. 
The knowledge of L imDlles that of PER as defined 
previously and hence that of IER. The analytical 
solutions thus achieved are in accordance with the 
results from simulation presented in Table 4. The 
example system in Table 2 was simulated, with resource 
request frequencies determined by random draws from 
four typical instruction mixes [6]. The resulting 
instruction lengths are compared with the contention- 
free instruction lengths computed by ignoring time 
lost waiting for resources. 

4. Summary and Conclusions 

A general model of a large, tlghtly-coupled 
multiprocessor system has been introduced and shown to 
be capable of representing several recent design 
proposals and realizations. It was then reduced to 
a more specific model of a shared-resource multi- 
processor for use in an analytical study of resource 
contention. By examining first the problem of inter- 
ference in main memory, we have been able to abstract 
previous results [3,9] to find closed-form formulas 
for the effects of contention in any individual 
resource, on the assumption that the behavior of the 
system with respect to all of its other resources is 
known. Furthermore, we have combined the analyses of 
the separate resources to form a more complete model 
when processors contend for several resource classes 
simultaneously. 

Solving for this model yields a unique solution 
which allows a prediction of performance and degrada- 
tion in multiple-resource systems. Several hypotheti- 
cal systems have been parameterized through the model, 
and the iterative numerical solution has converged to 
the correct processor execution rate in each case. 
The performance estimates measured by this analysis 
have been shown to be reasonable by simulation at the 
instruction level, and it is anticipated that future 
simulations of systems will make use of this result to 
account for hardware resource contention while retaining 
a high-level view of the systems being modeled. 
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Table i - Contention Model Terminology 

Ta effective access time of M.p (service time) 

Tw effective rewrite time of M.p (recovery time) 

Tp average time between the completion of service on 
one memory request and the generation of the next 
request by P.c 

Tb cycle time of fast buffer memory 

Sm time required by M.p to service one request 

Sp time beyond memory cycle required by P.c to 
prepare the next request 

Pb probability of finding the request in buffer 

Pm probability that a request is queued at an M.p 

a service (access) time of each resource (Ta) 

b buffer speed for each resource (Tb) 

c number of processor-ring time-slots containing 
requests for each resource 

d delay time caused by contention at each resource 

f frequency of use for each resource (ratio of 
requests per number of machine instructions) 

h the contention function (UER) 

i index to the various resource classes 

k number of active processors (those to which tasks 
are currently assigned) 

L length of one machine instruction (inverse of IER 
on one processor) 

m number of resource units in each resource class 

n number of resource classes 

p probability of using buffer for each resource (Pb) 

t time between completion of service on one request 
for each resource and the generation of the next 
request for that resource (Tp) 

v number of stages in the functional-unit pipelines 
for each resource (coincides with the number of 
time-slices in the processor rings) 

w recovery (rewrite) time for each resource (Tw) 

z average number of processors in contention for 
each resource 
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