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Formalization of WCET Analysis Problem 

1. INTRODUCTION

WCETH(P ) := max

i2Inputs
max

h2States(H)
ETH(P, i, h)

2. REFERENCES

Consider all 
possible 
program 
inputs 

Consider all 
possible initial 
states of the 

hardware 

Measuring the execution time for all inputs and 
all hardware states is not feasible in practice: 
¢  There are too many. 
¢  We cannot control the initial hardware states. 
è  Need for approximation! 
  



High-level Requirements for  
WCET Analysis 

¢  Upper bounds must be safe, i.e. not 
underestimated. 

¢  Upper bounds should be tight, i.e. not far away 
from real execution times. 

¢  Analysis effort must be tolerable. 



Standard WCET Analysis Approach Today:  
Divide and Conquer + Abstraction 

1.  Divide: split program into fragments (e.g. basic 
blocks). 

2.  Determine safe bounds on execution time of 
each fragment using abstractions. 

3.  Determine constraints on control flow (e.g. 
loop bounds) through program by abstractions. 

4.  Conquer: combine 2 + 3 into bound of 
execution time of the whole program. 
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Running Example 

int main(int x, int[] a) {!
    int x = x % 5; !!
    int y = 42;!

    while (x < y) {!
        if (a[x] < a[x+1])!
            x++!
        else!
            x += 2;!
    }!

    return x;!
}!

Binary 
Program 

 R1 = R1 % 5  
 R2 = 42

 R1 = R1 + 1

 R3 = MEM[a+R1] 
 R4 = MEM[a+R1+4]
 R3 < R4? 

 return R1

 R1 < R2 ?

 R1 = R1 + 2

Compiler 

Control-flow 
Reconstruction 
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Value Analysis 

Determines invariants on values of registers at 
different program points. Invariants are often in the 
form of enclosing intervals of all possible values. 
 
Where is this information used? 
¢  Microarchitectural Analysis 

l  Pipeline Analysis 
l  Cache Analysis 

¢  Control-Flow Analysis 
l  Detect infeasible paths 
l  Derive loop bounds 

 R1 = R1 % 5  
 R2 = 42

 R1 = R1 + 1

 R3 = MEM[a+R1] 
 R4 = MEM[a+R1+4]
 R3 < R4? 

 return R1

 R1 < R2 ?

 R1 = R1 + 2



Value Analysis 
Intuition of Interval Analysis 

 R1 = R1 % 5  
 R2 = 42

 R1 = R1 + 1

 R3 = MEM[a+R1] 
 R4 = MEM[a+R1+4]
 R3 < R4? 

 return R1

 R1 < R2 ?

 R1 = R1 + 2

R1 = [-infty, +infty]  
R2 = [-infty, +infty] 

R1 = [0, 4]  
R2 = [42, 42]  

R1 = [2, 6]  
R2 = [42, 42]  

R1 = [1, 5]  
R2 = [42, 42]  

R1 = [0, 6]  
R2 = [42, 42]  

R1 = [2, 43]  
R2 = [42, 42]  

R1 = [1, 42]  
R2 = [42, 42]  

R1 = [0, 4]  
R2 = [42, 42]  
R1 = [0, 6]  
R2 = [42, 42]  
R1 = [0, 41]  
R2 = [42, 42]  

R1 = [0, 43]  
R2 = [42, 42]  

R1 = [42, 43]  
R2 = [42, 42]  

Can be formalized as  
Abstract Interpretation. 
è Yields soundness and 
termination guarantees. 



Control-Flow Analysis 

 R1 = R1 % 5  
 R2 = 42

 R1 = R1 + 1

 R3 = MEM[a+R1] 
 R4 = MEM[a+R1+4]
 R3 < R4? 

 return R1

 R1 < R2 ?

 R1 = R1 + 2

R1 = [0, 41]  
R2 = [42, 42]  

R1 increases by at 
least 1 in every 
iteration 

Can we also come up with a lower bound? 

è Can enter loop at  
     most 42 times 
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Microarchitectural Analysis 

Ideal 1970s world: one instruction = one cycle 
Real world: 

l  Pipelining 
l  Branch prediction + speculative execution 
l  Caches 
l  DRAM 

è  Execution time of individual instruction highly 
variable and dependent on state of 
microarchitecture 

è  Need to determine in which states the 
microarchitecture may be at a point in the program 

  



Pipelining 

¢  Instruction execution is split into several stages 
¢  Several instructions can be executed in parallel 
¢  Some pipelines can start more than one 

instruction per cycle: VLIW, Superscalar 
¢  Some processors can execute instructions out-

of-order 
¢  Practical Problems: Hazards and cache misses 

Fetch 

Decode 

Execute 

WB 



Hardware Features: Pipelines 

Ideal Case: One Instruction per Cycle 

Fetch 

Decode 

Execute 

WB 

Inst 1 Inst 2 Inst 3 Inst 4 

Fetch 

Decode 

Execute 

WB 

Fetch 

Decode 

Execute 

WB 

Fetch 

Decode 

Execute 

WB 



Pipeline Hazards 

Pipeline Hazards: 
¢  Data Hazards: Operands not yet available  

(Data Dependences) 
¢  Resource Hazards: Consecutive instructions 

use same resource 
¢  Control Hazards: Conditional branch 
¢  Instruction-Cache Hazards: Instruction fetch 

causes cache miss 

Assuming worst case everywhere is not an option! 



Cache analysis: prediction of cache hits on instruction or  
operand fetch or store 

Static exclusion of hazards 

lwz r4, 20(r1) Hit 

Dependence analysis: elimination of data hazards 
 

Resource reservation tables: elimination of resource hazards 
 

add r4, r5,r6 
lwz r7, 10(r1) 
add r8, r4, r4 Operand 

ready 

IF!
EX!
M!
F!



View of Processor as a State Machine 

¢  Processor (pipeline, cache, memory, inputs) 
viewed as a big state machine,  
performing transitions every clock cycle 

¢  Starting in an initial state for an instruction, 
transitions are performed, until a final state is 
reached: 
l  End state: instruction has left the pipeline 
l  # transitions: execution time of instruction 



A Concrete Pipeline Executing a Basic Block 

function exec (b : basic block, s : concrete pipeline state) 
t: trace 

interprets instruction stream of b starting in state s producing trace t. 
 
Successor basic block is interpreted starting in initial state last(t) 
 
length(t) gives number of cycles for basic block b 
 



An Abstract Pipeline Executing a Basic Block 

function exec (b : basic block, s : abstract pipeline state) t: 
trace 

interprets instruction stream of b (annotated with cache 
information) starting in state s producing abstract trace t 

length(t)   gives number of cycles 
 



What is different? 

¢  Abstract states may lack information, e.g. about cache 
contents. 

¢  More than one trace may be possible. 
¢  Starting state for successor basic block?  

In particular, if there are several predecessor blocks. 

s2 s1 

s? 

Alternatives: 
•  sets of states 
•  combine by least upper bound (join), 
  hard to find one that  

•  preserves information and 
•  has a compact representation. 



Nondeterminism 

¢  In the concrete pipeline model, one state 
resulted in one new state after a one-cycle 
transition 

¢  Now, in the abstract model, one state can 
have several successor states 
l  Transitions from set of states to set of states 



Non-Locality of Local Contributions 

¢  Interference between processor components 
produces Timing Anomalies:  
l  Assuming local best case leads to higher overall 

execution time. 
l  Assuming local worst case leads to shorter overall 

execution time 
Ex.: Cache miss in the context of branch prediction 

¢  Treating components in isolation may be unsafe 
¢  Implicit assumptions are not always correct: 

l  Cache miss is not always the worst case! 
l  The empty cache is not always the worst-case start! 



An Abstract Pipeline Executing a Basic Block 

function analyze (b : basic block, S : analysis state) T: set 
of trace 

Analysis states = 2PS x CS   
PS = set of abstract pipeline states 
CS = set of abstract cache states 

interprets instruction stream of b (annotated with cache 
information) starting in state S producing set of traces T 

max(length(T)) - upper bound for execution time 
last(T) - set of initial states for successor block 
Union for blocks with several predecessors.  
 

S2 S1 S3 =S1 ∪ S2 



Integrated Analysis: Overall Picture 

Basic Block 

s1 

s10 

s2 s3 

s11 s12 s13 

Fixed point iteration over Basic Blocks  
in abstract state {s1, s2, s3}  

move.1 (A0,D0),D1 

Cyclewise evolution of  processor model 
for instruction 

s1            s2        s3 

s10 s11 s12 s13 

s9 
s14 

s9 s14 
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Global Bound Analysis 
aka Path Analysis aka Implicit Path Enumeration 

¢  Determines a worst-case path and an upper 
bound on the WCET. 

¢  Formulated as integer linear program (ILP). 
 

 

Integer 
Linear 

Program 

 

 R1 = R1 % 5  
 R2 = 42

 R1 = R1 + 1

 R3 = MEM[a+R1] 
 R4 = MEM[a+R1+4]
 R3 < R4? 

 return R1

 R1 < R2 ?

 R1 = R1 + 2

+ 
Loop bounds + Infeasible paths 

Execution time bounds for basic blocks 
+ 



Integer linear programming 

Linear programming (LP) 
 
 
 
… + Restriction to integers = ILP. 
 
LP is in polynomial time, yet, ILP is NP hard, 

 but often efficiently solvable in practice. 
 

Solvers (e.g. CPLEX) determine the maximal value 
of the objective function + corresponding valuation of 
variables. 

1. INTRODUCTION

WCETH(P ) := max

i2Inputs
max

h2States(H)
ETH(P, i, h)

maximize c

T
x

subject to Ax  b

and x � 0

2. REFERENCES

Objective function 

Linear constraints 



Global Bound Analysis 
aka Path Analysis aka Implicit Path Enumeration 

¢  Determines a worst-case path and an upper 
bound on the WCET. 

¢  Formulated as integer linear program (ILP). 
 

max caxa + cbxb + ccxc +  
        cdxd + cexe + cfxf 
s.t.   xb= xa + xd + xe 
        xc = xd + xe 
        xa= xf = 1 
        xa >= 0, xb >= 0, … 
       lb <= xc <= ub 

 R1 = R1 % 5  
 R2 = 42

 R1 = R1 + 1

 R3 = MEM[a+R1] 
 R4 = MEM[a+R1+4]
 R3 < R4? 

 return R1

 R1 < R2 ?

 R1 = R1 + 2

a

b

c

d
e

f

xb = frequency of executing b 
cb = time to execute b once 

Structural 
constraints, 
due to CFG 

Loop bounds  



Global Bound Analysis 
aka Path Analysis aka Implicit Path Enumeration 

¢  Determines a worst-case path and an upper 
bound on the WCET. 

¢  Formulated as integer linear program (ILP). 
 

max 2xa + 3xb + 6xc +  
        3xd + 2xe + 2xf 
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Global Bound Analysis 
aka Path Analysis aka Implicit Path Enumeration 

max 2xa + 3xb + 6xc +  
        3xd + 2xe + 2xf 
s.t.   xb= xa + xd + xe, 
        xc = xd + xe, 
        xa= xf = 1, 
        xa >= 0, xb >= 0, … 
       19 <= xc <= 42 

 R1 = R1 % 5  
 R2 = 42

 R1 = R1 + 1

 R3 = MEM[a+R1] 
 R4 = MEM[a+R1+4]
 R3 < R4? 

 return R1

 R1 < R2 ?

 R1 = R1 + 2

a

b

c

d
e

f

xb = frequency of executing b 
cb = time to execute b once 

Structural 
constraints, 
due to CFG 

Loop bounds  

Solution: 
xa = xf = 1, xb = 43, xc = xd = 42 
Objective function = 2*1 + 3*43 + (6+3)*42 + 2*1 = 511 



Summary and Outlook 

¢  Divide and conquer: 
l  Analyze worst-case timing of program 

fragments separately 
l  Combine results using integer linear program 

¢  Abstraction: 
l  Employ sound abstractions to solve 

undecidable problems approximately 

Next week: 
theoretical background of Abstract Interpretation 


