
Verification of
Real-Time Systems
Static WCET Analysis

Jan Reineke

Advanced Lecture, Summer 2015

What does the execution time of a
program depend on?

Input-dependent
control flow

Pipeline,
Memory Hierarchy,
Interconnect

Microarchitectural State

+
Complex

CPU
L1

Cache

Complex
CPU

L1
Cache

...
L2

Cache
Main

Memory

Reineke et al., Berkeley 4

What does the execution time of a

program depend on?

Input-dependent

control flow
Microarchitectural State

+

Complex
CPU

L1
Cache

Complex
CPU

L1
Cache

...
L2

Cache
Main

Memory

Pipeline,

Memory Hierarchy,

Interconnect

Formalization of WCET Analysis Problem

1. INTRODUCTION

WCETH(P) := max

i2Inputs
max

h2States(H)
ETH(P, i, h)

2. REFERENCES

Consider all
possible
program
inputs

Consider all
possible initial
states of the

hardware

Measuring the execution time for all inputs and
all hardware states is not feasible in practice:
¢  There are too many.
¢  We cannot control the initial hardware states.
è  Need for approximation!

High-level Requirements for
WCET Analysis

¢  Upper bounds must be safe, i.e. not
underestimated.

¢  Upper bounds should be tight, i.e. not far away
from real execution times.

¢  Analysis effort must be tolerable.

Standard WCET Analysis Approach Today:
Divide and Conquer + Abstraction

1.  Divide: split program into fragments (e.g. basic
blocks).

2.  Determine safe bounds on execution time of
each fragment using abstractions.

3.  Determine constraints on control flow (e.g.
loop bounds) through program by abstractions.

4.  Conquer: combine 2 + 3 into bound of
execution time of the whole program.

Structure of WCET Analyzers
computer science

saarland
universityTiming Analysis Framework

Input
Executable

CFG
Reconstruction

Value
Analysis

Control
Flow

Analysis

Micro-
architectural

Analysis

Global
Bound

Analysis

WCET Bound

B Reconstructs a control flow
graph from the binary.

B Determines invariants for
the values in registers and in
memory.

B Determines constraints on the
control flow, by

B determining loop bounds, and

B identifying infeasible paths.

B Determines bounds on
execution times of basic blocks.

B Based on an abstract model
of the microarchitecture, includ-
ing detailed models of

B the pipeline, and

B the memory hierarchy.

B Determines a worst-case
path and an upper bound on
the execution time.

B Usually formulated as integer
linear program.

Jan Reineke Timing Analysis and Timing Predictability 2. April 2012 7 / 54

Reconstructs a
control-flow graph
from the binary.

Determines
invariants for the

values in registers
and in memory.

Determines invariants on the
control flow, by
•  Determining loop bounds,
•  Identifying infeasible paths.

Determines bound
on execution times

of program
fragments.

Determines a worst-
case path and an

upper bound on the
WCET.

Structure of WCET Analyzers
Employed Techniques

computer science

saarland
universityTiming Analysis Framework

Input
Executable

CFG
Reconstruction

Value
Analysis

Control
Flow

Analysis

Micro-
architectural

Analysis

Global
Bound

Analysis

WCET Bound

B Reconstructs a control flow
graph from the binary.

B Determines invariants for
the values in registers and in
memory.

B Determines constraints on the
control flow, by

B determining loop bounds, and

B identifying infeasible paths.

B Determines bounds on
execution times of basic blocks.

B Based on an abstract model
of the microarchitecture, includ-
ing detailed models of

B the pipeline, and

B the memory hierarchy.

B Determines a worst-case
path and an upper bound on
the execution time.

B Usually formulated as integer
linear program.

Jan Reineke Timing Analysis and Timing Predictability 2. April 2012 7 / 54

Determines bound
on execution times

of program
fragments.

Abstract
Interpretation

of the Program

Abstract
Interpretation

of the Program

Abstract
Interpretation
of Program +

Hardware Model

Integer Linear
Programming

Running Example

int main(int x, int[] a) {!
 int x = x % 5; !!
 int y = 42;!

 while (x < y) {!
 if (a[x] < a[x+1])!
 x++!
 else!
 x += 2;!
 }!

 return x;!
}!

Binary
Program

 R1 = R1 % 5
 R2 = 42

 R1 = R1 + 1

 R3 = MEM[a+R1]
 R4 = MEM[a+R1+4]
 R3 < R4?

 return R1

 R1 < R2 ?

 R1 = R1 + 2

Compiler

Control-flow
Reconstruction

Structure of WCET Analyzers
computer science

saarland
universityTiming Analysis Framework

Input
Executable

CFG
Reconstruction

Value
Analysis

Control
Flow

Analysis

Micro-
architectural

Analysis

Global
Bound

Analysis

WCET Bound

B Reconstructs a control flow
graph from the binary.

B Determines invariants for
the values in registers and in
memory.

B Determines constraints on the
control flow, by

B determining loop bounds, and

B identifying infeasible paths.

B Determines bounds on
execution times of basic blocks.

B Based on an abstract model
of the microarchitecture, includ-
ing detailed models of

B the pipeline, and

B the memory hierarchy.

B Determines a worst-case
path and an upper bound on
the execution time.

B Usually formulated as integer
linear program.

Jan Reineke Timing Analysis and Timing Predictability 2. April 2012 7 / 54

Reconstructs a
control-flow graph
from the binary.

Determines
invariants for the

values in registers
and in memory.

Determines invariants on the
control flow, by
•  Determining loop bounds,
•  Identifying infeasible paths.

Determines bound
on execution times

of program
fragments.

Determines a worst-
case path and an

upper bound on the
WCET.

Value Analysis

Determines invariants on values of registers at
different program points. Invariants are often in the
form of enclosing intervals of all possible values.

Where is this information used?
¢  Microarchitectural Analysis

l  Pipeline Analysis
l  Cache Analysis

¢  Control-Flow Analysis
l  Detect infeasible paths
l  Derive loop bounds

 R1 = R1 % 5
 R2 = 42

 R1 = R1 + 1

 R3 = MEM[a+R1]
 R4 = MEM[a+R1+4]
 R3 < R4?

 return R1

 R1 < R2 ?

 R1 = R1 + 2

Value Analysis
Intuition of Interval Analysis

 R1 = R1 % 5
 R2 = 42

 R1 = R1 + 1

 R3 = MEM[a+R1]
 R4 = MEM[a+R1+4]
 R3 < R4?

 return R1

 R1 < R2 ?

 R1 = R1 + 2

R1 = [-infty, +infty]
R2 = [-infty, +infty]

R1 = [0, 4]
R2 = [42, 42]

R1 = [2, 6]
R2 = [42, 42]

R1 = [1, 5]
R2 = [42, 42]

R1 = [0, 6]
R2 = [42, 42]

R1 = [2, 43]
R2 = [42, 42]

R1 = [1, 42]
R2 = [42, 42]

R1 = [0, 4]
R2 = [42, 42]
R1 = [0, 6]
R2 = [42, 42]
R1 = [0, 41]
R2 = [42, 42]

R1 = [0, 43]
R2 = [42, 42]

R1 = [42, 43]
R2 = [42, 42]

Can be formalized as
Abstract Interpretation.
è Yields soundness and
termination guarantees.

Control-Flow Analysis

 R1 = R1 % 5
 R2 = 42

 R1 = R1 + 1

 R3 = MEM[a+R1]
 R4 = MEM[a+R1+4]
 R3 < R4?

 return R1

 R1 < R2 ?

 R1 = R1 + 2

R1 = [0, 41]
R2 = [42, 42]

R1 increases by at
least 1 in every
iteration

Can we also come up with a lower bound?

è Can enter loop at
 most 42 times

Structure of WCET Analyzers
computer science

saarland
universityTiming Analysis Framework

Input
Executable

CFG
Reconstruction

Value
Analysis

Control
Flow

Analysis

Micro-
architectural

Analysis

Global
Bound

Analysis

WCET Bound

B Reconstructs a control flow
graph from the binary.

B Determines invariants for
the values in registers and in
memory.

B Determines constraints on the
control flow, by

B determining loop bounds, and

B identifying infeasible paths.

B Determines bounds on
execution times of basic blocks.

B Based on an abstract model
of the microarchitecture, includ-
ing detailed models of

B the pipeline, and

B the memory hierarchy.

B Determines a worst-case
path and an upper bound on
the execution time.

B Usually formulated as integer
linear program.

Jan Reineke Timing Analysis and Timing Predictability 2. April 2012 7 / 54

Reconstructs a
control-flow graph
from the binary.

Determines
invariants for the

values in registers
and in memory.

Determines invariants on the
control flow, by
•  Determining loop bounds,
•  Identifying infeasible paths.

Determines bound
on execution times

of program
fragments.

Determines a worst-
case path and an

upper bound on the
WCET.

Microarchitectural Analysis

Ideal 1970s world: one instruction = one cycle
Real world:

l  Pipelining
l  Branch prediction + speculative execution
l  Caches
l  DRAM

è  Execution time of individual instruction highly
variable and dependent on state of
microarchitecture

è  Need to determine in which states the
microarchitecture may be at a point in the program

Pipelining

¢  Instruction execution is split into several stages
¢  Several instructions can be executed in parallel
¢  Some pipelines can start more than one

instruction per cycle: VLIW, Superscalar
¢  Some processors can execute instructions out-

of-order
¢  Practical Problems: Hazards and cache misses

Fetch

Decode

Execute

WB

Hardware Features: Pipelines

Ideal Case: One Instruction per Cycle

Fetch

Decode

Execute

WB

Inst 1 Inst 2 Inst 3 Inst 4

Fetch

Decode

Execute

WB

Fetch

Decode

Execute

WB

Fetch

Decode

Execute

WB

Pipeline Hazards

Pipeline Hazards:
¢  Data Hazards: Operands not yet available

(Data Dependences)
¢  Resource Hazards: Consecutive instructions

use same resource
¢  Control Hazards: Conditional branch
¢  Instruction-Cache Hazards: Instruction fetch

causes cache miss

Assuming worst case everywhere is not an option!

Cache analysis: prediction of cache hits on instruction or
operand fetch or store

Static exclusion of hazards

lwz r4, 20(r1) Hit

Dependence analysis: elimination of data hazards

Resource reservation tables: elimination of resource hazards

add r4, r5,r6
lwz r7, 10(r1)
add r8, r4, r4 Operand

ready

IF!
EX!
M!
F!

View of Processor as a State Machine

¢  Processor (pipeline, cache, memory, inputs)
viewed as a big state machine,
performing transitions every clock cycle

¢  Starting in an initial state for an instruction,
transitions are performed, until a final state is
reached:
l  End state: instruction has left the pipeline
l  # transitions: execution time of instruction

A Concrete Pipeline Executing a Basic Block

function exec (b : basic block, s : concrete pipeline state)
t: trace

interprets instruction stream of b starting in state s producing trace t.

Successor basic block is interpreted starting in initial state last(t)

length(t) gives number of cycles for basic block b

An Abstract Pipeline Executing a Basic Block

function exec (b : basic block, s : abstract pipeline state) t:
trace

interprets instruction stream of b (annotated with cache
information) starting in state s producing abstract trace t

length(t) gives number of cycles

What is different?

¢  Abstract states may lack information, e.g. about cache
contents.

¢  More than one trace may be possible.
¢  Starting state for successor basic block?

In particular, if there are several predecessor blocks.

s2 s1

s?

Alternatives:
•  sets of states
•  combine by least upper bound (join),
 hard to find one that

•  preserves information and
•  has a compact representation.

Nondeterminism

¢  In the concrete pipeline model, one state
resulted in one new state after a one-cycle
transition

¢  Now, in the abstract model, one state can
have several successor states
l  Transitions from set of states to set of states

Non-Locality of Local Contributions

¢  Interference between processor components
produces Timing Anomalies:
l  Assuming local best case leads to higher overall

execution time.
l  Assuming local worst case leads to shorter overall

execution time
Ex.: Cache miss in the context of branch prediction

¢  Treating components in isolation may be unsafe
¢  Implicit assumptions are not always correct:

l  Cache miss is not always the worst case!
l  The empty cache is not always the worst-case start!

An Abstract Pipeline Executing a Basic Block

function analyze (b : basic block, S : analysis state) T: set
of trace

Analysis states = 2PS x CS
PS = set of abstract pipeline states
CS = set of abstract cache states

interprets instruction stream of b (annotated with cache
information) starting in state S producing set of traces T

max(length(T)) - upper bound for execution time
last(T) - set of initial states for successor block
Union for blocks with several predecessors.

S2 S1 S3 =S1 ∪ S2

Integrated Analysis: Overall Picture

Basic Block

s1

s10

s2 s3

s11 s12 s13

Fixed point iteration over Basic Blocks
in abstract state {s1, s2, s3}

move.1 (A0,D0),D1

Cyclewise evolution of processor model
for instruction

s1 s2 s3

s10 s11 s12 s13

s9
s14

s9 s14

Structure of WCET Analyzers
computer science

saarland
universityTiming Analysis Framework

Input
Executable

CFG
Reconstruction

Value
Analysis

Control
Flow

Analysis

Micro-
architectural

Analysis

Global
Bound

Analysis

WCET Bound

B Reconstructs a control flow
graph from the binary.

B Determines invariants for
the values in registers and in
memory.

B Determines constraints on the
control flow, by

B determining loop bounds, and

B identifying infeasible paths.

B Determines bounds on
execution times of basic blocks.

B Based on an abstract model
of the microarchitecture, includ-
ing detailed models of

B the pipeline, and

B the memory hierarchy.

B Determines a worst-case
path and an upper bound on
the execution time.

B Usually formulated as integer
linear program.

Jan Reineke Timing Analysis and Timing Predictability 2. April 2012 7 / 54

Reconstructs a
control-flow graph
from the binary.

Determines
invariants for the

values in registers
and in memory.

Determines invariants on the
control flow, by
•  Determining loop bounds,
•  Identifying infeasible paths.

Determines bound
on execution times

of program
fragments.

Determines a worst-
case path and an

upper bound on the
WCET.

Global Bound Analysis
aka Path Analysis aka Implicit Path Enumeration

¢  Determines a worst-case path and an upper
bound on the WCET.

¢  Formulated as integer linear program (ILP).

Integer
Linear

Program

 R1 = R1 % 5
 R2 = 42

 R1 = R1 + 1

 R3 = MEM[a+R1]
 R4 = MEM[a+R1+4]
 R3 < R4?

 return R1

 R1 < R2 ?

 R1 = R1 + 2

+
Loop bounds + Infeasible paths

Execution time bounds for basic blocks
+

Integer linear programming

Linear programming (LP)

… + Restriction to integers = ILP.

LP is in polynomial time, yet, ILP is NP hard,

 but often efficiently solvable in practice.

Solvers (e.g. CPLEX) determine the maximal value
of the objective function + corresponding valuation of
variables.

1. INTRODUCTION

WCETH(P) := max

i2Inputs
max

h2States(H)
ETH(P, i, h)

maximize c

T
x

subject to Ax  b

and x � 0

2. REFERENCES

Objective function

Linear constraints

Global Bound Analysis
aka Path Analysis aka Implicit Path Enumeration

¢  Determines a worst-case path and an upper
bound on the WCET.

¢  Formulated as integer linear program (ILP).

max caxa + cbxb + ccxc +
 cdxd + cexe + cfxf
s.t. xb= xa + xd + xe
 xc = xd + xe
 xa= xf = 1
 xa >= 0, xb >= 0, …
 lb <= xc <= ub

 R1 = R1 % 5
 R2 = 42

 R1 = R1 + 1

 R3 = MEM[a+R1]
 R4 = MEM[a+R1+4]
 R3 < R4?

 return R1

 R1 < R2 ?

 R1 = R1 + 2

a

b

c

d
e

f

xb = frequency of executing b
cb = time to execute b once

Structural
constraints,
due to CFG

Loop bounds

Global Bound Analysis
aka Path Analysis aka Implicit Path Enumeration

¢  Determines a worst-case path and an upper
bound on the WCET.

¢  Formulated as integer linear program (ILP).

max 2xa + 3xb + 6xc +
 3xd + 2xe + 2xf
s.t. xb= xa + xd + xe,
 xc = xd + xe,
 xa= xf = 1,
 xa >= 0, xb >= 0, …
 19 <= xc <= 42

 R1 = R1 % 5
 R2 = 42

 R1 = R1 + 1

 R3 = MEM[a+R1]
 R4 = MEM[a+R1+4]
 R3 < R4?

 return R1

 R1 < R2 ?

 R1 = R1 + 2

a

b

c

d
e

f

xb = frequency of executing b
cb = time to execute b once

Structural
constraints,
due to CFG

Loop bounds

Global Bound Analysis
aka Path Analysis aka Implicit Path Enumeration

max 2xa + 3xb + 6xc +
 3xd + 2xe + 2xf
s.t. xb= xa + xd + xe,
 xc = xd + xe,
 xa= xf = 1,
 xa >= 0, xb >= 0, …
 19 <= xc <= 42

 R1 = R1 % 5
 R2 = 42

 R1 = R1 + 1

 R3 = MEM[a+R1]
 R4 = MEM[a+R1+4]
 R3 < R4?

 return R1

 R1 < R2 ?

 R1 = R1 + 2

a

b

c

d
e

f

xb = frequency of executing b
cb = time to execute b once

Structural
constraints,
due to CFG

Loop bounds

Solution:
xa = xf = 1, xb = 43, xc = xd = 42
Objective function = 2*1 + 3*43 + (6+3)*42 + 2*1 = 511

Summary and Outlook

¢  Divide and conquer:
l  Analyze worst-case timing of program

fragments separately
l  Combine results using integer linear program

¢  Abstraction:
l  Employ sound abstractions to solve

undecidable problems approximately

Next week:
theoretical background of Abstract Interpretation

