Verification of

Real-Time Systems
Static WCET Analysis

Jan Reineke

Advanced Lecture, Summer 2015

Input-dependent
control flow

start

r L]
unsigned long sum2
unﬂmedﬂ

um. = er >> 16) & OxfI¥Y
)dler& O\mf

yes

-
((ltn \'\U\\\)

[

0o | adler .= BASE l

|

yes yes| oy
' . . L’ T
aase\ o [\xom sum2) () 2o (Gea)
/ $ o gl
!
\ no x\-,.‘
[oD(adie) Jdln praproraey)
”“‘m ‘“’“ (sum2 | MOD(sum2) | sum2 += adler
|mw,, =

remrr adler | (sum2 << 16)

d‘7

Complex
CPU

What does the execution time of a
program depend on?

L1

»

Cache

A

Complex
CPU

Microarchitectural State

\ 4

L2 Main
Cache ~| Memory

A

L1

\Q\ache

s —
o yes| yes 0
| / .
. | adler +w *buf~+| [[len-=NMAX | -
sum2 += adler B=NMAX/16] ™
|
yes / yes
—a o . B
FE D,

Pipeline,
Memory Hierarchy,

Interconnect

Formalization of WCET Analysis Problem

Consider all Consider all
possible possible initial
program states of the

inputs hardware

\

WCETH(P) := max max FETu(P,t,h)
gs Inputs he States(H)

—

Measuring the execution time for all inputs and
all hardware states is not feasible in practice:

o There are too many.
o We cannot control the initial hardware states.
> Need for approximation!

High-level Requirements for
WCET Analysis

o Upper bounds must be safe, i.e. not
underestimated.

o Upper bounds should be tight, i.e. not far away
from real execution times.

o Analysis effort must be tolerable.

Standard WCET Analysis Approach Today:
Divide and Conquer + Abstraction

1. Divide: split program into fragments (e.g. basic
blocks).

Ww- 2 Determine safe bounds on execution time of
e €7 each fragment using abstractions.

‘Wg Determine constraints on control flow (e.qg.
@M* loop bounds) through program by abstractions.

4. Conquer: combine 2 + 3 into bound of
execution time of the whole program.

® Structure of WCET Analyzers

Input
Executable

Reconstructs a Determines
control-flow graph —— [CFG ‘ invariants for the
from the binary. | Reconstruction] values in registers
and in memory.
Value
| Analysis |
Determines invariants on the / N Determines bound
control flow, by Control Micro- on execution times
« Determining loop bounds, A: ;?}‘/’;i] arzz';?;;?;al of program
« Identifying infeasible paths. fragments.
Global
Bound
Analysis \ Determines a worst-
case path and an
@@ upper bound on the
WCET.

Employed Techniques

Input
Executable

CFG

| Reconstruction |

T N\

Value
Analysis

S
1/
J

Abstract
Interpretation
of the Program

Structure of WCET Analyzers

Abstract
Interpretation
of the Program

ICro-

architectural
Analysis

V4

Global
Bound
Analysis

Abstract
Interpretation
of Program +

Hardware Model

AN

WCET Bound

Integer Linear
Programming

int main(int x, int[] a) {
Qgpt X =X % 5;
int y = 42;
while (x < vy) {
if (a[x] < a[x+1])
X++
else
X += 2;
}

return X;

Running Example

Compiler

> Binary

/
(46¢

Reoeul

Program

Control-flow
Reconstruction

|

=R1%5

R2 = 42
ﬁﬁT?ﬁi?“ﬁ;:::::::::::::::\

N

R3 = MEM[a+R1]
R4 = MEM[a+R1+4]
R3 < R4?

b e

[R1=R1+2

1|

N—

AN

[return R1 |

® Structure of WCET Analyzers

Input
Executable

Reconstructs a Determines
control-flow graph CFG ‘ invariants for the
from the binary. Reconstruction values in registers

and in memory.

Value
Analysis

J|

Determines bound
on execution times
of program

Determines invariants on the
control flow, by

« Determining loop boun architectural

e) Analysis Analysis
« Identifying infeasible p < v fragments.

Global
Bound

Analysis Determines a worst-

case path and an
@ upper bound on the
WCET.

Value Analysis

Determines invariants on values of registers at
different program points. Invariants are often in the
form of enclosing intervals of all possible values.

|

R1=R1%5

Where is this information used? R2 = 42
o Microarchitectural Analysis [RT<R2?

Pipeline Analysis / \
. R3 = MEM[a+R1]
Cache Analysis R4 = MEM[a+R1+4]
. < R4?
o Control-Flow Analysis = R4j \
Detect infeasible paths [R1=R1+2 [R1 = R1 L |
Derive loop bounds \

[return R1 |

R1 = [-infty, +infty]
R2 = [-infty, +infty]

Value Analysis
Intuition of Interval Analysis

\‘
R1=R1%5
1 x4

1 R2 = [u2Iut, s 1]

R1=[0, 43] —==——> |

R1<R2’7

R1=[0, 41]
1| R2 =42, 42}

R1 = [42, 43]
R2 = [42, 42]

~—
N

R3 MEM[a+R1]

— MEM[a+R1+4]

Can be formalized as
Abstract Interpretation.
= Yields soundness and
termination guarantees.

R1=R1+1

\\

%\ R1=[1, 42]

return R1 y

, | R2=[42, 42]

R1=[2, 43]
R2 = [42, 42]

Control-

Flow Analysis

'

R1=R1%5

R1=[0, 41]

R2 = 42
R1<R2? %\

5

R2 = [42, 42] \

R1 increases by at
least 1 in every
iteration

= Can enter loop at
most 42 times

Una-Y 1
T

7N

R3 = MEM[a+R1]

<w+m+4] —_
2t B

|(R1=R1+2 R1=R1 +1
return R1

Can we also come up with a vr bound?

Reconstructs a
control-flow graph
from the binary.

\'

Determines invariants on the
control flow, by

» Determining loop bounds,

« Identifying infeasible paths.

Input
Executable

CFG
| Reconstruction

Value
Analysis

-/

_,{

Structure of WCET Analyzers

Determines
invariants for the
values in registers
and in memory.

Determines bound

Control
Flow
Analysis

Micro-
architectural
Analysis

Analysis

WCET Bound

on execution times
of program
fragments.

Determines a worst-

case path and an

upper bound on the

WCET.

Microarchitectural Analysis

Ideal 1970s world: one instruction = one cycle

Real world:
Pipelining
Branch prediction + speculative execution
Caches
DRAM
> Execution time of individual instruction highly

variable and dependent on state of
microarchitecture

> Need to determine in which states the
microarchitecture may be at a point in the program

Pipelining

Instruction execution is split into several stages
Several instructions can be executed in parallel

Some pipelines can start more than one
instruction per cycle: VLIW, Superscalar

Some processors can execute instructions out-
of-order
Practical Problems: Hazards and cache misses

’\

Fetch

Decode

Execute

WB

v €

(TN

fvstopv| 2

TIWN/

Hardware Features: Pipelines
c

Inst 1 Inst 2 Inst 3 Inst 4

Fetch

Decode Fetch

Execute Decode Fetch

WB Execute Decode Fetch H
WB Execute Decode

WB Execute
WB

|deal Case: One Instruction per Cycle

>

Pipeline Hazards

Pipeline Hazards:

o Data Hazards: Operands not yet available
(Data Dependences)

o Resource Hazards: Consecutive instructions
use same resource

o Control Hazards: Conditional branch

o Instruction-Cache Hazards: Instruction fetch

causes cache miss
« VAT 4 - crzw¥

Assuming worst case everywhere is not an option!

® Static exclusion of hazards

Cache analysis: prediction of cache hits on instruction or
operand fetch or store
Iwz rd, 20(r1) -

Dependence analysis: elimination of data hazards |

add r4, r5,ré6

Iwz r7, 10(r1)
Resource reservation tables: elimination of resource hazards I

IF

EX
M
F

View of Processor as a State Machine

o Processor (pipeline, cache, memory, inputs)
viewed as a big state machine,
performing transitions every clock cycle

o Starting in an initial state for an instruction,
transitions are performed, until a final state is
reached:

End state: instruction has left the pipeline
transitions: execution time of instruction

O A Concrete Pipeline Executing a Basic Block

function exec (b : basic block, s : concrete pipeline state)
t. trace

interprets instruction stream of b starting in state s producing trace t.

Successor basic block is interpreted starting in initial state /ast(t)

J—
length(t) gives number of cycles for basic block b

—

——

An Abstract Pipeline Executing a Basic Block

function exec (b : basic block, s : abstract pipeline state) t:
trace

interprets instruction stream of b (annotated with cache
information) starting in state s producing abstract trace t

length(t) gives number of cycles

What is different?

o Abstract states may lack information, e.g. about cache
contents.
o More than one trace may be possible.

o Starting state for successor basic block?
In particular, if there are several predecessor blocks.

Alternatives: O
* sets of states
e combine by least upper bc@Aj (joln),
> = hard to find one that
5 * preserves informatiobn and }L
» has a compact represeniation. \
v LY
° v

\

Nondeterminism

o In the concrete pipeline model, one state
resulted in one new state after a one-cycle
transition

o Now, in the abstract model, one state can
have several successor states

Transitions from set of states to set of states

Non-Locality of Local Contributions

o Interference between processor components
produces Timing Anomalies:

Assuming local best case leads to higher overall
execution time.

Assuming local worst case leads to shorter overall
execution time
Ex.: Cache miss in the context of branch prediction

o Treating components in isolation may be unsafe

o Implicit assumptions are not always correct:
Cache miss is not always the worst case!
The empty cache is not always the worst-case start!

O An Abstract Pipeline Executing a Basic Block

function analyze (b : basic block, S : analysis state) T: set

of trace
Analysis states —s U
Dy
PS = set of abstract pipeline states

CS = set of abstract cache states

interprets instruction stream of b (annotated with cache
iInformation) starting in state S producing set of traces T

max(length(T)) - upper bound for execution time
last(T) - set of initial states for successor block
Union for blocks with several predecessors.

O Integrated Analysis: Overall Picture

.S/ Fixed point iteration over Basic Blocks
S .
-, ! in abstract state {s; s, 3/

T/

Cyclewise evolution of processor model
for instruction

move.l (A0O,DO),D1

Reconstructs a
control-flow graph
from the binary.

Determines invariants on the

control flow, by
» Determining loop bounds,

« Identifying infeasible paths.

Structure of WCET Analyzers

Input
Executable

Determines
invariants for the
values in registers
and in memory.

](/

| Reconstruction
Value
Analysis
Control Micro-
Flow __architectural
Analysisy/ nalysis
\ \
Global
Bound
Analysis
WCET Bound

Determines bound
on execution times
of program

fragments.

Determines a worst-

case path and an

upper bound on the

WCET.

Global Bound Analysis
aka Path Analysis aka Implicit Path Enumeration

o Determines a worst-case path and an upper
bound on the WCET.

o Formulated as integer linear program (ILP).

Integer
[Ri=R1+2 ||>:m+1 | " g
: > Linear
+ Program
Loop bounds + Infeasible paths
+

Execution time bounds for basic blocks

Integer linear programming

Linear programming (LP)
T . . T
Objective function =——> Maxrimize Cc X

Linear constraints ————> sybject to Ax < b
and x >0

... + Restriction to integers = ILP.

LP is in polynomial time, yet, ILP is NP hard,
but often efficiently solvable in practice.

Solvers (e.g. CPLEX) determine the maximal value
of the objective function + corresponding valuation of
variables.

Global Bound Analysis
aka Path Analysis aka Implicit Path Enumeration

o Determines a worst-case path and an upper
bound on the WCET.

o Formulated as integer linear program (ILP).
|

R1=R1%5 X, = frequency of executing b

a|R2 =42 c, = time to execute b once
b[RT<R27? \l

/ \ max ¢ x, + C,X, + C X, +
R3 = MEM[a+R1] C Xy + CX, + CX;
23<Mfy el —> St Xp= X, + Xyt X, e T Structural
\ X, = Xy + X, 7 constraints,
=X = due to CFG
dE=R1+2 | [RI=Ri+1_] X=X =1
e N x,>=0,x,>=0, ...
b <= XC <=ub

f [return R1 |

Loop bounds

Global Bound Analysis
aka Path Analysis aka Implicit Path Enumeration

o Determines a worst-case path and an upper
bound on the WCET.

o Formulated as integer linear program (ILP).

|

R1=R1%5
ad|R2 =42

b WNA

N\

R3 < R47?

R3 = MEM[a+R1]
C |R4 = MEM[a+R1+4]

~

d[R1=R1+2

[Ri=Ri+1]

f [return R1 |

e N

X, = frequency of executing b
c, = time to execute b once

\

S.t.

max 2x, + 3x, + 6x, +

3x, + 2X, t+ 2X;

Xp= Xa ¥ Xg + X,
Xe = Xgt X, 7
xa=xf=1,
x,>=0,x,>=0, ...
19 <=x,<=42

Structural
constraints,
due to CFG

Loop bounds

Global Bound Analysis
aka Path Analysis aka Implicit Path Enumeration

|

R1=R1%5 X, = frequency of executing b

a|R2 =42 c, = time to execute b once
b[RT<R27? \l

/ \ max 2x, + 3x, + 6x, +
R3 = MEM[a+R1] 3x, + 2X, t+ 2X;
C |R4 = MEM[a+R1+4] S.t. X=X, +X,+X, Structural
” /> | ot A~ d)
R3 < R4" \ X, =Xyt X, :> constraints,
d[RT=R1+2 | [RI=Ri+1 | Xa:xf=1’ due fo CFG
e N x,>=0,x,>=0, ...
19 <=x,<=42
f [return R1 |

Loop bounds
Solution:

X, =X =1, X, =43, X, = X4 =42

Objective function = 2*1 + 3*43 + (6+3)"42 + 2*1 = 511

Summary and Outlook

o Divide and conquer:

Analyze worst-case timing of program
fragments separately

Combine results using integer linear program

o Abstraction:

Employ sound abstractions to solve
undecidable problems approximately

Next week:
theoretical background of Abstract Interpretation

