UNIVERSITY L
— —
COMPUTER SCIENCE

Task Models and Scheduling

Jan Reineke

Saarland University

July 9, 2015

SAARLAND
UNIVERSITY
I B

COMPUTER SCIENCE

Jan Reineke Task Models and Scheduling



SAARLAND
UNIVERSITY
I —

COMPUTER SCIENCE

Scheduling
Theory in Real-
Time Systems

Uniprocessor
Systems

Schedu-
lability
Analysis Resource
Sharing
and
Servers Multi-
processor
Partitioned Systems
Scheduling

Resource

Sharing
Semi-

Partitioned

Scheduling Global
Scheduling

July 9, 2015 2 /35

Jan Reineke Task Models and Scheduling



Timing parameters of a job J; UNIVERSITY B

SAARLAND g

I —
COMPUTER SCIENCE

Arrival time (aj) or release time (rj) is the time at which the job becomes
ready for execution

Computation (execution) time (C;) is the time necessary to the processor for
executing the job without interruption (= WCET).

Absolute deadline (d;) is the time at which the job should be completed.

Relative deadline (D;) is the time length between the arrival time and the
absolute deadline.

Start time (s;j) is the time at which the job starts its execution.
Finishing time (f;) is the time at which the job finishes its execution.

Response time (R;) is the time length at which the job finishes its execution
after its arrival, which is f; — a;.
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m The execution entities (tasks, processes, threads, etc.) are competing
with each other for shared resources

m Scheduling policy is needed

» When to schedule an entity?
» Which entity to schedule?

Jan Reineke Task Models and Scheduling July 9, 2015 4 /35



SAARLAND ¢
UNIVERSITY L

Scheduling Concepts UNIVERSIT

COMPUTER SCIENCE

m Scheduling Algorithm: determines the order that jobs execute on
the processor

m Jobs (a simplified version) may be in one of three states:

_ completion _
executing terminated

schedule

activate

>
>

preempt
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m A schedule is an assignment of jobs to the processor, such that each
job is executed until completion.

m A schedule can be defined as an integer step function o @—> N,
where o(t) = j denotes job J; is executed at time t, and o(t) =0
denotes the system is idle at time t.

m If o(t) changes its value at some time t, then the processor performs
a context switch at time t.

m Non-preemptive scheduling: there is only one interval with o(t) =
for every J;.

m Preemptive scheduling: there can be more than one interval with
o(t) = .
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Schedule: ¢ : R — N function of processor time to jobs

o(t) | : o :
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Schedule: ¢ : R — N function of processor time to jobs
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Schedule: ¢ : R — N function of processor time to jobs
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Schedule: ¢ : R — N function of processor time to jobs
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Schedule: ¢ : R — N function of processor time to jobs
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m A schedule is feasible if all jobs can be completed according to a set of
specified constraints.

m A set of jobs is schedulable if there exists a feasible schedule for the
set of jobs.

m A scheduling algorithm is optimal if it always produces a feasible
schedule if the given set of jobs is schedulable.
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Scheduling Algorithms

PN

Static Scheduling Dynamic Scheduling
(offline, or clock-driven) (online, or priority-driven)

/ I

Static-Priority Scheduling Dynamic-Priority Scheduling
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Scheduling Algorithms

PN

Static Scheduling Dynamic Scheduling
(offline, or clock-driven) (online, or priority-driven)

/ I

Static-Priority Scheduling Dynamic-Priority Scheduling

m Preemptive vs. Non-preemptive

m Optimal vs. Non-optimal
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For a job J;:
m Lateness L;: delay of job completion with respect to its deadline.

Lj=fj—d
m Tardiness E;: the time that a job stays active after its deadline.

£ = max{0, L;}

-—

m_laxity (or Slack Time)(Xj): The maximum time that a job can be delayed
and still meet its deadline.
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Given a set J of n jobs, common metrics to minimize are

m Average response time:

Z ﬂ—ajz—: ‘L"

el

m Makespan (total completion
time):

max 15 — min a;
Ji€l Jiel

m Total weighted response time:

> WXt - 3))

JJ'EJ

: Ve
m Maximum latendy:

Lnax = ng]((fj — dJ)

m Number of late jobs:

Nlate — Z miSS(Jj)7

Ji€l

where miss(J;) = 0 if
fi < d;, and miss(J;) =1
otherwise.
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m Hard Real-Time Systems
» If any hard deadline is ever missed, then the system is incorrect

» The tardiness for any job must be 0
» Examples: Nuclear power plant control, flight control

m Soft Real-Time Systems
» Deadline misses are undesired but do not have catastrophic

consequences
» Possible goals:
* minimize the number of tardy jobs, minimize the maximum lateness,

etc.
» Examples: Telephone switches, multimedia applications
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m At any moment, the system executes the job with the shortest
remaining time among the jobs in the ready queue.

Il b | | ol Js
2] 028 [10]15
CGl5[2]6|3]|a
d 6|8 |20]14] 22
G =3
J
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m At any moment, the system executes the job with the shortest
remaining time among the jobs in the ready queue.

k| B da] I
ai | 0] 2] 8 [10]15
C|5|2|6]|3]4
di | 6| 8|20 1422

Task Models and Scheduling

Exercise

What is the average
response time of the
above schedule?
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m At any moment, the system executes the job with the earliest absolute
deadline among the jobs in the ready queue.
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m At any moment, the system executes the job with the earliest absolute
deadline among the jobs in the ready queue.
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Exercise

What is the average
response time of the
above schedule?
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m When jobs (usually with the same computation requirement) are
released recurrently, these jobs can be modeled by a recurrent task

m Periodic Task 7;:

» A job is released exactly and periodically by a period T;

» A phase ¢; indicates when the first job is released

» A relative deadline D; for each job from task 7;

» (¢i, G;, T;, D;) is the specification of periodic task 7;, where C; is the
worst-case execution time.
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m When jobs (usually with the same computation requirement) are
released recurrently, these jobs can be modeled by a recurrent task

m Periodic Task 7;:

» A job is released exactly and periodically by a period T;

» A phase ¢; indicates when the first job is released

» A relative deadline D; for each job from task 7;

» (¢i, G;, T;, D;) is the specification of periodic task 7;, where C; is the
worst-case execution time.

m Sporadic Task 7;:

» T; is the minimal time between any two consecutive job releases

» A relative deadline D; for each job from task 7;

» (G, T;, D;) is the specification of sporadic task 7;, where C; is the
worst-case execution time.
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m When jobs (usually with the same computation requirement) are
released recurrently, these jobs can be modeled by a recurrent task

m Periodic Task 7;:

» A job is released exactly and periodically by a period T;

» A phase ¢; indicates when the first job is released

» A relative deadline D; for each job from task 7;

» (¢i, G;, T;, D;) is the specification of periodic task 7;, where C; is the
worst-case execution time.

m Sporadic Task 7;:

» T; is the minimal time between any two consecutive job releases

» A relative deadline D; for each job from task 7;

» (G, T;, D;) is the specification of sporadic task 7;, where C; is the
worst-case execution time.

m Aperiodic Task: Identical jobs released arbitrarily.
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Periodic task: (¢;, G, T;, Di) = (2,2,6,6) T ~l'

release deadline

T J1 I S [ S JlI S L
0 2 4 6 8 10 12 14 1@ 20 2 24 26 28

Sporadic task: (C;, T;, D;) = (2,6,6)

T 1T il 1o |

0 16 18 20 22 24 26 28

\ 2
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Example: Sporadic Control System

Pseudo-code for this system

while (true)

start := get the system tick;

perform analog-to-digital
conversion to get y;

compute control output u;

output v and do digital-to-analog
conversion;

end := get the system tick;
timeToSleep := T — (end — start);

sleep timeToSleep;

end while

Jan Reineke Task Models and Scheduling
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__________________________________

Control System

Yk

Control-law

sensor

> .
computation

plant

1
1
1
1
1
1
D/A :
1
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(The system
being controlled)
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Pseudo-code for this system

set timer to interrupt periodically with

period T;
: Control System 1:
: I
! I
I
I Y Control-law Uk !
d o ! AD > computation > DA :
: A :
. . |
perform analog-to-digital : " YO
. |
conversion to get y; el Mttt it
\]
. plant
compute control output u; ensor e (et L e
being controlled)

output v and do digital-to-analog
conversion;
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For a job J;:
m Lateness L;: delay of job completion with respect to its deadline.

m Tardiness E;: the time that a job stays active after its deadline.
Ej = max{0, L;}

m Laxity (or Slack Time)(Xj): The maximum time that a job can be delayed
and still meet its deadline.

For a task 7;:
. I
m Lateness L;: maximum latenes of jobs released by task 7;

m Tardiness E;: maximum tardiness of jobs released by task T;

m Laxity X;: D; — C;;
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For a task set, we say that the task set is with

| m implicit deadline when the relative deadline D; is equal to the period
T;, i.e., D; = T;, for every task 7;,

m constrained deadline when the relative deadline D; is no more than the
period T;, i.e., D; < T;, for every task 7;, or

m arbitrary deadline when the relative deadline D; could be larger than
the period T; for some task ;.

 —
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The jobs of task 7; are denoted J;1,Ji2,.......
Synchronous system: Each task has a phase of 0.

Asynchronous system: Phases are arbitrary.

Task utilization of tas

O
O
O
m Hyperperiod: Least common multiple (LCM) of T;.
O
O

System utilization
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m A schedule is feasible if all the jobs of all tasks can be completed
according to a set of specified constraints.

m A set of tasks is schedulable if there exists a feasible schedule for the
set of tasks.

m A scheduling algorithm is optimal if it always produces a feasible
schedule if the set of tasks is schedulable.

Jan Reineke Task Models and Scheduling July 9, 2015 23 /35



| . . . e ] SAARLAND g
Graham's Scheduling Algorithm Classification UNIVERSITY %

COMPUTER SCIENCE

m Classification: a|b|c
» a: machine environment
(e.g., uniprocessor, multiprocessor, distributed, ...)
» b: task and resource characteristics
(e.g., preemptive, independent, synchronous, ...)
» ¢: performance metric and objectives
(e.g., Lmax, sum of finish times, ...)

m Examples:

> 1|non-prem|Lmax
> M||Emax
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Theorem )

1lsync|Lmax: Given a set of n independent aperiodic jobs that arrive syn-
chronously (release time is 0), any algorithm that executes tasks in order of
non-decreasing deadlines is optimal with respect to minimizing the maximum

lateness.

Denoted as Earliest-Due-Date (EDD) Algorithm [Jackson, 1955]
- 4

proof

Let o be the schedule for J produced by scheduling algorithm A. We can
transform A to EDD schedule A’ without increasing Lmax. Details are in the

textbook by Buttazzo [Theorem 3.1].
- d
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Theorem

Given a set of n independent aperiodic jobs with arbitrary arrival times, if
the aperiodic task set is schedulable on a single processor then any algorithm
that executes jobs with earliest deadline (among the set of active jobs) is
guaranteed to meet all jobs' deadlines.
- A

m What is the difference between EDD and EDF?

m Several proofs of optimality exist: Liu and Layland (1973), Horn

(1974), and Dertouzos (1974).

m Similar to Jackson Algorithm proof of optimality, but need to account
for preemption.

4
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A good scheduling algorithm should be monotonic

m If a scheduling algorithm derives a feasible schedule, it should also
guarantee the feasibility with

> less execution time of a task/job,
> less number of tasks/jobs, or
» more number of processors/machines.

Just as a processor should not exhibit timing anomalies.
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Single-processor (Eisenbrand and Rothvol, in RTSS 2008)

Fixed-Priority Real-Time Scheduling: Response Time Computation s
N P-hard

Multiprocessor (Graham 1976)

Changing the priority order, increasing the number of processors, reducing
execution times, or weakening precedence constraints can result in a
deadline miss.

Many Cases

Scheduling problems in multiprocessor systems are usually A/ P-hard.

Jan Reineke Task Models and Scheduling July 9, 2015 28 / 35



UNIVERSITY L%
Summary
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m How to characterize jobs:
arrival time aj, computation time C;, absolute/relative deadline d;/D;

m How to characterize schedules:
start time s;, finishing time f;, response time R;
m Performance metrics for schedules:
lateness L;, tardiness E;, laxity X;
m Properties of schedules, sets of jobs, and scheduling algorithms:
» feasibility of schedules
» schedulability of sets of jobs and tasks
» optimality of scheduling algorithms
m Recurrent task models:
periodic, sporadic, aperiodic, synchronous vs asynchronous

m Scheduling algorithms:

> Shortest-Job-First (SJF)
» Earliest-Due-Date (EDD)
» Earliest-Deadline-First (EDF)
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Appendix

Some Examples for Multiprocessor Scheduling
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Anomalies

m Partitioned scheduling (Each task/job is on a processor)

» As most partitioning algorithms are not optimal, a system might
become infeasible with

* Less execution time of a task/job
* Less number of tasks/jobs
* More number of processors/machines

m Global scheduling

» As most priority-assignment algorithms are not optimal, a system
might become infeasible with

* Less execution time of a task/job
* Less number of tasks/jobs
* More number of processors/machines
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Jobs (and tasks) may have to execute in a pre-specified order.

ORCIO10
OO E
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Multiprocessor Anomaly: Case 1

On 3 processors
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\
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VAN
" bk

0 2 4 6 8 10 12 14 16

Reduce the execution
time by 1, and schedule
on 3 processors
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Multiprocessor Anomaly: Case 3
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On 4 processors
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