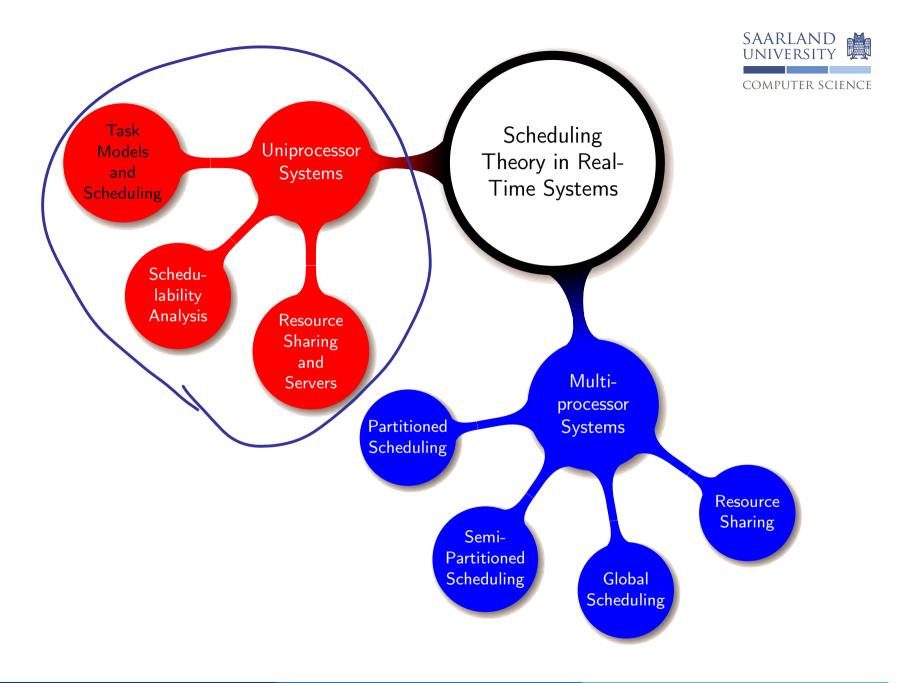


Task Models and Scheduling

Jan Reineke

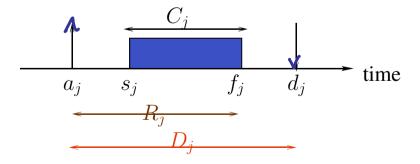
Saarland University

July 9, 2015



Timing parameters of a job J_j

- Arrival time (a_j) or release time (r_j) is the time at which the job becomes ready for execution
- Computation (execution) time (C_j) is the time necessary to the processor for executing the job without interruption (= WCET).
- Absolute deadline (d_i) is the time at which the job should be completed.
- Relative deadline (D_j) is the time length between the arrival time and the absolute deadline.
- Start time (s_i) is the time at which the job starts its execution.
- \blacksquare Finishing time (f_i) is the time at which the job finishes its execution.
- Response time (R_j) is the time length at which the job finishes its execution after its arrival, which is $f_j a_j$.

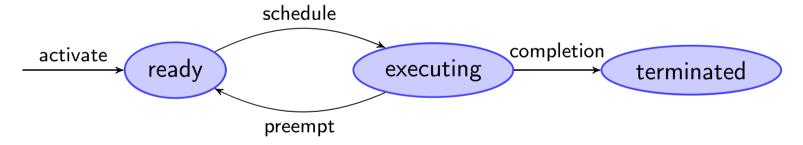


Multi-Tasking (Recap)

- The execution entities (tasks, processes, threads, etc.) are competing with each other for shared resources
- Scheduling policy is needed
 - ▶ When to schedule an entity?
 - Which entity to schedule?

Scheduling Concepts

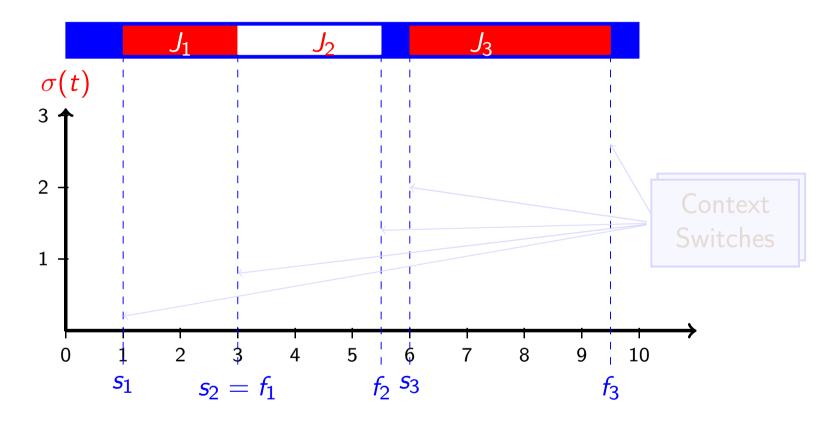
- Scheduling Algorithm: determines the order that jobs execute on the processor
- Jobs (a simplified version) may be in one of three states:



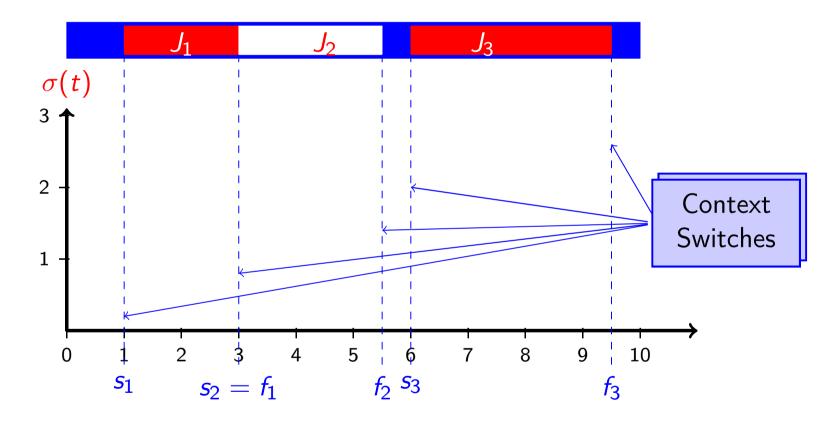
Schedules for a set of jobs $\{J_1, J_2, \dots, J_N\}$

- A schedule is an assignment of jobs to the processor, such that each job is executed until completion.
- A schedule can be defined as an integer step function $\sigma: \mathbb{R} \to \mathbb{N}$, where $\sigma(t) = j$ denotes job J_j is executed at time t, and $\sigma(t) = 0$ denotes the system is idle at time t.
- If $\sigma(t)$ changes its value at some time t, then the processor performs a context switch at time t.
- Non-preemptive scheduling: there is only one interval with $\sigma(t) = j$ for every J_i .
- Preemptive scheduling: there can be more than one interval with $\sigma(t) = j$.

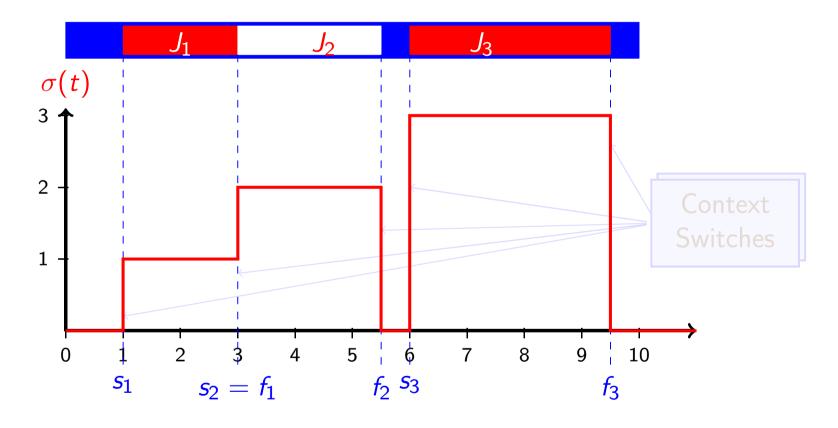
Scheduling Concept: Non-preemptive



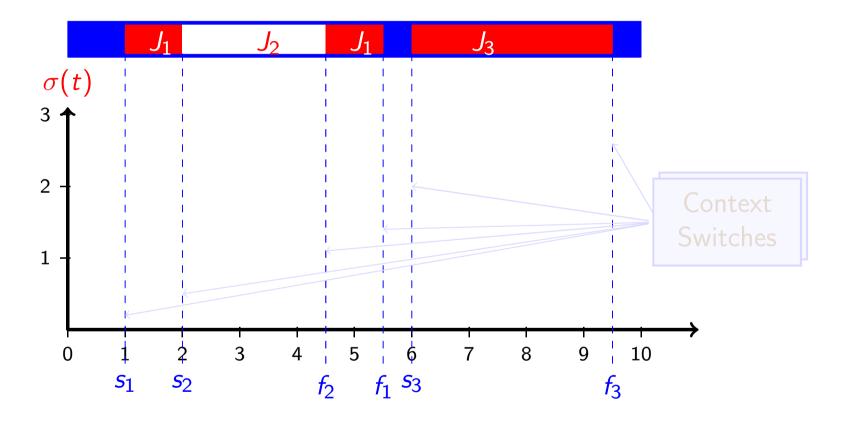
Scheduling Concept: Non-preemptive



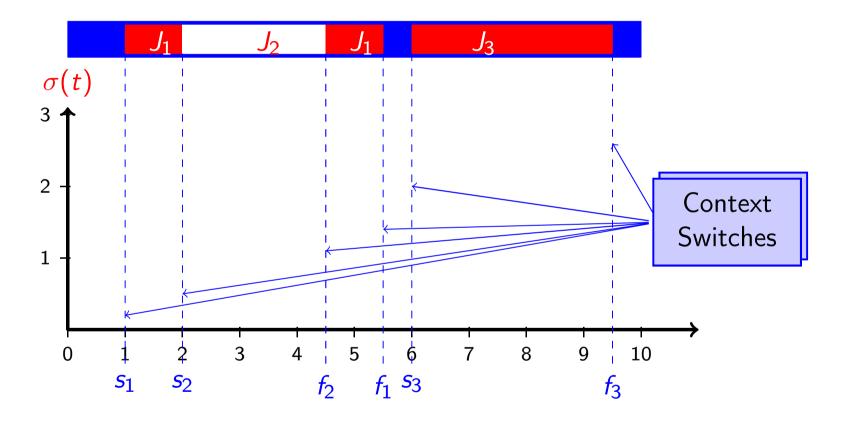
Scheduling Concept: Non-preemptive



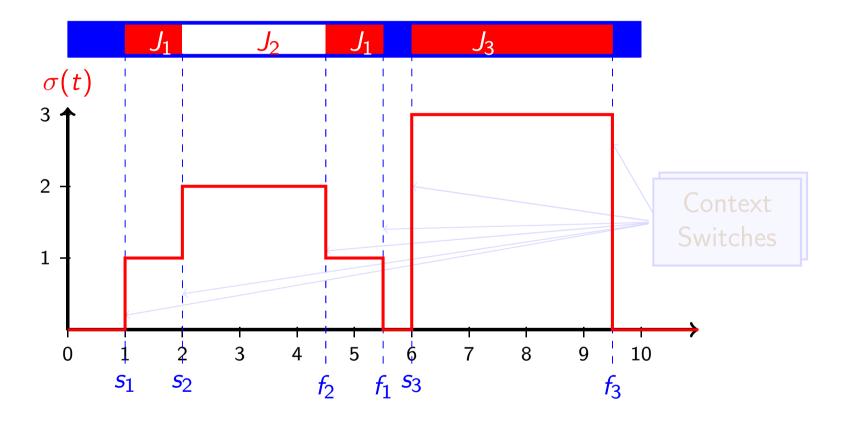
Scheduling Concept: Preemptive



Scheduling Concept: Preemptive



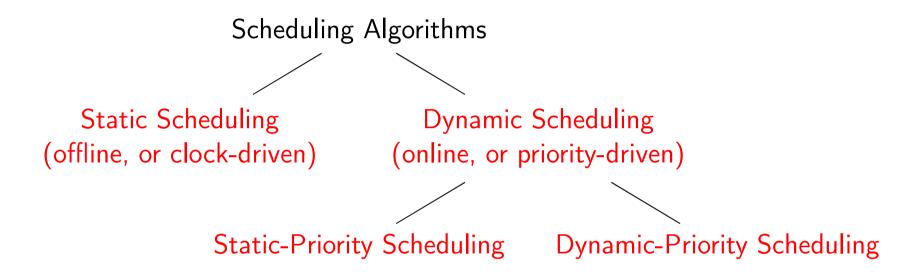
Scheduling Concept: Preemptive



Feasibility of Schedules and Schedulability

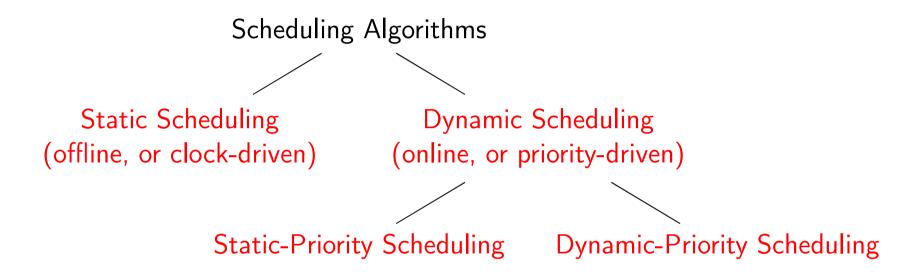
- A schedule is feasible if all jobs can be completed according to a set of specified constraints.
- A set of jobs is schedulable if there exists a feasible schedule for the set of jobs.
- A scheduling algorithm is optimal if it always produces a feasible schedule if the given set of jobs is schedulable.

Scheduling Algorithms



- Preemptive vs. Non-preemptive
- Optimal vs. Non-optimal

Scheduling Algorithms



- Preemptive vs. Non-preemptive
- Optimal vs. Non-optimal

Evaluating a Schedule

For a job J_i :

■ Lateness L_i : delay of job completion with respect to its deadline.

$$L_i = f_i - d_i$$

■ Tardiness E_i : the time that a job stays active after its deadline.

$$E_i = \max\{0, L_i\}$$

Laxity (or Slack Time) (X_j) : The maximum time that a job can be delayed and still meet its deadline.

$$X_j = d_j - a_j - C_j$$

Metrics of Scheduling Algorithms (for Jobs)

Given a set \mathbb{J} of n jobs, common metrics to minimize are

Average response time:

$$\sum_{J_i \in \mathbb{J}} \frac{f_j - a_j}{|\mathbb{J}|} = \mathbb{C}_{\mathbf{J}}$$

Makespan (total completion time):

$$\max_{J_j \in \mathbb{J}} f_j - \min_{J_j \in \mathbb{J}} a_j$$

■ Total weighted response time:

$$\sum_{J_j \in \mathbb{J}} (w_j) (f_j - a_j)$$

$$L_{\mathsf{max}} = \max_{J_j \in \mathbb{J}} (f_j - d_j)$$

Number of late jobs:

$$N_{late} = \sum_{J_i \in \mathbb{J}} miss(J_j),$$

where $miss(J_j) = 0$ if $f_j \le d_j$, and $miss(J_j) = 1$ otherwise.

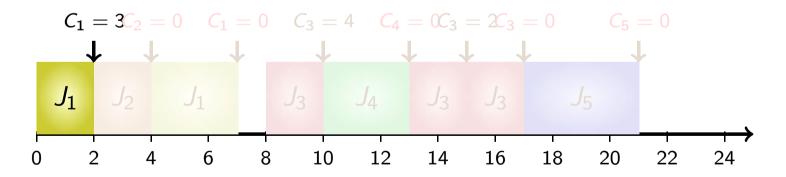
Hard/Soft Real-Time Systems

- Hard Real-Time Systems
 - ▶ If any hard deadline is ever missed, then the system is incorrect
 - ► The tardiness for any job must be 0
 - **Examples**: Nuclear power plant control, flight control
- Soft Real-Time Systems
 - Deadline misses are undesired but do not have catastrophic consequences
 - ► Possible goals:
 - minimize the number of tardy jobs, minimize the maximum lateness, etc.
 - **Examples**: Telephone switches, multimedia applications

■ At any moment, the system executes the job with the *shortest* remaining time among the jobs in the ready queue.

	J_1	J_2	J_3	J_4	J_5
a_j	0	2	8	10	15
C_j	5	2	6	3	4
d_j	6	8	20	14	22

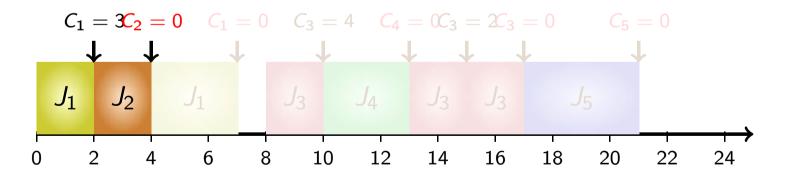
Exercise



■ At any moment, the system executes the job with the *shortest* remaining time among the jobs in the ready queue.

	J_1	J_2	J_3	J_4	J_5
aj	0	2	8	10	15
C_j	5	2	6	3	4
d_j	6	8	20	14	22

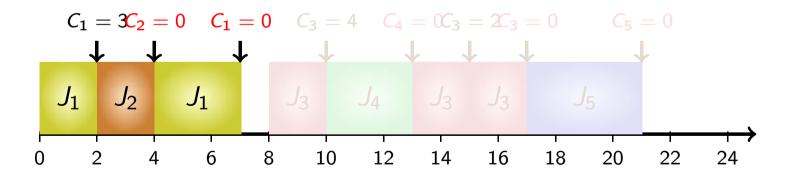
Exercise



■ At any moment, the system executes the job with the *shortest* remaining time among the jobs in the ready queue.

	J_1	J_2	J_3	J_4	J_5
aj	0	2	8	10	15
C_j	5	2	6	3	4
d_j	6	8	20	14	22

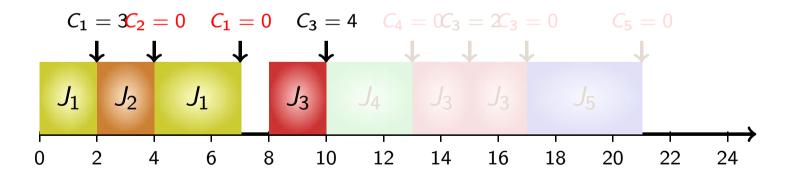
Exercise



■ At any moment, the system executes the job with the *shortest* remaining time among the jobs in the ready queue.

	J_1	J_2	J_3	J_4	J_5
a_j	0	2	8	10	15
C_j	5	2	6	3	4
d_j	6	8	20	14	22

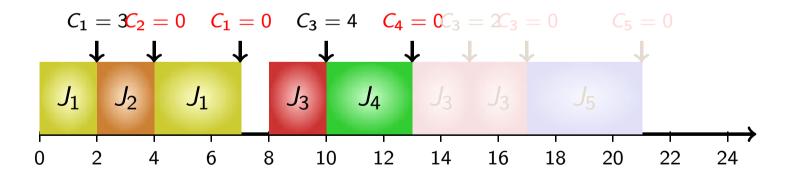
Exercise



■ At any moment, the system executes the job with the *shortest* remaining time among the jobs in the ready queue.

	J_1	J_2	J_3	J_4	J_5
aj	0	2	8	10	15
C_j	5	2	6	3	4
d_j	6	8	20	14	22

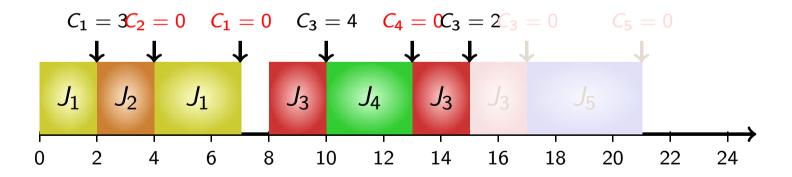
Exercise



■ At any moment, the system executes the job with the *shortest* remaining time among the jobs in the ready queue.

	J_1	J_2	J_3	J_4	J_5
aj	0	2	8	10	15
C_j	5	2	6	3	4
d_j	6	8	20	14	22

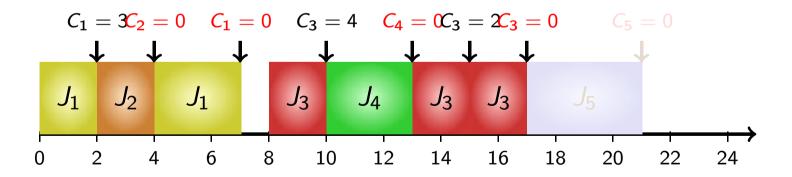
Exercise



■ At any moment, the system executes the job with the *shortest* remaining time among the jobs in the ready queue.

	J_1	J_2	J_3	J_4	J_5
aj	0	2	8	10	15
C_j	5	2	6	3	4
d_j	6	8	20	14	22

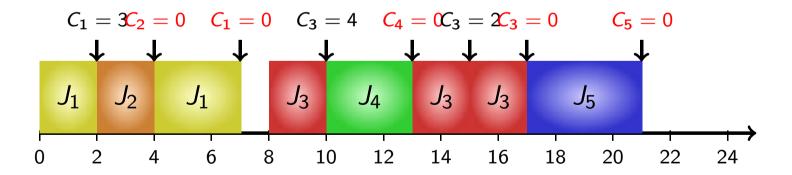
Exercise



■ At any moment, the system executes the job with the *shortest* remaining time among the jobs in the ready queue.

	J_1	J_2	J_3	J_4	J_5
aj	0	2	8	10	15
C_j	5	2	6	3	4
d_j	6	8	20	14	22

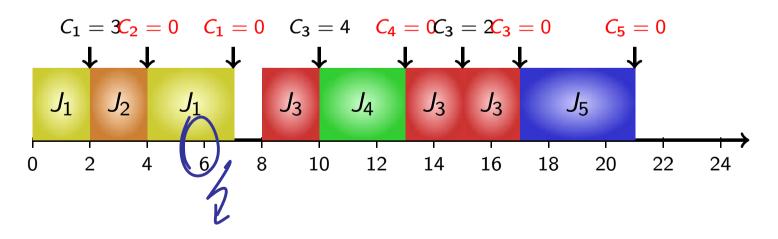
Exercise



■ At any moment, the system executes the job with the *shortest* remaining time among the jobs in the ready queue.

	J_1	J_2	J_3	J_4	J_5
aj	0	2	8	10	15
C_j	5	2	6	3	4
d_j	6	8	20	14	22

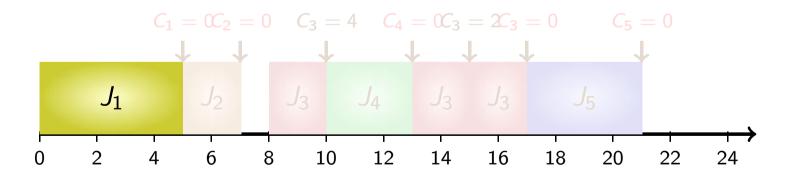
Exercise



■ At any moment, the system executes the job with the *earliest absolute* deadline among the jobs in the ready queue.

	J_1	J_2	J_3	J_4	J_5
aj	0	2	8	10	15
C_j	5	2	6	3	4
d_j	6 <	8	20	14	22

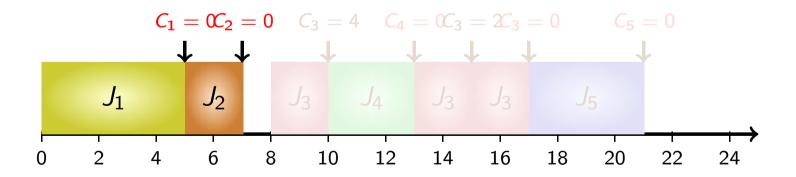
Exercise



■ At any moment, the system executes the job with the *earliest absolute* deadline among the jobs in the ready queue.

	J_1	J_2	J_3	J_4	J_5
aj	0	2	8	10	15
C_j	5	2	6	3	4
d_j	6	8	20	14	22

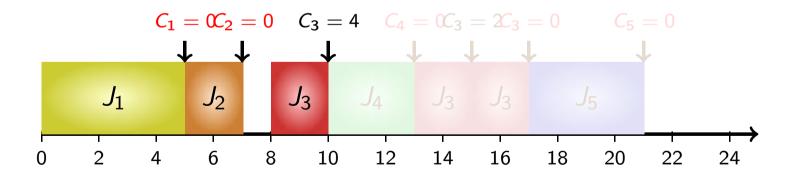
Exercise



■ At any moment, the system executes the job with the *earliest absolute* deadline among the jobs in the ready queue.

	J_1	J_2	J_3	J_4	J_5
aj	0	2	8	10	15
C_j	5	2	6	3	4
d_j	6	8	20	14	22

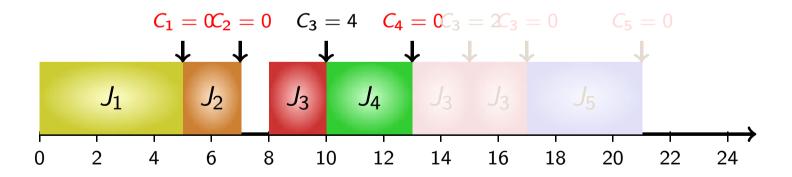
Exercise



■ At any moment, the system executes the job with the *earliest absolute* deadline among the jobs in the ready queue.

	J_1	J_2	J_3	J_4	J_5
aj	0	2	8	10	15
C_j	5	2	6	3	4
d_j	6	8	20	14	22

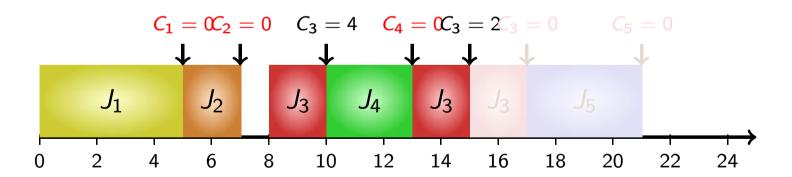
Exercise



■ At any moment, the system executes the job with the *earliest absolute* deadline among the jobs in the ready queue.

	J_1	J_2	J_3	J_4	J_5
aj	0	2	8	10	15
C_j	5	2	6	3	4
d_j	6	8	20	14	22

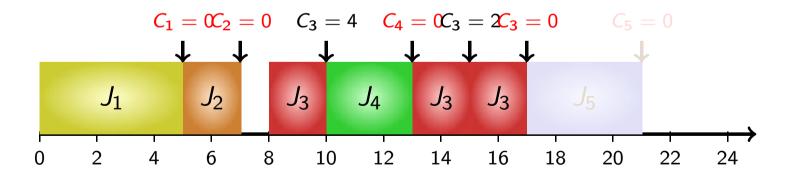
Exercise



■ At any moment, the system executes the job with the *earliest absolute* deadline among the jobs in the ready queue.

	J_1	J_2	J_3	J_4	J_5
a_j	0	2	8	10	15
C_j	5	2	6	3	4
d_j	6	8	20	14	22

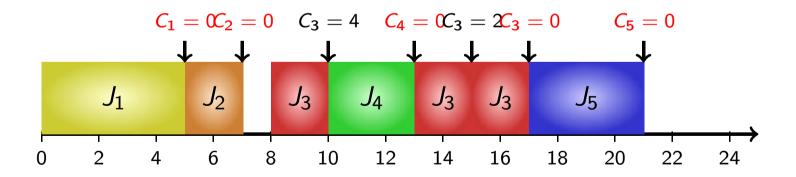
Exercise



■ At any moment, the system executes the job with the *earliest absolute* deadline among the jobs in the ready queue.

	J_1	J_2	J_3	J_4	J_5
aj	0	2	8	10	15
C_j	5	2	6	3	4
d_j	6	8	20	14	22

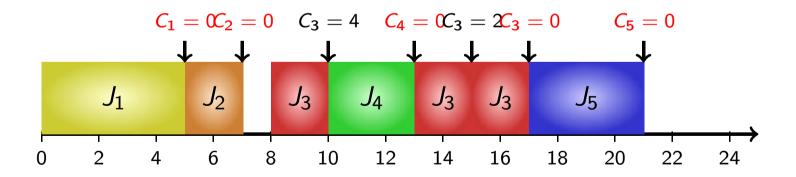
Exercise



■ At any moment, the system executes the job with the *earliest absolute* deadline among the jobs in the ready queue.

	J_1	J_2	J_3	J_4	J_5
aj	0	2	8	10	15
C_j	5	2	6	3	4
d_j	6	8	20	14	22

Exercise



Recurrent Task Models

- When jobs (usually with the same computation requirement) are released recurrently, these jobs can be modeled by a recurrent task
- Periodic Task τ_i :
 - \triangleright A job is released exactly and periodically by a period T_i
 - ightharpoonup A phase ϕ_i indicates when the first job is released
 - ▶ A relative deadline D_i for each job from task τ_i
 - (ϕ_i, C_i, T_i, D_i) is the specification of periodic task τ_i , where C_i is the worst-case execution time.
- Sporadic Task τ_i :
 - $ightharpoonup T_i$ is the minimal time between any two consecutive job releases
 - A relative deadline D_i for each job from task τ_i
 - (C_i, T_i, D_i) is the specification of sporadic task τ_i , where C_i is the worst-case execution time.
- Aperiodic Task: Identical jobs released arbitrarily.

Recurrent Task Models

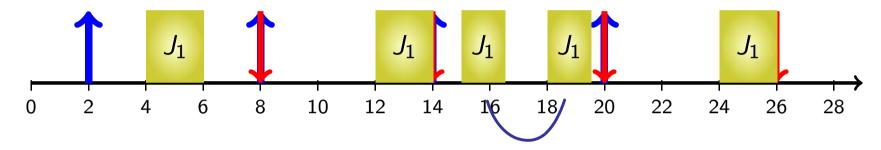
- When jobs (usually with the same computation requirement) are released recurrently, these jobs can be modeled by a recurrent task
- Periodic Task τ_i :
 - \triangleright A job is released exactly and periodically by a period T_i
 - ightharpoonup A phase ϕ_i indicates when the first job is released
 - ▶ A relative deadline D_i for each job from task τ_i
 - (ϕ_i, C_i, T_i, D_i) is the specification of periodic task τ_i , where C_i is the worst-case execution time.
- Sporadic Task τ_i :
 - $ightharpoonup T_i$ is the minimal time between any two consecutive job releases
 - ▶ A relative deadline D_i for each job from task τ_i
 - (C_i, T_i, D_i) is the specification of sporadic task τ_i , where C_i is the worst-case execution time.
- Aperiodic Task: Identical jobs released arbitrarily.

Recurrent Task Models

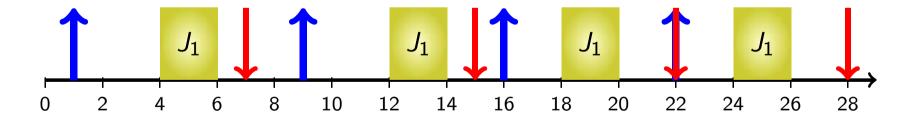
- When jobs (usually with the same computation requirement) are released recurrently, these jobs can be modeled by a recurrent task
- Periodic Task τ_i :
 - \triangleright A job is released exactly and periodically by a period T_i
 - \blacktriangleright A phase ϕ_i indicates when the first job is released
 - A relative deadline D_i for each job from task τ_i
 - (ϕ_i, C_i, T_i, D_i) is the specification of periodic task τ_i , where C_i is the worst-case execution time.
- Sporadic Task τ_i :
 - $ightharpoonup T_i$ is the minimal time between any two consecutive job releases
 - ▶ A relative deadline D_i for each job from task τ_i
 - ▶ (C_i, T_i, D_i) is the specification of sporadic task τ_i , where C_i is the worst-case execution time.
- Aperiodic Task: Identical jobs released arbitrarily.

Examples of Recurrent Task Models

Periodic task: $(\phi_i, C_i, T_i, D_i) = (2, 2, 6, 6)$



Sporadic task: $(C_i, T_i, D_i) = (2, 6, 6)$



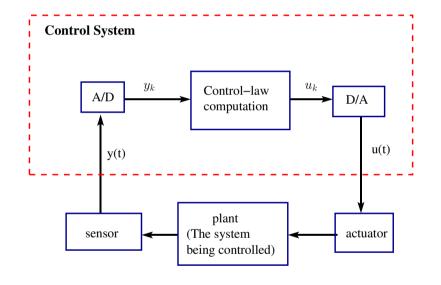
Example: Sporadic Control System

Pseudo-code for this system

while (true)

- start := get the system tick;
- perform analog-to-digital conversion to get y;
- \blacksquare compute control output u;
- output u and do digital-to-analog conversion;
- end := get the system tick;
- \blacksquare timeToSleep := T (end start);
- sleep timeToSleep;

end while



Example: Periodic Control System

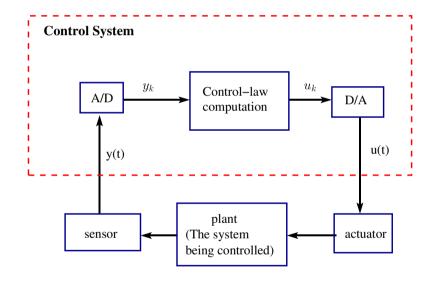
Pseudo-code for this system

set timer to interrupt periodically with period T;

at each timer interrupt do

- perform analog-to-digital conversion to get y;
- \blacksquare compute control output u;
- output u and do digital-to-analog conversion;

od



Evaluating a Schedule for Tasks

For a job J_i :

■ Lateness L_i : delay of job completion with respect to its deadline.

$$L_j = f_j - d_j$$

■ Tardiness E_i : the time that a job stays active after its deadline.

$$E_j = \max\{0, L_j\}$$

■ Laxity (or Slack Time)(X_j): The maximum time that a job can be delayed and still meet its deadline.

$$X_j = d_j - a_j - C_j$$

For a task τ_i :

- Lateness L_i : maximum lateney of jobs released by task τ_i
- Tardiness E_i : maximum tardiness of jobs released by task τ_i
- Laxity X_i : $D_i C_i$;

Relative Deadline vs Period

For a task set, we say that the task set is with

- implicit deadline when the relative deadline D_i is equal to the period T_i , i.e., $D_i = T_i$, for every task τ_i ,
- **constrained deadline** when the relative deadline D_i is no more than the period T_i , i.e., $D_i \leq T_i$, for every task τ_i , or
- **arbitrary deadline** when the relative deadline D_i could be larger than the period T_i for some task τ_i .

Some Definitions for Periodic Tasks

- The jobs of task τ_i are denoted $J_{i,1}, J_{i,2}, \ldots$
- Synchronous system: Each task has a phase of 0.
- Asynchronous system: Phases are arbitrary.
- Hyperperiod: Least common multiple (LCM) of T_i .
- Task utilization of task τ_i : $u_i = \frac{C_i}{T_i}$.

 System utilization $\sum_{\tau_i} u_i$.

Feasibility and Schedulability for Recurrent Tasks

- A schedule is feasible if all the jobs of all tasks can be completed according to a set of specified constraints.
- A set of tasks is schedulable if there exists a feasible schedule for the set of tasks.
- A scheduling algorithm is optimal if it always produces a feasible schedule if the set of tasks is schedulable.

Graham's Scheduling Algorithm Classification

- Classification: a|b|c
 - a: machine environment(e.g., uniprocessor, multiprocessor, distributed, . . .)
 - ▶ b: task and resource characteristics (e.g., preemptive, independent, synchronous, ...)
 - c: performance metric and objectives (e.g., L_{max} , sum of finish times, ...)
- Examples:
 - ▶ $1 | \text{non-prem} | L_{\text{max}} |$
 - $ightharpoonup M||E_{\max}|$

Earliest-Due-Date Algorithm

Theorem

 $1|\text{sync}|L_{\text{max}}$: Given a set of n independent aperiodic jobs that arrive synchronously (release time is 0), any algorithm that executes tasks in order of non-decreasing deadlines is optimal with respect to minimizing the maximum lateness.

Denoted as Earliest-Due-Date (EDD) Algorithm [Jackson, 1955]

Proof

Let σ be the schedule for J produced by scheduling algorithm A. We can transform A to EDD schedule A' without increasing L_{max} . Details are in the textbook by Buttazzo [Theorem 3.1].

Optimality of EDF

Theorem

Given a set of n independent aperiodic jobs with arbitrary arrival times, if the aperiodic task set is schedulable on a single processor then any algorithm that executes jobs with earliest deadline (among the set of active jobs) is guaranteed to meet all jobs' deadlines.

- What is the difference between EDD and EDF?
- Several proofs of optimality exist: Liu and Layland (1973), Horn (1974), and Dertouzos (1974).
- Similar to Jackson Algorithm proof of optimality, but need to account for preemption.

Monotonicity of Scheduling Algorithms

A good scheduling algorithm should be monotonic

- If a scheduling algorithm derives a feasible schedule, it should also guarantee the feasibility with
 - less execution time of a task/job,
 - less number of tasks/jobs, or
 - more number of processors/machines.

Just as a processor should not exhibit timing anomalies.

Why is Real-Time Scheduling Hard?

Single-processor (Eisenbrand and Rothvoß, in RTSS 2008)

Fixed-Priority Real-Time Scheduling: Response Time Computation Is $\mathcal{N}P$ -hard

Multiprocessor (Graham 1976)

Changing the priority order, increasing the number of processors, reducing execution times, or weakening precedence constraints can result in a deadline miss.

Many Cases

Scheduling problems in multiprocessor systems are usually $\mathcal{N}P$ -hard.

Summary

- How to characterize jobs: arrival time a_j , computation time C_j , absolute/relative deadline d_j/D_j
- How to characterize schedules: start time s_j , finishing time f_j , response time R_j
- Performance metrics for schedules: lateness L_j , tardiness E_j , laxity X_j
- Properties of schedules, sets of jobs, and scheduling algorithms:
 - feasibility of schedules
 - schedulability of sets of jobs and tasks
 - optimality of scheduling algorithms
- Recurrent task models: periodic, sporadic, aperiodic, synchronous vs asynchronous
- Scheduling algorithms:
 - Shortest-Job-First (SJF)
 - Earliest-Due-Date (EDD)
 - Earliest-Deadline-First (EDF)

Appendix

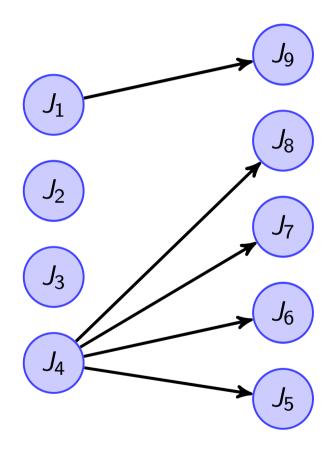
Some Examples for Multiprocessor Scheduling

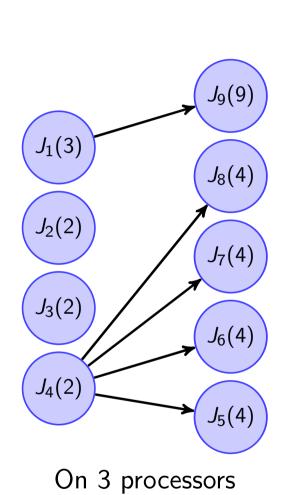
Why is Real-Time Scheduling Hard? Multiprocessor UNIVERSI Anomalies

- Partitioned scheduling (Each task/job is on a processor)
 - ► As most partitioning algorithms are not optimal, a system might become infeasible with
 - ★ Less execution time of a task/job
 - ★ Less number of tasks/jobs
 - ★ More number of processors/machines
- Global scheduling
 - As most priority-assignment algorithms are not optimal, a system might become infeasible with
 - ★ Less execution time of a task/job
 - ★ Less number of tasks/jobs
 - ★ More number of processors/machines

Precedence Constraints

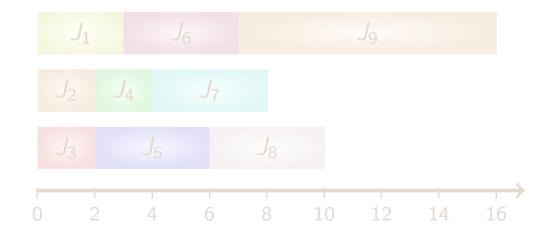
Jobs (and tasks) may have to execute in a pre-specified order.

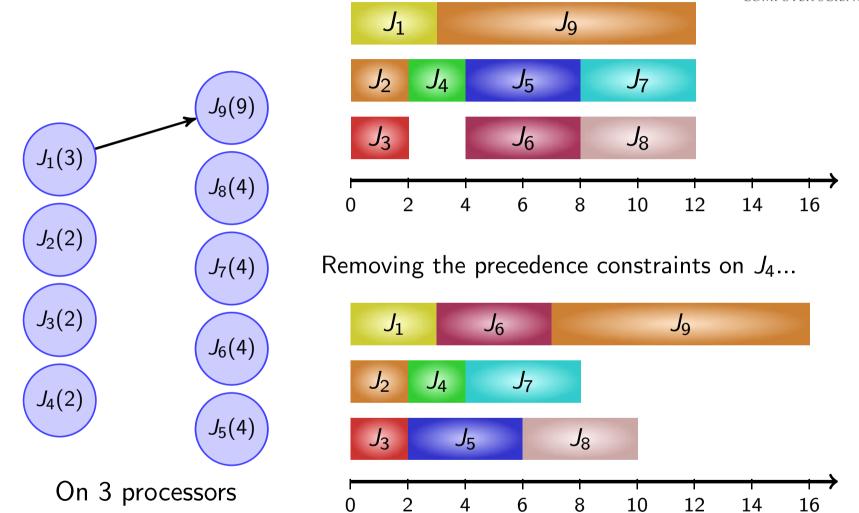


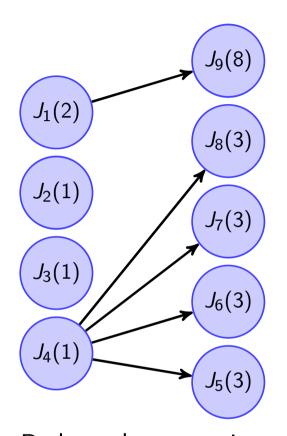


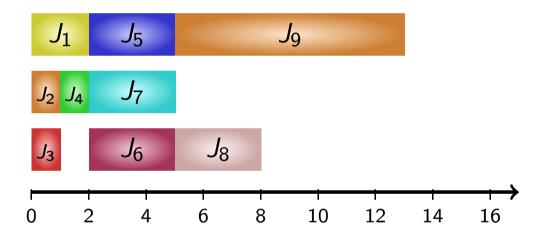
 J_1 J_9 J_2 J_4 J_5 J_7 J_3 J_6 J_8 J_8 J_6 J_8 J_8 J_6 J_8 J_8 J_9 J_9

Removing the precedence constraints on J_4 ...









Reduce the execution time by 1, and schedule on 3 processors

