UNIVERSITY L
— —
COMPUTER SCIENCE

Task Models and Scheduling

Jan Reineke

Saarland University

July 9, 2015

SAARLAND
UNIVERSITY
I B

COMPUTER SCIENCE

Jan Reineke Task Models and Scheduling

SAARLAND
UNIVERSITY
I —

COMPUTER SCIENCE

Scheduling
Theory in Real-
Time Systems

Uniprocessor
Systems

Schedu-
lability
Analysis Resource
Sharing
and
Servers Multi-
processor
Partitioned Systems
Scheduling

Resource

Sharing
Semi-

Partitioned

Scheduling Global
Scheduling

July 9, 2015 2 /35

Jan Reineke Task Models and Scheduling

Timing parameters of a job J; UNIVERSITY B

SAARLAND g

I —
COMPUTER SCIENCE

Arrival time (aj) or release time (rj) is the time at which the job becomes
ready for execution

Computation (execution) time (C;) is the time necessary to the processor for
executing the job without interruption (= WCET).

Absolute deadline (d;) is the time at which the job should be completed.

Relative deadline (D;) is the time length between the arrival time and the
absolute deadline.

Start time (s;j) is the time at which the job starts its execution.
Finishing time (f;) is the time at which the job finishes its execution.

Response time (R;) is the time length at which the job finishes its execution
after its arrival, which is f; — a;.

time

|
aj Sj i d;

D
_l_bj

D,

J

Jan Reineke Task Models and Scheduling July 9, 2015 3/35

SAARLAND g

Multi-Tasking (Recap) ONIVERSITY §

COMPUTER SCIENCE

m The execution entities (tasks, processes, threads, etc.) are competing
with each other for shared resources

m Scheduling policy is needed

» When to schedule an entity?
» Which entity to schedule?

Jan Reineke Task Models and Scheduling July 9, 2015 4 /35

SAARLAND ¢
UNIVERSITY L

Scheduling Concepts UNIVERSIT

COMPUTER SCIENCE

m Scheduling Algorithm: determines the order that jobs execute on
the processor

m Jobs (a simplified version) may be in one of three states:

_ completion _
executing terminated

schedule

activate

>
>

preempt

Jan Reineke Task Models and Scheduling July 9, 2015 5/ 35

SAARLAND pfilla

Schedules for a set of jobs {1, Jo, ..., In} N Ty

I —
COMPUTER SCIENCE

m A schedule is an assignment of jobs to the processor, such that each
job is executed until completion.

m A schedule can be defined as an integer step function o @—> N,
where o(t) = j denotes job J; is executed at time t, and o(t) =0
denotes the system is idle at time t.

m If o(t) changes its value at some time t, then the processor performs
a context switch at time t.

m Non-preemptive scheduling: there is only one interval with o(t) =
for every J;.

m Preemptive scheduling: there can be more than one interval with
o(t) = .

Jan Reineke Task Models and Scheduling July 9, 2015 6 /35

' : SAARLAND g
Scheduling Concept: Non-preemptive vy B

COMPUTER SCIENCE

Schedule: ¢ : R — N function of processor time to jobs

o(t) | : o :
34 l D I
2 A l l D I
14 | - |
0 1 2 3 4 5 , 6 7 8 9 , 10
S1 so="f fr 33 f3

Jan Reineke Task Models and Scheduling July 9, 2015 7/ 35

' : SAARLAND g
Scheduling Concept: Non-preemptive vy B

COMPUTER SCIENCE

Schedule: ¢ : R — N function of processor time to jobs

N =

o(t) | : o :
34 : o :
2 A : : o :\ '
| | Lo | ConteXt
1 | | T Switches
0

Jan Reineke Task Models and Scheduling July 9, 2015 7/ 35

' - SAARLAND gl
Scheduling Concept: Non-preemptive vy B

COMPUTER SCIENCE

Schedule: ¢ : R — N function of processor time to jobs

L
o ()

3 4

L 2

Jan Reineke Task Models and Scheduling July 9, 2015 7/ 35

' ; SAARLAND g
Scheduling Concept: Preemptive ey

COMPUTER SCIENCE

Schedule: ¢ : R — N function of processor time to jobs

., I

o(t) | : | o :
34 l I D I
2 A l l I D I
1 - l l ! — I
0 1 p) 3 4 . 5 |, 6 7 8 9 , 10
S1 S2 f> f153 f3

Jan Reineke Task Models and Scheduling July 9, 2015 8/ 35

' ; SAARLAND g
Scheduling Concept: Preemptive ey

COMPUTER SCIENCE

Schedule: ¢ : R — N function of processor time to jobs

., I

o(t) | : | o :
34 I I D I
2 l l l o NI
| | | Lo |\ ConteXt
1 : : | N Switches
0 2

Jan Reineke Task Models and Scheduling July 9, 2015 8/ 35

' : SAARLAND gl
Scheduling Concept: Preemptive UnversiTy B

COMPUTER SCIENCE

Schedule: ¢ : R — N function of processor time to jobs

L2 J1 J3
o(t)

3AI		
2_		
1_		
	.	
o 1 2 3 4,5 .6 7 8 9,10

Jan Reineke Task Models and Scheduling July 9, 2015 8/ 35

Feasibility of Schedules and Schedulability oniversiTy B

COMPUTER SCIENCE

m A schedule is feasible if all jobs can be completed according to a set of
specified constraints.

m A set of jobs is schedulable if there exists a feasible schedule for the
set of jobs.

m A scheduling algorithm is optimal if it always produces a feasible
schedule if the given set of jobs is schedulable.

Jan Reineke Task Models and Scheduling July 9, 2015 9/ 35

SAARLAND ' pfiflq
UNIVERSITY Uy

Scheduling Algorithms UNIVERSIT

COMPUTER SCIENCE

Scheduling Algorithms

PN

Static Scheduling Dynamic Scheduling
(offline, or clock-driven) (online, or priority-driven)

/ I

Static-Priority Scheduling Dynamic-Priority Scheduling

Jan Reineke Task Models and Scheduling

SAARLAND piilg
UNIVERSITY Uy

Scheduling Algorithms UNIVERSIT

COMPUTER SCIENCE

Scheduling Algorithms

PN

Static Scheduling Dynamic Scheduling
(offline, or clock-driven) (online, or priority-driven)

/ I

Static-Priority Scheduling Dynamic-Priority Scheduling

m Preemptive vs. Non-preemptive

m Optimal vs. Non-optimal

Jan Reineke Task Models and Scheduling

UNIVERSITY Ul

Evaluating a Schedule UNIVERSTT

COMPUTER SCIENCE

For a job J;:
m Lateness L;: delay of job completion with respect to its deadline.

Lj=fj—d
m Tardiness E;: the time that a job stays active after its deadline.

£ = max{0, L;}

-—

m_laxity (or Slack Time)(Xj): The maximum time that a job can be delayed
and still meet its deadline.

Jan Reineke Task Models and Scheduling July 9, 2015 11 / 35

Metrics of Scheduling Algorithms (for Jobs) UNIVERSLT

SAARLAND pgifla
UNIVERSITY Ul

COMPUTER SCIENCE

Given a set J of n jobs, common metrics to minimize are

m Average response time:

Z ﬂ—ajz—: ‘L"

el

m Makespan (total completion
time):

max 15 — min a;
Ji€l Jiel

m Total weighted response time:

> WXt - 3))

JJ'EJ

: Ve
m Maximum latendy:

Lnax = ng]((fj — dJ)

m Number of late jobs:

Nlate — Z miSS(Jj)7

Ji€l

where miss(J;) = 0 if
fi < d;, and miss(J;) =1
otherwise.

Jan Reineke Task Models and Scheduling July 9, 2015 12 / 35

SAARLAND

Hard /Soft Real-Time Systems UNIVERSITY]

COMPUTER SCIENCE

m Hard Real-Time Systems
» If any hard deadline is ever missed, then the system is incorrect

» The tardiness for any job must be 0
» Examples: Nuclear power plant control, flight control

m Soft Real-Time Systems
» Deadline misses are undesired but do not have catastrophic

consequences
» Possible goals:
* minimize the number of tardy jobs, minimize the maximum lateness,

etc.
» Examples: Telephone switches, multimedia applications

Jan Reineke Task Models and Scheduling July 9, 2015 13 / 35

An Example: Shortest-Job-First (SJF) NSy B

COMPUTER SCIENCE

m At any moment, the system executes the job with the shortest
remaining time among the jobs in the ready queue.

Il b | | ol Js
2] 028 [10]15
CGl5[2]6|3]|a
d 6|8 |20]14] 22
G =3
J
J1

Jan Reineke Task Models and Scheduling July 9, 2015 14 / 35

An Example: Shortest-Job-First (SJF) NSy B

COMPUTER SCIENCE

m At any moment, the system executes the job with the shortest
remaining time among the jobs in the ready queue.

Il b | | ol Js
2| 0] 2|8 [10]15
CGl5[2]6|3]|a
d 6|8 |20]14] 22
Ci=3=0
J1

Jan Reineke Task Models and Scheduling July 9, 2015 14 / 35

An Example: Shortest-Job-First (SJF) NSy B

COMPUTER SCIENCE

m At any moment, the system executes the job with the shortest
remaining time among the jobs in the ready queue.

Al kB] I
ai | 0| 2|8 |10]15
C|5|2|6]|3]4
di | 6| 8|20 14|22

Jan Reineke Task Models and Scheduling July 9, 2015 14 / 35

An Example: Shortest-Job-First (SJF) NSy B

COMPUTER SCIENCE

m At any moment, the system executes the job with the shortest
remaining time among the jobs in the ready queue.

Al kB] I
ai | 0| 2|8 |10]15
C|5|2|6]|3]4
di | 6| 8|20 14|22

12 14 16 18 20 22 24

Jan Reineke Task Models and Scheduling July 9, 2015 14 / 35

An Example: Shortest-Job-First (SJF) NSy B

COMPUTER SCIENCE

m At any moment, the system executes the job with the shortest
remaining time among the jobs in the ready queue.

Al kB] I
ai | 0] 2] 8 [10]15
C|5|2|6]|3]4
di | 6| 8|20 14|22

CGi=3=0 G =0 G=4 (CG=C

{

AN 0
8 10 12 14

\
| ! ! 1 1 L4

16 18 20 22 24

0 2 4 6

Jan Reineke Task Models and Scheduling July 9, 2015 14 / 35

An Example: Shortest-Job-First (SJF) Ny

COMPUTER SCIENCE

m At any moment, the system executes the job with the shortest
remaining time among the jobs in the ready queue.

k| B da] I
ai | 0] 2] 8 [10]15
C|5|2|6]|3]4
di | 6| 8|20 1422

CGi=3=0 CGG=0 G=4 (C=03=2
4

LI) W
8 10 12 14

J1

\
| ! ! 1 1 L4

16 18 20 22 24

6

Jan Reineke Task Models and Scheduling

An Example: Shortest-Job-First (SJF) Ny

COMPUTER SCIENCE

m At any moment, the system executes the job with the shortest
remaining time among the jobs in the ready queue.

k| B da] I
ai | 0| 2] 8]10]15
C|5|2|6]|3]4
di | 6| 8|20 1422

Jan Reineke Task Models and Scheduling

An Example: Shortest-Job-First (SJF) Ny

COMPUTER SCIENCE

m At any moment, the system executes the job with the shortest
remaining time among the jobs in the ready queue.

k| B da] I
ai | 0281015
C|5|2|6]|3]4
di | 6| 8|20 1422

Jan Reineke Task Models and Scheduling

An Example: Shortest-Job-First (SJF)

SAARLAND gfifls
UNIVERSITY B
|]

COMPUTER SCIENCE

m At any moment, the system executes the job with the shortest
remaining time among the jobs in the ready queue.

k| B da] I
ai | 0] 2] 8 [10]15
C|5|2|6]|3]4
di | 6| 8|20 1422

Task Models and Scheduling

Exercise

What is the average
response time of the
above schedule?

Jan Reineke

An Example: Earliest-Deadline-First (EDF) iniversiry B

COMPUTER SCIENCE

m At any moment, the system executes the job with the earliest absolute
deadline among the jobs in the ready queue.

Il b | | ol Js

2] 028 [10]15

Cl5[2]6]3]4

d | 648 |20]14] 2
J1

Jan Reineke Task Models and Scheduling July 9, 2015 15 / 35

An Example: Earliest-Deadline-First (EDF) iniversiry B

COMPUTER SCIENCE

m At any moment, the system executes the job with the earliest absolute
deadline among the jobs in the ready queue.

Il b | | ol Js
2| 0] 2|8 [10]15
CGl5[2]6|3]|a
d 6|8 |20]14] 22
Ci=0Co =0
J1

Jan Reineke Task Models and Scheduling July 9, 2015 15 / 35

An Example: Earliest-Deadline-First (EDF) iniversiry B

COMPUTER SCIENCE

m At any moment, the system executes the job with the earliest absolute
deadline among the jobs in the ready queue.

Al kB] I
ai | 0| 2|8 |10]15
C|5|2|6]|3]4
di | 6| 8|20 14|22

Ci=0=0 (G=4

s b B
4 6 8 10

0 2

L 4

12 14 16 18 20 22 24

Jan Reineke Task Models and Scheduling July 9, 2015 15 / 35

An Example: Earliest-Deadline-First (EDF) iniversiry B

COMPUTER SCIENCE

m At any moment, the system executes the job with the earliest absolute
deadline among the jobs in the ready queue.

Al kB] I
ai | 0| 2|8 |10]15
C|5|2|6]|3]4
di | 6| 8|20 14|22

CG1=0=0 G=4 (G-=C

4 el B
4 6 8 10 12 14

0 2

\
| ! ! 1 1 L4

16 18 20 22 24

Jan Reineke Task Models and Scheduling July 9, 2015 15 / 35

An Example: Earliest-Deadline-First (EDF) oivirsiTy B

COMPUTER SCIENCE

m At any moment, the system executes the job with the earliest absolute
deadline among the jobs in the ready queue.

k| B da] I
ai | 0] 2] 8 [10]15
C|5|2|6]|3]4
di | 6| 8|20 1422

CGi=0=0 G=4 G=0C=2

i (b Rl e B
i I A 6 8 10 12 14

0 2

\
| ! ! 1 1 L4

16 18 20 22 24

Jan Reineke Task Models and Scheduling

An Example: Earliest-Deadline-First (EDF) Ty B

COMPUTER SCIENCE

m At any moment, the system executes the job with the earliest absolute
deadline among the jobs in the ready queue.

k| B da] I
ai | 0] 2] 8 [10]15
C|5|2|6]|3]4
di | 6| 8|20 1422

CGi=0=0 G=4 G=0CG=23=0

no (e Pl Balls
I I A 6 8 10 12 14 16

0 2

\
! ! 1 1 L4

18 20 22 24

Jan Reineke Task Models and Scheduling

An Example: Earliest-Deadline-First (EDF) Ty B

COMPUTER SCIENCE

m At any moment, the system executes the job with the earliest absolute
deadline among the jobs in the ready queue.

k| B da] I
ai | 0| 2] 8 [10]15
C|5|2|6]|3]4
di | 6| 8|20 1422

CGi=0=0 G=4 G=0CG=23=0 G =0

Ao bl sl Bl
I I A 6 8 10 12 14 16

0 2

J5.

\
! 1 L4

18 20 22 24

Jan Reineke Task Models and Scheduling

An Example: Earliest-Deadline-First (EDF) UV

UNIVERSITY H&

COMPUTER SCIENCE

m At any moment, the system executes the job with the earliest absolute
deadline among the jobs in the ready queue.

h| b ||| I
ai | 0] 28]10]15
C|5]2|6]|3]4
d| 6|8]20]14 |22
Ao (e P Bl
8 é A 6 8 10 12 14 16

Task Models and Scheduling

Exercise

What is the average
response time of the
above schedule?

CGi=0=0 G=4 G=0CG=23=0 G =0

J5

\
! 1 L4

18 20 22 24

Jan Reineke

SAARLAND gitla
Recurrent Task Models vy B

COMPUTER SCIENCE

m When jobs (usually with the same computation requirement) are
released recurrently, these jobs can be modeled by a recurrent task

m Periodic Task 7;:

» A job is released exactly and periodically by a period T;

» A phase ¢; indicates when the first job is released

» A relative deadline D; for each job from task 7;

» (¢i, G;, T;, D;) is the specification of periodic task 7;, where C; is the
worst-case execution time.

Jan Reineke Task Models and Scheduling July 9, 2015 16 / 35

SAARLAND g
Recurrent Task Models UnvERsiTY B

COMPUTER SCIENCE

m When jobs (usually with the same computation requirement) are
released recurrently, these jobs can be modeled by a recurrent task

m Periodic Task 7;:

» A job is released exactly and periodically by a period T;

» A phase ¢; indicates when the first job is released

» A relative deadline D; for each job from task 7;

» (¢i, G;, T;, D;) is the specification of periodic task 7;, where C; is the
worst-case execution time.

m Sporadic Task 7;:

» T; is the minimal time between any two consecutive job releases

» A relative deadline D; for each job from task 7;

» (G, T;, D;) is the specification of sporadic task 7;, where C; is the
worst-case execution time.

Jan Reineke Task Models and Scheduling July 9, 2015 16 / 35

Recurrent Task Models GRiviRsiTy B

COMPUTER SCIENCE

m When jobs (usually with the same computation requirement) are
released recurrently, these jobs can be modeled by a recurrent task

m Periodic Task 7;:

» A job is released exactly and periodically by a period T;

» A phase ¢; indicates when the first job is released

» A relative deadline D; for each job from task 7;

» (¢i, G;, T;, D;) is the specification of periodic task 7;, where C; is the
worst-case execution time.

m Sporadic Task 7;:

» T; is the minimal time between any two consecutive job releases

» A relative deadline D; for each job from task 7;

» (G, T;, D;) is the specification of sporadic task 7;, where C; is the
worst-case execution time.

m Aperiodic Task: Identical jobs released arbitrarily.

Jan Reineke Task Models and Scheduling July 9, 2015 16 / 35

SAARLAND pgifla
UNIVERSITY B

Examples of Recurrent Task Models UNIVERSIT

COMPUTER SCIENCE

Periodic task: (¢;, G, T;, Di) = (2,2,6,6) T ~l'

release deadline

T J1 I S [S JlI S L
0 2 4 6 8 10 12 14 1@ 20 2 24 26 28

Sporadic task: (C;, T;, D;) = (2,6,6)

T 1T il 1o |

0 16 18 20 22 24 26 28

\ 2

Jan Reineke Task Models and Scheduling July 9, 2015 17 / 35

Example: Sporadic Control System

Pseudo-code for this system

while (true)

start := get the system tick;

perform analog-to-digital
conversion to get y;

compute control output u;

output v and do digital-to-analog
conversion;

end := get the system tick;
timeToSleep := T — (end — start);

sleep timeToSleep;

end while

Jan Reineke Task Models and Scheduling

COMPUTER SCIENCE

Control System

Yk

Control-law

sensor

> .
computation

plant

1
1
1
1
1
1
D/A :
1
1
1
1
1

A

(The system
being controlled)

July 9, 2015

actuator

18 / 35

o SAARLAND
Example: Periodic Control System UNIVERSITY

COMPUTER SCIENCE

Pseudo-code for this system

set timer to interrupt periodically with

period T;
: Control System 1:
: I
! I
I
I Y Control-law Uk !
d o ! AD > computation > DA :
: A :
. . |
perform analog-to-digital : " YO
. |
conversion to get y; el Mttt it
\]
. plant
compute control output u; ensor e (et L e
being controlled)

output v and do digital-to-analog
conversion;

Jan Reineke Task Models and Scheduling July 9, 2015 19 / 35

' SAARLAND gl
Evaluating a Schedule for Tasks oniversiTy B

COMPUTER SCIENCE
For a job J;:
m Lateness L;: delay of job completion with respect to its deadline.

m Tardiness E;: the time that a job stays active after its deadline.
Ej = max{0, L;}

m Laxity (or Slack Time)(Xj): The maximum time that a job can be delayed
and still meet its deadline.

For a task 7;:
. I
m Lateness L;: maximum latenes of jobs released by task 7;

m Tardiness E;: maximum tardiness of jobs released by task T;

m Laxity X;: D; — C;;
Jan Reineke Task Models and Scheduling July 9, 2015 20 / 35

' ' ' SAARLAND gl
Relative Deadline vs Period sy

COMPUTER SCIENCE

For a task set, we say that the task set is with

| m implicit deadline when the relative deadline D; is equal to the period
T;, i.e., D; = T;, for every task 7;,

m constrained deadline when the relative deadline D; is no more than the
period T;, i.e., D; < T;, for every task 7;, or

m arbitrary deadline when the relative deadline D; could be larger than
the period T; for some task ;.

 —

Jan Reineke Task Models and Scheduling July 9, 2015 21 / 35

Some Definitions for Periodic Tasks UNIVERSITY I8

COMPUTER SCIENCE

The jobs of task 7; are denoted J;1,Ji2,.......
Synchronous system: Each task has a phase of 0.

Asynchronous system: Phases are arbitrary.

Task utilization of tas

O
O
O
m Hyperperiod: Least common multiple (LCM) of T;.
O
O

System utilization

Jan Reineke Task Models and Scheduling July 9, 2015 22 / 35

Feasibility and Schedulability for Recurrent Tasks — Luvirsiy =2

COMPUTER SCIENCE

m A schedule is feasible if all the jobs of all tasks can be completed
according to a set of specified constraints.

m A set of tasks is schedulable if there exists a feasible schedule for the
set of tasks.

m A scheduling algorithm is optimal if it always produces a feasible
schedule if the set of tasks is schedulable.

Jan Reineke Task Models and Scheduling July 9, 2015 23 /35

| . . . e] SAARLAND g
Graham's Scheduling Algorithm Classification UNIVERSITY %

COMPUTER SCIENCE

m Classification: a|b|c
» a: machine environment
(e.g., uniprocessor, multiprocessor, distributed, ...)
» b: task and resource characteristics
(e.g., preemptive, independent, synchronous, ...)
» ¢: performance metric and objectives
(e.g., Lmax, sum of finish times, ...)

m Examples:

> 1|non-prem|Lmax
> M||Emax

Jan Reineke Task Models and Scheduling July 9, 2015 24 / 35

' : SAARLAND pig
Earliest-Due-Date Algorithm vy B

COMPUTER SCIENCE

Theorem)

1lsync|Lmax: Given a set of n independent aperiodic jobs that arrive syn-
chronously (release time is 0), any algorithm that executes tasks in order of
non-decreasing deadlines is optimal with respect to minimizing the maximum

lateness.

Denoted as Earliest-Due-Date (EDD) Algorithm [Jackson, 1955]
- 4

proof

Let o be the schedule for J produced by scheduling algorithm A. We can
transform A to EDD schedule A’ without increasing Lmax. Details are in the

textbook by Buttazzo [Theorem 3.1].
- d

Jan Reineke Task Models and Scheduling July 9, 2015 25 / 35

SAARLAND pfilla

COMPUTER SCIENCE

Theorem

Given a set of n independent aperiodic jobs with arbitrary arrival times, if
the aperiodic task set is schedulable on a single processor then any algorithm
that executes jobs with earliest deadline (among the set of active jobs) is
guaranteed to meet all jobs' deadlines.
- A

m What is the difference between EDD and EDF?

m Several proofs of optimality exist: Liu and Layland (1973), Horn

(1974), and Dertouzos (1974).

m Similar to Jackson Algorithm proof of optimality, but need to account
for preemption.

4

Jan Reineke Task Models and Scheduling July 9, 2015 26 / 35

SAARLAND pifa
UNIVERSITY L%

Monotonicity of Scheduling Algorithms UNIVERSIT

COMPUTER SCIENCE

A good scheduling algorithm should be monotonic

m If a scheduling algorithm derives a feasible schedule, it should also
guarantee the feasibility with

> less execution time of a task/job,
> less number of tasks/jobs, or
» more number of processors/machines.

Just as a processor should not exhibit timing anomalies.

Jan Reineke Task Models and Scheduling July 9, 2015 27 / 35

SAARLAND pfila

Why is Real-Time Scheduling Hard? iy

COMPUTER SCIENCE

Single-processor (Eisenbrand and Rothvol, in RTSS 2008)

Fixed-Priority Real-Time Scheduling: Response Time Computation s
N P-hard

Multiprocessor (Graham 1976)

Changing the priority order, increasing the number of processors, reducing
execution times, or weakening precedence constraints can result in a
deadline miss.

Many Cases

Scheduling problems in multiprocessor systems are usually A/ P-hard.

Jan Reineke Task Models and Scheduling July 9, 2015 28 / 35

UNIVERSITY L%
Summary

COMPUTER SCIENCE
m How to characterize jobs:
arrival time aj, computation time C;, absolute/relative deadline d;/D;

m How to characterize schedules:
start time s;, finishing time f;, response time R;
m Performance metrics for schedules:
lateness L;, tardiness E;, laxity X;
m Properties of schedules, sets of jobs, and scheduling algorithms:
» feasibility of schedules
» schedulability of sets of jobs and tasks
» optimality of scheduling algorithms
m Recurrent task models:
periodic, sporadic, aperiodic, synchronous vs asynchronous

m Scheduling algorithms:

> Shortest-Job-First (SJF)
» Earliest-Due-Date (EDD)
» Earliest-Deadline-First (EDF)

Jan Reineke Task Models and Scheduling July 9, 2015 29 / 35

COMPUTER SCIENCE

Appendix

Some Examples for Multiprocessor Scheduling

Jan Reineke Task Models and Scheduling

Why is Real-Time Scheduling Hard? Multiprocessorihiversity 5

COMPUTER SCIENCE

Anomalies

m Partitioned scheduling (Each task/job is on a processor)

» As most partitioning algorithms are not optimal, a system might
become infeasible with

* Less execution time of a task/job
* Less number of tasks/jobs
* More number of processors/machines

m Global scheduling

» As most priority-assignment algorithms are not optimal, a system
might become infeasible with

* Less execution time of a task/job
* Less number of tasks/jobs
* More number of processors/machines

Jan Reineke Task Models and Scheduling July 9, 2015 31 /35

. SAARLAND :
Precedence Constraints UNIVERSITY

COMPUTER SCIENCE

Jobs (and tasks) may have to execute in a pre-specified order.

ORCIO10
OO E

Jan Reineke Task Models and Scheduling July 9, 2015 32 /35

Multiprocessor Anomaly: Case 1

On 3 processors

Jan Reineke

LER -

/8 W5 B

%
Bl Bl s

SAARLAND p
UNIVERSITY Y
I —

COMPUTER SCIENCE

0 2 4 6

Task Models and Scheduling

8

10

12

14 16

Multiprocessor Anomaly: Case 1

COMPUTER SCIENCE

(@)
N
N
(@)

On 3 processors

o 4
N -
N
(@)

Jan Reineke Task Models and Scheduling

SAARLAND
UNIVERSITY

Multiprocessor Anomaly: Case 2 UNIVERSIT

COMPUTER SCIENCE

\

s %
VAN
" bk

0 2 4 6 8 10 12 14 16

Reduce the execution
time by 1, and schedule
on 3 processors

Jan Reineke Task Models and Scheduling

Multiprocessor Anomaly: Case 3

;
| I I I I I | |

0 2 4 6 8 10 12 14 16

COMPUTER SCIENCE

\
(4

On 4 processors

Jan Reineke Task Models and Scheduling

SAARLAND
UNIVERSITY &

Multiprocessor Anomaly: Case 3 UNIVERSTT

COMPUTER SCIENCE

On 4 processors Jn 0 ——

) 2

Jan Reineke Task Models and Scheduling

