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How they work:
I dynamically
I managed by replacement policy

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

“hit”
[ab]

Why they work: principle of locality

I spatial
I temporal
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Tag
Block 
offset

Address:

B b
b

k s

log2(s) log2(8 � b)

•

•

•

Tag Data Block

Tag Data Block

...

Tag Data Block

B b
b

k s

log2(s) log2(8 � b) s

•

•

•

=?

No: 
Miss!

Yes: 
Hit!

MUX

Data

= associativity
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...
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Cache Set:

=?

No: 
Miss!
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MUX

Data
Special cases:

direct-mapped cache: only one line per cache set
fully-associative cache: only one cache set
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Least-Recently-Used (LRU) used in
INTEL PENTIUM I and MIPS 24K/34K

First-In First-Out (FIFO or Round-Robin) used in
MOTOROLA POWERPC 56X, INTEL XSCALE, ARM9, ARM11

Pseudo-LRU (PLRU) used in
INTEL PENTIUM II-IV and POWERPC 75X

Most Recently Used (MRU) as described in literature

Each cache set is treated independently:
�! Set-associative caches are compositions of fully-associative caches.
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Two types of cache analyses:

1 Local guarantees: classification of individual accesses
I May-Analysis �! Overapproximates cache contents
I Must-Analysis �! Underapproximates cache contents

2 Global guarantees: bounds on cache hits/misses

Cache analyses almost exclusively for LRU
In practice: FIFO, PLRU, . . .
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read
z

read
y

read
x

write
z

Always a cache hit/always a miss?

1. Initial cache contents unknown.

2. Different paths lead to these points.

3. Cannot resolve address of z.
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using Abstract Interpretation

read
z

read
y

read
x

write
z

Collecting Semantics =
set of states at each program point that
any execution may encounter there

Two approximations:

Collecting Semantics uncomputable

✓ Cache Semantics computable

✓ �(Abstract Cache Sem.) efficiently
computable
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“Cache Miss”:

z
y
x
t

s

s
z
y
x

LRU has
notion of age

“Cache Hit”:

z
y
s
t

s

s
z
y
t
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Used to predict cache hits.
Maintains upper bounds on ages of memory blocks.
Upper bound  associativity �! memory block definitely cached.

Example

Abstract state:

{x}
{}

{s,t}
{}

age 0

age 3

. . . and its interpretation:

Describes the set of all concrete cache
states in which x , s, and t occur,

x with an age of 0,
s and t with an age not older than 2.

�([{x}, {}, {s, t}, {}]) =
{[x , s, t , a], [x , t , s, a], [x , s, t , b], . . .}
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(must) (must

0)
Abstract Update

concrete cache states concrete cache states

� �
Lifted
Concrete
Update
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“Definite Cache Hit”:

{x}
{}

{s,t}
{}

s

{s}
{x}
{t}
{}

“Potential Cache Miss”:

{x}
{}

{s,t}
{}

z

{z}
{x}
{}

{s,t}

Why does t not age in the second case?
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Need to combine information where control-flow merges.

Join should be conservative (ensures � is monotone):
�(A) ✓ �(A t B)

�(B) ✓ �(A t B)

t
{a}
{}

{c,f}
{d}

{c}
{e}
{a}
{d}

{}
{}

{a,c}
{d}

“Intersection + Maximal Age”

How many memory blocks can be in the must-cache?
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entry [{}, {}, {}, {}]

A
?

B
?

C
?

D ?

exit ?
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A
? t [{}, {}, {}, {}] = [{}, {}, {}, {}]

B
[{A}, {}, {}, {}]

C
[{A}, {}, {}, {}]

D
[{B}, {A}, {}, {}] t [{C}, {A}, {}, {}] =
[{}, {A}, {}, {}]

exit ?
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entry [{}, {}, {}, {}]

A

[{D}, {}, {A}, {}] t [{}, {}, {}, {}] =
[{}, {}, {}, {}]

B
[{A}, {}, {}, {}]

C
[{A}, {}, {}, {}]

D
[{B}, {A}, {}, {}] t [{C}, {A}, {}, {}] =
[{}, {A}, {}, {}]

exit [{D}, {}, {A}, {}]

No cache hits can be predicted :-(
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Problem:
I The first iteration of a loop will always result in cache misses.
I Similarly for the first execution of a function.

Solution:
I Virtually Unroll Loops: Distinguish the first iteration from others
I Distinguish function calls by calling context.

Virtually unrolling the loop once:
Accesses to A and D are provably
hits after the first iteration
Accesses to B and C can still not be
classified. Within each execution of
the loop, they may only miss once.

�! Persistence Analysis

entry

A
[{}, {}, {}, {}]

B

[{A}, {}, {}, {}]

C
[{A}, {}, {}, {}]

D
[{}, {A}, {}, {}]

exit

A
[{D}, {}, {A}, {}]

B

[{A}, {D}, {}, {}]

C
[{A}, {D}, {}, {}]

D
[{}, {A}, {D}, {}]

exitJan Reineke Caches in WCET Analysis Advanced Lecture, 2013 18 / 51



computer science

saarland
universityLRU: May-Analysis: Abstract Domain

Used to predict cache misses.
Maintains lower bounds on ages of memory blocks.
Lower bound � associativity

�! memory block definitely not cached.

Example

Abstract state:

{x,y}
{}

{s,t}
{u}

age 0

age 3

. . . and its interpretation:

Describes the set of all concrete cache states in
which no memory blocks except x , y , s, t , and
u occur,

x and y with an age of at least 0,
s and t with an age of at least 2,
u with an age of at least 3.

�([{x , y}, {}, {s, t}, {u}]) =
{[x , y , s, t ], [y , x , s, t ], [x , y , s, u], . . .}
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“Definite Cache Miss”:

{x}
{}

{s,t}
{y}

z

{z}
{x}
{}

{s,t}

“Potential Cache Hit”:

{x}
{}

{s,t}
{y}

s

{s}
{x}
{}

{y,t}

Why does t age in the second case?
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Need to combine information where control-flow merges.

Join should be conservative (ensures � is monotone):
�(A) ✓ �(A t B)

�(B) ✓ �(A t B)

t
{a}
{}

{c,f}
{d}

{c}
{e}
{a}
{d}

=
{a,c}
{e}

{f}
{d}

“Union + Minimal Age”
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