
computer science

saarland
university

Design and Analysis of Real-Time Systems
Caches in WCET Analysis

Jan Reineke

Department of Computer Science
Saarland University

Saarbrücken, Germany

Advanced Lecture, Summer 2013

computer science

saarland
university

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 1 / 51

computer science

saarland
universityOutline

1 Caches

2 Cache Analysis for Least-Recently-Used

3 Beyond Least-Recently-Used
Predictability Metrics
Relative Competitiveness
Sensitivity – Caches and Measurement-Based Timing Analysis

4 Summary

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 2 / 51

computer science

saarland
universityOutline

1 Caches

2 Cache Analysis for Least-Recently-Used

3 Beyond Least-Recently-Used
Predictability Metrics
Relative Competitiveness
Sensitivity – Caches and Measurement-Based Timing Analysis

4 Summary

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 3 / 51

computer science

saarland
universityCaches

How they work:
I dynamically
I managed by replacement policy

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

“hit”
[ab]

Why they work: principle of locality

I spatial
I temporal

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 4 / 51

computer science

saarland
universityCaches

How they work:
I dynamically
I managed by replacement policy

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

a1

“hit”
[ab]

Why they work: principle of locality

I spatial
I temporal

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 4 / 51

computer science

saarland
universityCaches

How they work:
I dynamically
I managed by replacement policy

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

a1!

“hit”
[ab]

Why they work: principle of locality

I spatial
I temporal

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 4 / 51

computer science

saarland
universityCaches

How they work:
I dynamically
I managed by replacement policy

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

c3?

“miss”
[ab]

Why they work: principle of locality

I spatial
I temporal

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 4 / 51

computer science

saarland
universityCaches

How they work:
I dynamically
I managed by replacement policy

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

c3?
c?

“miss”
[ab]

Why they work: principle of locality

I spatial
I temporal

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 4 / 51

computer science

saarland
universityCaches

How they work:
I dynamically
I managed by replacement policy

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

c3? c = hc1c2c3c4i!

“miss”
[ac]

Why they work: principle of locality

I spatial
I temporal

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 4 / 51

computer science

saarland
universityCaches

How they work:
I dynamically
I managed by replacement policy

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

c3!

“miss”
[ac]

Why they work: principle of locality

I spatial
I temporal

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 4 / 51

computer science

saarland
universityCaches

How they work:
I dynamically
I managed by replacement policy

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

c4?

“hit”
[ac]

Why they work: principle of locality

I spatial
I temporal

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 4 / 51

computer science

saarland
universityCaches

How they work:
I dynamically
I managed by replacement policy

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

c4!

“hit”
[ac]

Why they work: principle of locality

I spatial
I temporal

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 4 / 51

computer science

saarland
universityFully-Associative Caches

Tag
Block
offset

Address:

B b
b

k s

log2(s) log2(8 � b)

•

•

•

Tag Data Block

Tag Data Block

...

Tag Data Block

B b
b

k s

log2(s) log2(8 � b) s

•

•

•

=?

No:
Miss!

Yes:
Hit!

MUX

Data

= associativity

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 5 / 51

computer science

saarland
universitySet-Associative Caches

...

B b
b

k s

log2(s) log2(8 � b) s

•

•

•

Tag Index
Block
offset

Address:

B b
b

k s

log2(s) log2(8 � b)

•

•

•

B b
b

k s

log2(s) log2(8 � b)

•

•

•

Tag Data Block

Tag Data Block

...

Tag Data Block

Cache Set:

B b
b

k s

log2(s) log2(8 � b) s

•

•

•

Tag Data Block

Tag Data Block

...

Tag Data Block

Cache Set:

=?

No:
Miss!

Yes:
Hit!

MUX

Data
Special cases:

direct-mapped cache: only one line per cache set
fully-associative cache: only one cache set

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 6 / 51

computer science

saarland
universityCache Replacement Policies

Least-Recently-Used (LRU) used in
INTEL PENTIUM I and MIPS 24K/34K

First-In First-Out (FIFO or Round-Robin) used in
MOTOROLA POWERPC 56X, INTEL XSCALE, ARM9, ARM11

Pseudo-LRU (PLRU) used in
INTEL PENTIUM II-IV and POWERPC 75X

Most Recently Used (MRU) as described in literature

Each cache set is treated independently:
�! Set-associative caches are compositions of fully-associative caches.

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 7 / 51

computer science

saarland
universityOutline

1 Caches

2 Cache Analysis for Least-Recently-Used

3 Beyond Least-Recently-Used
Predictability Metrics
Relative Competitiveness
Sensitivity – Caches and Measurement-Based Timing Analysis

4 Summary

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 8 / 51

computer science

saarland
universityCache Analysis

Two types of cache analyses:

1 Local guarantees: classification of individual accesses
I May-Analysis �! Overapproximates cache contents
I Must-Analysis �! Underapproximates cache contents

2 Global guarantees: bounds on cache hits/misses

Cache analyses almost exclusively for LRU
In practice: FIFO, PLRU, . . .

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 9 / 51

computer science

saarland
universityChallenges for Cache Analysis

read
z

read
y

read
x

write
z

Always a cache hit/always a miss?

1. Initial cache contents unknown.

2. Different paths lead to these points.

3. Cannot resolve address of z.

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 10 / 51

computer science

saarland
universityChallenges for Cache Analysis

read
z

read
y

read
x

write
z

Always a cache hit/always a miss?

1. Initial cache contents unknown.

2. Different paths lead to these points.

3. Cannot resolve address of z.

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 10 / 51

computer science

saarland
universityDeriving Invariants about Cache States

using Abstract Interpretation

read
z

read
y

read
x

write
z

Collecting Semantics =
set of states at each program point that
any execution may encounter there

Two approximations:

Collecting Semantics uncomputable

✓ Cache Semantics computable

✓ �(Abstract Cache Sem.) efficiently
computable

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 11 / 51

computer science

saarland
universityDeriving Invariants about Cache States

using Abstract Interpretation

read
z

read
y

read
x

write
z

Collecting Semantics =
set of states at each program point that
any execution may encounter there

Two approximations:

Collecting Semantics uncomputable

✓ Cache Semantics computable

✓ �(Abstract Cache Sem.) efficiently
computable

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 11 / 51

computer science

saarland
universityDeriving Invariants about Cache States

using Abstract Interpretation

read
z

read
y

read
x

write
z

Collecting Semantics =
set of states at each program point that
any execution may encounter there

Two approximations:

Collecting Semantics uncomputable

✓ Cache Semantics computable

✓ �(Abstract Cache Sem.) efficiently
computable

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 11 / 51

computer science

saarland
universityDeriving Invariants about Cache States

using Abstract Interpretation

read
z

read
y

read
x

write
z

Collecting Semantics =
set of states at each program point that
any execution may encounter there

Two approximations:

Collecting Semantics uncomputable

✓ Cache Semantics computable

✓ �(Abstract Cache Sem.) efficiently
computable

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 11 / 51

computer science

saarland
universityDeriving Invariants about Cache States

using Abstract Interpretation

read
z

read
y

read
x

write
z

Collecting Semantics =
set of states at each program point that
any execution may encounter there

Two approximations:

Collecting Semantics uncomputable

✓ Cache Semantics computable

✓ �(Abstract Cache Sem.) efficiently
computable

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 11 / 51

computer science

saarland
universityLeast-Recently-Used (LRU): Concrete Behavior

“Cache Miss”:

z
y
x
t

s

s
z
y
x

LRU has
notion of age

“Cache Hit”:

z
y
s
t

s

s
z
y
t

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 12 / 51

computer science

saarland
universityLRU: Must-Analysis: Abstract Domain

Used to predict cache hits.
Maintains upper bounds on ages of memory blocks.
Upper bound associativity �! memory block definitely cached.

Example

Abstract state:

{x}
{}

{s,t}
{}

age 0

age 3

. . . and its interpretation:

Describes the set of all concrete cache
states in which x , s, and t occur,

x with an age of 0,
s and t with an age not older than 2.

�([{x}, {}, {s, t}, {}]) =
{[x , s, t , a], [x , t , s, a], [x , s, t , b], . . .}

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 13 / 51

computer science

saarland
universitySound Update – Local Consistency

(must) (must

0)
Abstract Update

concrete cache states concrete cache states

� �
Lifted
Concrete
Update

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 14 / 51

computer science

saarland
universityLRU: Must-Analysis: Update

“Definite Cache Hit”:

{x}
{}

{s,t}
{}

s

{s}
{x}
{t}
{}

“Potential Cache Miss”:

{x}
{}

{s,t}
{}

z

{z}
{x}
{}

{s,t}

Why does t not age in the second case?

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 15 / 51

computer science

saarland
universityLRU: Must-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative (ensures � is monotone):
�(A) ✓ �(A t B)

�(B) ✓ �(A t B)

t
{a}
{}

{c,f}
{d}

{c}
{e}
{a}
{d}

{}
{}

{a,c}
{d}

“Intersection + Maximal Age”

How many memory blocks can be in the must-cache?

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 16 / 51

computer science

saarland
universityLRU: Must-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative (ensures � is monotone):
�(A) ✓ �(A t B)

�(B) ✓ �(A t B)

t
{a}
{}

{c,f}
{d}

{c}
{e}
{a}
{d}

{}
{}

{a,c}
{d}

“Intersection + Maximal Age”

How many memory blocks can be in the must-cache?

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 16 / 51

computer science

saarland
universityLRU: Must-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative (ensures � is monotone):
�(A) ✓ �(A t B)

�(B) ✓ �(A t B)

t
{a}
{}

{c,f}
{d}

{c}
{e}
{a}
{d}

{}
{}

{a,c}
{d}

“Intersection + Maximal Age”

How many memory blocks can be in the must-cache?

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 16 / 51

computer science

saarland
universityLRU: Must-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative (ensures � is monotone):
�(A) ✓ �(A t B)

�(B) ✓ �(A t B)

t
{a}
{}

{c,f}
{d}

{c}
{e}
{a}
{d}

{}
{}

{a,c}
{d}

“Intersection + Maximal Age”

How many memory blocks can be in the must-cache?

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 16 / 51

computer science

saarland
universityLRU: Must-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative (ensures � is monotone):
�(A) ✓ �(A t B)

�(B) ✓ �(A t B)

t
{a}
{}

{c,f}
{d}

{c}
{e}
{a}
{d}

{}
{}

{a,c}
{d}

“Intersection + Maximal Age”

How many memory blocks can be in the must-cache?

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 16 / 51

computer science

saarland
universityLRU: Must-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative (ensures � is monotone):
�(A) ✓ �(A t B)

�(B) ✓ �(A t B)

t
{a}
{}

{c,f}
{d}

{c}
{e}
{a}
{d}

{}
{}

{a,c}
{d}

“Intersection + Maximal Age”

How many memory blocks can be in the must-cache?

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 16 / 51

computer science

saarland
universityLRU: Must-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative (ensures � is monotone):
�(A) ✓ �(A t B)

�(B) ✓ �(A t B)

t
{a}
{}

{c,f}
{d}

{c}
{e}
{a}
{d}

{}
{}

{a,c}
{d}

“Intersection + Maximal Age”

How many memory blocks can be in the must-cache?

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 16 / 51

computer science

saarland
universityExample: Must-Analysis

entry [{}, {}, {}, {}]

A
?

B
?

C
?

D ?

exit ?

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 17 / 51

computer science

saarland
universityExample: Must-Analysis

entry [{}, {}, {}, {}]

A
? t [{}, {}, {}, {}] = [{}, {}, {}, {}]

B
?

C
?

D ?

exit ?

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 17 / 51

computer science

saarland
universityExample: Must-Analysis

entry [{}, {}, {}, {}]

A
? t [{}, {}, {}, {}] = [{}, {}, {}, {}]

B
[{A}, {}, {}, {}]

C
[{A}, {}, {}, {}]

D ?

exit ?

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 17 / 51

computer science

saarland
universityExample: Must-Analysis

entry [{}, {}, {}, {}]

A
? t [{}, {}, {}, {}] = [{}, {}, {}, {}]

B
[{A}, {}, {}, {}]

C
[{A}, {}, {}, {}]

D
[{B}, {A}, {}, {}] t [{C}, {A}, {}, {}] =
[{}, {A}, {}, {}]

exit ?

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 17 / 51

computer science

saarland
universityExample: Must-Analysis

entry [{}, {}, {}, {}]

A

[{D}, {}, {A}, {}] t [{}, {}, {}, {}] =
[{}, {}, {}, {}]

B
[{A}, {}, {}, {}]

C
[{A}, {}, {}, {}]

D
[{B}, {A}, {}, {}] t [{C}, {A}, {}, {}] =
[{}, {A}, {}, {}]

exit [{D}, {}, {A}, {}]

No cache hits can be predicted :-(

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 17 / 51

computer science

saarland
universityContext-Sensitive Analysis/Virtual Loop-Unrolling

Problem:
I The first iteration of a loop will always result in cache misses.
I Similarly for the first execution of a function.

Solution:
I Virtually Unroll Loops: Distinguish the first iteration from others
I Distinguish function calls by calling context.

Virtually unrolling the loop once:
Accesses to A and D are provably
hits after the first iteration
Accesses to B and C can still not be
classified. Within each execution of
the loop, they may only miss once.

�! Persistence Analysis

entry

A
[{}, {}, {}, {}]

B

[{A}, {}, {}, {}]

C
[{A}, {}, {}, {}]

D
[{}, {A}, {}, {}]

exit

A
[{D}, {}, {A}, {}]

B

[{A}, {D}, {}, {}]

C
[{A}, {D}, {}, {}]

D
[{}, {A}, {D}, {}]

exitJan Reineke Caches in WCET Analysis Advanced Lecture, 2013 18 / 51

computer science

saarland
universityLRU: May-Analysis: Abstract Domain

Used to predict cache misses.
Maintains lower bounds on ages of memory blocks.
Lower bound � associativity

�! memory block definitely not cached.

Example

Abstract state:

{x,y}
{}

{s,t}
{u}

age 0

age 3

. . . and its interpretation:

Describes the set of all concrete cache states in
which no memory blocks except x , y , s, t , and
u occur,

x and y with an age of at least 0,
s and t with an age of at least 2,
u with an age of at least 3.

�([{x , y}, {}, {s, t}, {u}]) =
{[x , y , s, t], [y , x , s, t], [x , y , s, u], . . .}

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 19 / 51

computer science

saarland
universityLRU: May-Analysis: Update

“Definite Cache Miss”:

{x}
{}

{s,t}
{y}

z

{z}
{x}
{}

{s,t}

“Potential Cache Hit”:

{x}
{}

{s,t}
{y}

s

{s}
{x}
{}

{y,t}

Why does t age in the second case?

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 20 / 51

computer science

saarland
universityLRU: May-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative (ensures � is monotone):
�(A) ✓ �(A t B)

�(B) ✓ �(A t B)

t
{a}
{}

{c,f}
{d}

{c}
{e}
{a}
{d}

=
{a,c}
{e}

{f}
{d}

“Union + Minimal Age”

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 21 / 51

computer science

saarland
universityLRU: May-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative (ensures � is monotone):
�(A) ✓ �(A t B)

�(B) ✓ �(A t B)

t
{a}
{}

{c,f}
{d}

{c}
{e}
{a}
{d}

=
{a,c}
{e}

{f}
{d}

“Union + Minimal Age”

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 21 / 51

computer science

saarland
universityLRU: May-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative (ensures � is monotone):
�(A) ✓ �(A t B)

�(B) ✓ �(A t B)

t
{a}
{}

{c,f}
{d}

{c}
{e}
{a}
{d}

=
{a,c}
{e}

{f}
{d}

“Union + Minimal Age”

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 21 / 51

computer science

saarland
universityLRU: May-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative (ensures � is monotone):
�(A) ✓ �(A t B)

�(B) ✓ �(A t B)

t
{a}
{}

{c,f}
{d}

{c}
{e}
{a}
{d}

=
{a,c}
{e}

{f}
{d}

“Union + Minimal Age”

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 21 / 51

computer science

saarland
universityLRU: May-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative (ensures � is monotone):
�(A) ✓ �(A t B)

�(B) ✓ �(A t B)

t
{a}
{}

{c,f}
{d}

{c}
{e}
{a}
{d}

=
{a,c}
{e}

{f}
{d}

“Union + Minimal Age”

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 21 / 51

computer science

saarland
universityLRU: May-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative (ensures � is monotone):
�(A) ✓ �(A t B)

�(B) ✓ �(A t B)

t
{a}
{}

{c,f}
{d}

{c}
{e}
{a}
{d}

=
{a,c}
{e}

{f}
{d}

“Union + Minimal Age”

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 21 / 51

