SAARLAND
UNIVERSITY
— —
COMPUTER SCIENCE

Design and Analysis of Real-Time Systems
Caches in WCET Analysis

Jan Reineke

Department of Computer Science
Saarland University
Saarbriicken, Germany

Advanced Lecture, Summer 2013

SAARLAND
UNIVERSITY
I —

COMPUTER SCIENCE

Jan Reineke Caches in WCET Analysis

SAARLAND

Outline UNIVERSITY

COMPUTER SCIENCE

Caches
Cache Analysis for Least-Recently-Used

Beyond Least-Recently-Used
m Predictability Metrics
m Relative Competitiveness
m Sensitivity — Caches and Measurement-Based Timing Analysis

Summary

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 2/51

SAARLAND
UNIVERSITY

Outline EALSEEN)

COMPUTER SCIENCE

Caches

Jan Reineke Caches in WCET Analysis

SAARLAND

CaCheS UNIVERSITY

COMPUTER SCIENCE

m How they work:
» dynamically
» managed by replacement policy

[ab]
CPU Cache Main Memory
Capacity: 32 KB 2 MB
Latency: 3 cycles 100 cycles

m Why they work: principle of locality
» spatial
» temporal

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013

4/51

SAARLAND

CaCheS UNIVERSITY

COMPUTER SCIENCE

m How they work:
» dynamically
» managed by replacement policy

“hitl!
[ab]
D -
CPU > Cache Main Memory
Capacity: 32 KB 2 MB
Latency: 3 cycles 100 cycles

m Why they work: principle of locality
» spatial
» temporal

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013

4/51

SAARLAND

CaCheS UNIVERSITY

COMPUTER SCIENCE

m How they work:
» dynamically
» managed by replacement policy

“hitl!
[ab]
oru 2 { o Main M
< ache ain Memory
Capacity: 32 KB 2 MB
Latency: 3 cycles 100 cycles

m Why they work: principle of locality
» spatial
» temporal

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013

4/51

SAARLAND

CaCheS UNIVERSITY

COMPUTER SCIENCE

m How they work:
» dynamically
» managed by replacement policy

“miss”
[ab]
CP | Cache ain Memory
Capacity: 32 KB 2 MB
Latency: 3 cycles 100 cycles

m Why they work: principle of locality
» spatial
» temporal

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013

4/51

Caches

m How they work:
» dynamically
» managed by replacement policy

“miss”
[ab]

SAARLAND
UNIVERSITY
— —
COMPUTER SCIENCE

c3? 9 2
CPU e 3 Cache cr

Capacity: 32 KB
Latency: 3 cycles

m Why they work: principle of locality
» spatial
» temporal

Jan Reineke Caches in WCET Analysis

3 Main Memory

2MB
100 cycles

Advanced Lecture, 2013 4/51

SAARLAND

CaCheS UNIVERSITY

COMPUTER SCIENCE

m How they work:
» dynamically
» managed by replacement policy

“miss”
[ac]
c? f— (c1Cac3cy)!
CPU Cache > Main Memory
Capacity: 32 KB 2 MB
Latency: 3 cycles 100 cycles

m Why they work: principle of locality
» spatial
» temporal

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013

4/51

SAARLAND

CaCheS UNIVERSITY
m How they work:
» dynamically
» managed by replacement policy

“miss”
[ac]

cs! 9 .
CPU K Cache Main Memory

Capacity: 32 KB 2 MB
Latency: 3 cycles 100 cycles

m Why they work: principle of locality
» spatial
» temporal

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 4/51

SAARLAND

CaCheS UNIVERSITY

COMPUTER SCIENCE

m How they work:
» dynamically
» managed by replacement policy

“hitl!
[ac]
oru 47 Geen Main M
| Cache ain Memory
Capacity: 32 KB 2 MB
Latency: 3 cycles 100 cycles

m Why they work: principle of locality
» spatial
» temporal

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013

4/51

SAARLAND

CaCheS UNIVERSITY

COMPUTER SCIENCE

m How they work:
» dynamically
» managed by replacement policy

“hitl!
[ac]
oru 2 {en Main M
< ache ain Memory
Capacity: 32 KB 2 MB
Latency: 3 cycles 100 cycles

m Why they work: principle of locality
» spatial
» temporal

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013

4/51

SAARLAND

Fully-Associative Caches —

COMPUTER SCIENCE

Address: < 109:(8+) P
Block

Tag offset 1

Tag Data Block *
Tag Data Block

k = associativity

| Tag Data Block | *
H@—» T_|e|ts| MUX -
Mlss! Data

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 5/51

SAARLAND

1 1 UNIVERSITY
Set-Associative Caches —_
COMPUTER SCIENCE
Address: —log:(s) —p = 10g2(8 + 1) B
Block
Tag Index offset
Cache Set: Cache Set:
Tag Data Block Tag Data Block +
Tag Data Block e Tag Data Block k
| Tag | Data Block | | Tag | Data Block |+
< 5 i \—»
Yes: \
»(=2
'@' Hit!
No:
Data

Special cases: Miss!

m direct-mapped cache: only one line per cache set
m fully-associative cache: only one cache set

Caches in WCET Analysis Advanced Lecture, 2013 6/51

Jan Reineke

SAARLAND

Cache Replacement Policies SN

COMPUTER SCIENCE

m Least-Recently-Used (LRU) used in
INTEL PENTIUM | and MIPS 24K/34K

m First-In First-Out (FIFO or Round-Robin) used in
MOTOROLA POWERPC 56X, INTEL XSCALE, ARM9, ARM11

m Pseudo-LRU (PLRU) used in
INTEL PENTIUM II-1V and POWERPC 75X

m Most Recently Used (MRU) as described in literature

Each cache set is treated independently:
— Set-associative caches are compositions of fully-associative caches.

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 7/51

SAARLAND
UNIVERSITY

Outline EALSEEN)

COMPUTER SCIENCE

Cache Analysis for Least-Recently-Used

Jan Reineke Caches in WCET Analysis

SAARLAND

Cache Analysis —

COMPUTER SCIENCE

Two types of cache analyses:

Local guarantees: classification of individual accesses

» May-Analysis — Overapproximates cache contents
» Must-Analysis — Underapproximates cache contents

Global guarantees: bounds on cache hits/misses

m Cache analyses almost exclusively for LRU
m In practice: FIFO, PLRU, ...

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 9/51

SAARLAND

Challenges for Cache Analysis)

COMPUTER SCIENCE

Always a cache hit/always a miss?

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 10/51

SAARLAND

Challenges for Cache Analysis —

COMPUTER SCIENCE

Always a cache hit/always a miss?

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 10/51

SAARLAND
UNIVERSITY

Deriving Invariants about Cache States —_—
using Abstract Interpretation

Collecting Semantics =
set of states at each program point that
any execution may encounter there

read| Tyq approximations:

X
Collecting Semantics ~ uncomputable
C Cache Semantics computable
C ~(Abstract Cache Sem.) efficiently

computable

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 11/51

SAARLAND
UNIVERSITY

Deriving Invariants about Cache States —_—
using Abstract Interpretation

Collecting Semantics =
set of states at each program point that
any execution may encounter there

read| Tyo approximations:

X
Collecting Semantics ~ uncomputable
C Cache Semantics computable
C ~(Abstract Cache Sem.) efficiently

computable

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 11/51

SAARLAND
UNIVERSITY

Deriving Invariants about Cache States —_—
using Abstract Interpretation

Collecting Semantics =
set of states at each program point that
any execution may encounter there

Two approximations:
Collecting Semantics ~ uncomputable

Cache Semantics computable

~(Abstract Cache Sem.) efficiently
computable

N 1N

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 11/51

SAARLAND
UNIVERSITY

Deriving Invariants about Cache States —_—
using Abstract Interpretation

Collecting Semantics =
set of states at each program point that
any execution may encounter there

read| Tyo approximations:

X
Collecting Semantics ~ uncomputable
C Cache Semantics computable
C ~(Abstract Cache Sem.) efficiently

computable

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 11/51

SAARLAND
UNIVERSITY

Deriving Invariants about Cache States —_—
using Abstract Interpretation

Collecting Semantics =
set of states at each program point that
any execution may encounter there

Two approximations:
Collecting Semantics uncomputable

Cache Semantics computable

~(Abstract Cache Sem.) efficiently
computable

N 1N

Caches in WCET Analysis Advanced Lecture, 2013 11/51

Jan Reineke

SAARLAND

Least-Recently-Used (LRU): Concrete Behavioe——_!

“Cache Miss™:

“Cache Hit”:

~ | X|I<|IN

XI<IN|O®O

NEIE

~+ 0 |(<|N

—~+ | <[N]|»

COMPUTER SCIENCE

LRU has
notion of age

Jan Reineke

Caches in WCET Analysis

SAARLAND

LRU: Must-Analysis: Abstract Domain UNIVERSITY

COMPUTER SCIENCE

m Used to predict cache hits.
m Maintains upper bounds on ages of memory blocks.
m Upper bound < associativity — memory block definitely cached.

Example

Abstract state:

{x}

{)

{s,f}

{

age 0

age 3

...and its interpretation:

Describes the set of all concrete cache
states in which x, s, and ¢t occur,

m x with an age of 0,
m s and t with an age not older than 2.

Y([{x}, {1 {s, th{}) =
{[x,s,t,a],[x,t,s,a],[x,s,t,b],...}

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 13/51

SAARLAND
UNIVERSITY

Sound Update — Local Consistency —

COMPUTER SCIENCE

Abstract Update

(must) (must')
Y
Lifted 7
Concrete
Update
L— | \7/—/\
concrete cache states concrete cache states

Jan Reineke Caches in WCET Analysis

LRU: Must-Analysis: Update

SAARLAND
UNIVERSITY
— —
COMPUTER SCIENCE

) —)
X z
o - i
Potential Cache Miss”: \
{s.t} \ {}
{} {s.t}
-y
{x} {s}
P {} {x}
Definite Cache Hit”: 50 m
{} {}

Why does t not age in the second case?

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 15/51

LRU: Must-Analysis: Join

SAARLAND
UNIVERSITY
— —
COMPUTER SCIENCE

Need to combine information where control-flow merges.

Join should be conservative (ensures ~ is monotone):

m y(A) C~(AUB)
= (B) C1(AUB)

{}

{}

{a} {c}

{} {e}
{c.,f} L {a}
{d} {d}

{a,c}

{d}

“Intersection + Maximal Age”

Jan Reineke Caches in WCET Analysis

Advanced Lecture, 2013 16 /51

LRU: Must-Analysis: Join

SAARLAND
UNIVERSITY
— —
COMPUTER SCIENCE

Need to combine information where control-flow merges.

Join should be conservative (ensures ~ is monotone):

m y(A) C~(AUB)
= (B) C1(AUB)

{}

{}

{a} {c}

{} {e}
{c.,f} L {a}
{d} {d}

{a,c}

{d}

“Intersection + Maximal Age”

Jan Reineke Caches in WCET Analysis

Advanced Lecture, 2013 16 /51

LRU: Must-Analysis: Join

SAARLAND
UNIVERSITY
— —
COMPUTER SCIENCE

Need to combine information where control-flow merges.

Join should be conservative (ensures ~ is monotone):

m y(A) C~(AUB)
= (B) C1(AUB)

{}

{}

{a} {c}

{} {e}
{c,f} L {a}
{d} {d}

{a,c}

{d}

“Intersection + Maximal Age”

Jan Reineke Caches in WCET Analysis

Advanced Lecture, 2013 16 /51

LRU: Must-Analysis: Join

SAARLAND
UNIVERSITY
— —
COMPUTER SCIENCE

Need to combine information where control-flow merges.

Join should be conservative (ensures ~ is monotone):

m y(A) C~(AUB)
= (B) C1(AUB)

{}

{}

{a} {c}

{} {e}
{c.,f} L {a}
{d} {d}

{a,c}

{d}

“Intersection + Maximal Age”

Jan Reineke Caches in WCET Analysis

Advanced Lecture, 2013 16 /51

LRU: Must-Analysis: Join

SAARLAND
UNIVERSITY
— —
COMPUTER SCIENCE

Need to combine information where control-flow merges.

Join should be conservative (ensures ~ is monotone):

m y(A) C~(AUB)
= (B) C1(AUB)

{}

{}

{a} {c}

{} {e}
{c.,f} L {a}
{d} {d}

{a,c}

{d}

“Intersection + Maximal Age”

Jan Reineke Caches in WCET Analysis

Advanced Lecture, 2013 16 /51

LRU: Must-Analysis: Join

SAARLAND
UNIVERSITY
— —
COMPUTER SCIENCE

Need to combine information where control-flow merges.

Join should be conservative (ensures ~ is monotone):

m y(A) C~(AUB)
= (B) C1(AUB)

{}

{}

{a} {c}

{} {e}
{c,f} L {a}
{d} {d}

{a,c}

{d}

“Intersection + Maximal Age”

Jan Reineke Caches in WCET Analysis

Advanced Lecture, 2013 16 /51

SAARLAND

LRU: Must-Analysis: Join UNIVERSITY

COMPUTER SCIENCE

Need to combine information where control-flow merges.
Join should be conservative (ensures ~ is monotone):

m y(A) C~(AUB)

= 1(B) C1(AUB)

{a} {c} {}
{ {e} {}
{c.f} U {a} {a,c}
{d} {d} {d}

“Intersection + Maximal Age”

How many memory blocks can be in the must-cache?

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 16/51

SAARLAND
UNIVERSITY

Example: Must-Analysis —_—

COMPUTER SCIENCE

entry [{},{},{},{}]

exit L

Jan Reineke Caches in WCET Analysis

SAARLAND

Example: Must-Analysis —_

COMPUTER SCIENCE

entry [{},{},{},{}]

LUl O =1L h

Caches in WCET Analysis

SAARLAND

Example: Must-Analysis —_—

COMPUTER SCIENCE

entry [{},{},{},{}]

[{A} {3 {3 (3 [{A} {3 {3

LUl O =1L h

Caches in WCET Analysis

SAARLAND

Example: Must-Analysis —_—

COMPUTER SCIENCE

entry [{},{},{},{}]

LUl B =1L]

[{A} {3 {3 (3 [{A} {3 {3

[{B} AL {1 {HUHCHA{AL L U =
[(A {3 (3

exit L

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 17 /51

SAARLAND

Example: Must-Analysis —_—

COMPUTER SCIENCE

entry [{}, {},{}, {}]

[{O} 0 AL IO . L =
[43]

[{A} {3 {3 3 [{A} {3 {3 {3

({8} {A}L {1 {HU{CHA{AL L {3 =
[} {A {3 (3

exit [{D}a {}7 {A}7 {}]

No cache hits can be predicted :-(

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 17/51

SAARLAND

Context-Sensitive Analysis/Virtual Loop-Unrollingz=2

COMPUTER SCIENCE

m Problem:
» The first iteration of a loop will always result in cache misses.
» Similarly for the first execution of a function.
m Solution:
» Virtually Unroll Loops: Distinguish the first iteration from others
» Distinguish function calls by calling context.

entry

(SRIRIRY]

Virtually unrolling the loop once:

(AL 0. 0.0 AL (0. 00 1)

m Accesses to A and D are provably
hits after the first iteration

m Accesses to B and C can still not be exit
classified. Within each execution of 0 N

the loop, they may only miss once. [{A}, {D}, {} [{A}, {D}, {1, {1
OO
[{}.{A}.{D}. {}]

— Persistence Analysis

(SRCININY|

SAARLAND

LRU: May-Analysis: Abstract Domain RSN

m Used to predict cache misses.
m Maintains lower bounds on ages of memory blocks.
m Lower bound > associativity

Example

Abstract state:

{x.y}

{}

{s.}

{u}

age 0

age 3

COMPUTER SCIENCE

— memory block definitely not cached.

...and its interpretation:

Describes the set of all concrete cache states in
which no memory blocks except x, y, s, t, and
U occur,

m x and y with an age of at least 0,
m s and t with an age of at least 2,
m u with an age of at least 3.

’7([{X’ y}v {}’ {S’ t}v {U}]) =
{Ix,y.s.t,ly,x.s. 1], [x,y,s.4],...}

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 19/51

SAARLAND

LRU: May-Analysis: Update UNIVERSITY

COMPUTER SCIENCE

o @
4
P . {} \ {x}
Definite Cache Miss”: \
s.4 ~— 0
{y} {s,t}
-y
i} (s}
“Potential Cache Hit”: {:,}t} {{);}
i v

Why does t age in the second case?

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 20/ 51

SAARLAND

LRU: May-Analysis: Join UNIVERSITY

COMPUTER SCIENCE

Need to combine information where control-flow merges.
Join should be conservative (ensures ~ is monotone):

= (A) CY(AUB)

m +(B) Cy(AUB)

{a} {c} {a,c}
i ey | | e

{c.f} L @ | {f)

{d) {d) {d)

“Union + Minimal Age”

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 21/51

SAARLAND

LRU: May-Analysis: Join UNIVERSITY

COMPUTER SCIENCE

Need to combine information where control-flow merges.
Join should be conservative (ensures ~ is monotone):

= (A) CY(AUB)

m +(B) Cy(AUB)

{a} {c} {a,c}
i ey | | e

{c.f} L @ | {f)

{d) {d) {d)

“Union + Minimal Age”

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 21/51

SAARLAND

LRU: May-Analysis: Join UNIVERSITY

COMPUTER SCIENCE

Need to combine information where control-flow merges.
Join should be conservative (ensures ~ is monotone):

= (A) CY(AUB)

m +(B) Cy(AUB)

{a} {c} {a,c}
i ey | | e

{c.f} L @ | {f)

{d) {d) {d)

“Union + Minimal Age”

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 21/51

SAARLAND

LRU: May-Analysis: Join UNIVERSITY

COMPUTER SCIENCE

Need to combine information where control-flow merges.
Join should be conservative (ensures ~ is monotone):

= (A) CY(AUB)

m +(B) Cy(AUB)

{a} {c} {a,c}
i ey | | e

{c.f} L @ | {f)

{d) {d) {d)

“Union + Minimal Age”

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 21/51

SAARLAND

LRU: May-Analysis: Join UNIVERSITY

COMPUTER SCIENCE

Need to combine information where control-flow merges.
Join should be conservative (ensures ~ is monotone):

= (A) CY(AUB)

m +(B) Cy(AUB)

{a} {c} {a,c}
i ey | | e

{c.f} L @ | {f)

{d) {d) {d)

“Union + Minimal Age”

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 21/51

SAARLAND

LRU: May-Analysis: Join UNIVERSITY

COMPUTER SCIENCE

Need to combine information where control-flow merges.
Join should be conservative (ensures ~ is monotone):

= (A) CY(AUB)

m +(B) Cy(AUB)

{a} {c} {a,c}
i ey | | e

{c.f} L @ | {f)

{d) {d) {d)

“Union + Minimal Age”

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 21/51

