Design and Analysis of
 Real-Time Systems
 Foundations of Abstract Interpretation and Numerical Abstractions

Jan Reineke

Advanced Lecture, Summer 2013

Notion of Galois connections:

Let (L, \leq) and (M, \sqsubseteq) be partially ordered sets and $\alpha \in L \to M, \gamma \in M \to L$. We call $(L, \leq) \xrightarrow{\gamma} (M, \sqsubseteq)$ a Galois connection if α and γ are monotone functions and

$$\begin{array}{rcl} l & \leq & \gamma(\alpha(l)) \\ \alpha(\gamma(m)) & \sqsubseteq & m \end{array}$$

Notion of Galois connections:

Let (L, \leq) and (M, \sqsubseteq) be partially ordered sets and $\alpha \in L \to M, \ \gamma \in M \to L$. We call $(L, \leq) \xrightarrow{\gamma} (M, \sqsubseteq)$ a Galois connection if α and γ are monotone functions and $l \leq \gamma(\alpha(l))$

 $\alpha(\gamma(m)) \quad \sqsubseteq \qquad m$

Why monotone?

Notion of Galois connections:

Let (L, \leq) and (M, \subseteq) be partially ordered sets and $\alpha \in$ $L \to M, \ \gamma \in M \to L.$ We call $(L, \leq) \xrightarrow{\gamma} (M, \sqsubseteq)$ a Galois connection if α and γ are monotone functions and $l \leq \gamma(\alpha(l))$ Why monotone?

 $\alpha(\gamma(m)) \subseteq m$

Notion of Galois connections:

Let (L, \leq) and (M, \subseteq) be partially ordered sets and $\alpha \in$ $L \to M, \ \gamma \in M \to L.$ We call $(L, \leq) \xrightarrow{\gamma} (M, \sqsubseteq)$ a Galois connection if α and γ are monotone functions and $l \leq \gamma(\alpha(l))$ Why monotone?

 $\alpha(\gamma(m)) \subseteq m$

• • • Galois connections: Properties

Properties:

- 1) Can be used to systematically construct correct (and in fact the most precise) abstract operations: $op^{\#} = \alpha \circ op \circ \gamma$
- 2) a) Abstraction function uniquely determines concretization functionb) Concretization function uniquely determines abstraction function

Recap II: Tarski's Fixpoint Theorem and the Fixpoint Transfer Theorem

THEOREM 1 (KNASTER-TARSKI, 1955). Assume (D, \leq) is a complete lattice. Then every monotonic function $f: D \to D$ has a least fixed point $d_0 \in D$.

From Local to Global Correctness: Kleene Iteration

Fixpoint Transfer Theorem

Let (L, \leq) and $(L^{\#}, \leq^{\#})$ be two lattices, $\gamma : L^{\#} \to L$ a monotone function, and $F : L \to L$ and $F^{\#} \to F^{\#}$ two monotone functions, with

$$\forall l^{\#} \in L^{\#} : \gamma(F^{\#}(l^{\#})) \ge F(\gamma(l^{\#}))$$

Then:

Local Correctness

 \boldsymbol{x}

 $egin{cases} x \geq 0 \ y \geq 0 \end{cases}$

y

 $\left\{egin{array}{ll} x\in [19,\ 77]\ y\in [20,\ 03] \end{array}
ight.$

 \boldsymbol{x}

Overview: Numerical Abstractions Octagons (Mine, 2001)

 $oldsymbol{y}$

 \boldsymbol{x}

 \boldsymbol{x}

 $\left\{egin{array}{l} 19x+77y\leq 2004\ 20x+03y\geq 0\end{array}
ight.$

 \rightarrow Very Expensive...

Overview: Numerical Abstractions Simple and Linear Congruences (Granger, 1989+1991)

Which abstraction is the most precise?

Numerical Abstractions

Which abstraction is the most precise? Depends on questions you want to answer!

Numerical Abstractions

Which abstraction is the most precise?

Depends on questions you want to answer!

Characteristics of Non-relational Domains

• Non-relational/independent attribute abstraction:

Abstract each variable separately

$$(\mathcal{P}(\mathbb{Z}), \subseteq) \xrightarrow{\gamma} (\text{NUMERICAL}, \sqsubseteq)$$

Maintains no relations between variable values

• Can be lifted to an abstraction of valuations of multiple variables in the expected way:

$$(\mathcal{P}(Vars \to \mathbb{Z}), \subseteq) \xleftarrow{\gamma_1}{\alpha_1} (Vars \to \mathcal{P}(\mathbb{Z}), \leq) \xleftarrow{\gamma_2}{\alpha_2} (Vars \to \text{NUMERICAL}, \sqsubseteq)$$

 $\alpha_2(f) := \lambda x \in Vars.\alpha(f(x)) \qquad \gamma_2(f^{\#}) := \lambda x \in Vars.\gamma(f^{\#}(x))$

The Interval Domain

Abstracts sets of values by enclosing interval INTERVAL = { $[l, u] \mid l \leq u, l \in \mathbb{Z} \cup \{-\infty\}, u \in \mathbb{Z} \cup \{\infty\}\} \cup \{\bot\}$ where \leq is appropriately extended from $\mathbb{Z} \times \mathbb{Z}$ to $(\mathbb{Z} \cup \{-\infty\}) \times (\mathbb{Z} \cup \{\infty\})$

Intervals are ordered by inclusion:

 $\perp \sqsubseteq x \quad \forall x \in \text{INTERVAL}$ $[l, u] \sqsubseteq [l', u'] \text{ if } l' \leq l \land u \leq u'$

 $(INTERVAL, \Box)$ forms a complete lattice.

• Concretization:

$$\gamma(\bot) = \emptyset$$

$$\gamma([l, u]) = \{ n \in \mathbb{Z} \mid l \le n \le u \}$$

• Abstraction:

$$\alpha(\emptyset) = \bot$$
$$\alpha(S) = [\inf S, \sup S]$$

They form a Galois connection.

Calculating with Intervals:

• • • Example: Interval Analysis $x \rightarrow [0,3] \quad x \rightarrow [0,2] \quad x \rightarrow [0,1] \quad x \rightarrow [0,0] \quad (1 - Neg(x < 3) - 5)$

 $x \rightarrow [3,3]$

7 at program point 5?

7 at program point 5?