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m When jobs (usually with the same computation requirement) are
released recurrently, these jobs can be modeled by a recurrent task
m Periodic Task 7;:
> A job is released exactly and periodically by a period T;
» A phase ¢; indicates when the first job is released
» A relative deadline D; for each job from task
> (¢i, G, T;, D;) is the specification of periodic task 7;, where C; is the
worst-case execution time. When ¢; is omitted, we assume ¢; is 0.

July 42013 3/58
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COMPUTER SCIENCE

m When jobs (usually with the same computation requirement) are
released recurrently, these jobs can be modeled by a recurrent task

m Periodic Task 7;:

A job is released exactly and periodically by a period T;

A phase ¢; indicates when the first job is released

A relative deadline D; for each job from task 7;

(éi, Gi, T;, D;) is the specification of periodic task 7;, where C; is the
worst-case execution time. When ¢; is omitted, we assume ¢; is 0.

v
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m Sporadic Task 7
» T; is the minimal time between any two consecutive job releases
» A relative deadline D; for each job from task 7;
» (G, T;, D;) is the specification of sporadic task 7;, where C; is the
worst-case execution time.

July 42013 3/58
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Relative Deadline vs Period (revisited) —
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For a task set, we say that the task set is with
m implicit deadline when the relative deadline D; is equal to the period
T;, i.e., D; = T;, for every task 7;,
m constrained deadline when the relative deadline D; is no more than the
period T;, i.e., D; < T;, for every task 7;, or
m arbitrary deadline when the relative deadline D; could be larger than
the period T; for some task ;.

TS
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m The jobs of task 7; are denoted J; 1, Jio,.......

m Periodic Tasks:
» Synchronous system: Each task has a phase of 0.
» Asynchronous system: Phases are arbitrary.

m Hyperperiod: Least common multiple (LCM) of T;.
m Task utilization of task 7;: u; ;= %

m System (total) utilization: U(T) := 3" 7 ui.

July 42013 5/58
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Schedulability for Static-Priority Scheduling
m Utilization-Based Analysis (Relative Deadline = Period)
m Demand-Based Analysis
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Static-Priority Scheduling EALEN
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m Different jobs of a task are assigned the same priority.
» m; is the priority of task 7;.
» HP; is the subset of tasks with higher priority than 7;.
» Note: we will assume that no two tasks have the same priority.
m We will implicitly index tasks in decreasing priority order, i.e., 7; has
higher priority than 7, if i < k.

S TS
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Static-Priority Scheduling EALEN

COMPUTER SCIENCE

m Different jobs of a task are assigned the same priority.

» m; is the priority of task 7;.

» HP; is the subset of tasks with higher priority than 7;.

» Note: we will assume that no two tasks have the same priority.
m We will implicitly index tasks in decreasing priority order, i.e., 7; has

higher priority than 7, if i < k.

m Which strategy is better or the best?

> largest execution time first?

» shortest job first?

» least-utilization first?

» most importance first?

» least period first?

S TS
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Rate-Monotonic (RM) Scheduling RSN
(Liu and Layland, 1973) COMPUTER SCIENCE

Priority Definition: A task with a smaller period has higher priority, in
which ties are broken arbitrarily.

Example Schedule: 71 = (1,6,6), » = (2,8,8),73 = (4,12,12).
[(Ci, Ti, Di)]
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Deadline-Monotonic (DM) Scheduling (Leung and vy

. COMPUTER SCIENCE
Whitehead)

Priority Definition: A task with a smaller relative deadline has higher
priority, in which ties are broken arbitrarily.

Example Schedule: 71 =(2,8,4), » = (1,6,6), 73 = (4,12,12).
[(Cia TiaDi)]
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Optimality (or not) of RM and DM UNIVERSITY
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Example Schedule: 71 = (2,4,4), m» = (5, 10, 10)

ol T [l 1
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The above system is schedulable.
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Example Schedule: 7 = (2,4,4), » = (5,10, 10)

nIﬁ I

0 16
-l B EE ]
0 2

The above system is schedulable.

No static-priority scheme is optimal for scheduling periodic tasks: However,
a deadline will be missed, regardless of how we choose to (statically)
prioritize 71 and 7.

Corollary

Neither RM nor DM is optimal.

SO S
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A critical instant of a task 7; is a time instant such that:

@ the job of 7; released at this instant has the maximum response time
of all jobs in 7;, if the response time of every job of 7; is at most D;,
the relative deadline of 7;, and

@ the response time of the job released at this instant is greater than D;
if the response time of some job in 7; exceeds D;.

Informally, a critical instant of 7; represents a worst-case scenario from 7;'s
standpoint.

R Y
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Critical Instants in Static-Priority Systems UNIVERSTTY
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[Liu and Layland, JACM 1973] A critical instant of task 7; for a set of
independent, preemptable periodic tasks with relative deadlines equal to their
respective periods is to release the first jobs of all the higher-priority tasks
at the same time.

We are not saying that 71, ..., 7; will all necessarily release their first jobs
at the same time, but if this does happen, we are claiming that the time of
release will be a critical instant for task ;.

G

7

m System (total) utilization: U(T) =3, 7 %

m Task utilization: u; =

iAo S
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t1 ¢ tr

We will show that shifting the release time of tasks together will
increase the response time of task 7.

m Consider a job of 7}, released at time t/, with completion time tg.
m Let t_; be the latest idle instant for 71, ...,7;_1 at or before tg.

m Let J be 7;'s job released at t'.
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m 1 1 1
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t1 ¢ tr

We will show that shifting the release time of tasks together will
increase the response time of task 7.

m Moving J from t' to t_; does not decrease the completion time
of J.
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] 1 1 1 T

We will show that shifting the release time of tasks together will
increase the response time of task 7.

m Releasing 7 at t_; does not decrease the completion time of J.
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We will show that shifting the release time of tasks together will
increase the response time of task 7;.

m Releasing 7 at t_; does not decrease the completion time of J.

m Repeating the above movement and proves the criticality of the
critical instant
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Harmonic Real-Time Systems AN
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A system of periodic tasks harmonic (also: simply periodic) if for every pair
of tasks 7; and 7y in the system where T; < Ty, T is an integer multiple
of T;.

For example: Periods are 2,6,12,24.

[Kuo and Mok]: A system T of harmonic, independent, preemptable, and
implicit-deadline tasks is schedulable on one processor according to the RM

algorithm if and only if its total utilization U = ereT% is less than or
J
equal to one.
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The case for the “only-if” part is similar and left as an exercise.

{5 S S B S I S|
o] mmmm Em 7 prom w1
s mm  mxim

Suppose that 7 is not schedulable and 7; misses its deadline by
contradiction.

m The response time of 7; is larger than D;.

m By critical instants, releasing all the tasks 71,72, ..., 7; at time 0 will
lead to a response time of 7; larger than D;.

Jan Reineke
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Proof for Harmonic Systems (cont.) UNIVERSITY
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As the schedule is work-conserving, we know that from time 0 to time D,,

the whole system is executing jobs. Therefore,

D; < the workload released in time interval [0, D;)
= Z G - ( the number of job releases of 7; in time interval [0, D;))
j=1

£ f8]-5e

*

where =* is because D; = T; is an integer multiple of T; when j <.

SO0 1SS
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Proof for Harmonic Systems (cont.) UNIVERSITY

(_(7\/\|U|ER CIENCE
As the schedule is work-conserving, we know that from time 0 to time D,,

the whole system is executing jobs. Therefore,

D; < the workload released in time interval [0, D;)
= Z G - ( the number of job releases of 7; in time interval [0, D;))
j=1

£ f8]-5e

*

where =* is because D; = T; is an integer multiple of T; when j <.

By canceling D;, we reach the contradiction by having

1<Z Z

€T

§1

SO
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Optimality Among Static-Priority Algorithms UNIVERSITY 3

A system T of independent, preemptable, synchronous periodic tasks that
have relative deadlines equal to their respective periods can be feasibly sched-
uled on one processor according to the RM algorithm whenever it can be
feasibly scheduled according to any static priority algorithm.

We will only discuss systems with 2 tasks, and the generalization is left as
an exercise.

m Suppose that T; = D; < Dy = T and 77 is with higher priority.

m We would like to swap the priorities of 7, and 7.

m Without loss of generality, the response time of 77 after priority
swapping is always equal to (or no more than) C;.

m By the critical instant theorem, we only need to check response time
of the first job of 7> during a critical instant.

m Assuming that non-RM priority ordering is schedulable, the critical

instant theorem also implies that C; + (G < Th.
July 4, 2013 21 /58
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Optimality Among Static-Priority Algorithms (cont. mnm\
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After swapping (71 has higher priority), there are two cases:

There is sufficient time to complete all F jobs of 71 before the second job arrival
of 7, where F = {%J In other words, C; + F - T1 < T».

TIT T f T T 1 T : ¢ T
FT;
TQT
By GG + G, < Ty, we have

FI(G+GQ)<F- T,
E]'ZI;_ 1)C1 + G < T, must F>1 ~FC+ G <F-T,

(F+1)C1+C2§F~T1—|—C1
=(F+1)G+G< T

iAo S



Optimality Among Static-Priority Algorithms (cont. jﬁmﬁ?

After swapping (71 has higher priority), there are two cases:

COMPUTER SCIENCE

The F-th job of 71 does not complete before the arrival of the second job of 7.
In other words, C; + F - Ty > T,, where F = L%J

& |

I} I}

T2T
i

FT,

To be schedulable

FC; + G < FT1 must hold.

By (i1 + G < Ty, we have
F(G+G)<F- T,
FPPloFG+ G <F- T

July 4, 2013 23 / 58
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We have shown that if any two-task system with implicit deadlines
(D; = T;) is schedulable according to arbitrary fixed-priority assignment,
then it is also schedulable according to RM.

Exercise: Complete proof by extending argument to n periodic tasks.

Note: When D; < T; for all tasks, DM (Deadline Monotonic) can be

shown to be an optimal static-priority algorithm using similar argument.
Proof left as an exercise.

T o e
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Utilization-Based Schedulability Test e s
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m Task utilization:

m System (total) utilization:
=7
E I
A task system T fully utilizes the processor under scheduling algorithm A if
any increase in execution time (of any task) causes A to miss a deadline.
UB(A) is the utilization bound for algorithm A:
UB(A) :=| {UE€R|VT.U(T) < U= T is schedulable under A}

= |—|{U ) | T fully utilizes the processor under A}

iAo S S
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Feasible Unsure Infeasible
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Liu and Layland Bound UNIRy
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[Liu and Layland] A set of n independent, preemptable periodic tasks with
relative deadlines equal to their respective periods can be scheduled on a
processor according to the RM algorithm if its total utilization U is at most
n(2% —1). In other words,

UB(RM, n) = n(2% — 1) > 0.693.

n UB(RM,n) n UB(RM,n)
2 0.828 3 0.779
4 0.756 5 0.743
6 0.734 7 0.728
8 0.724 9 0.720

10 0.717 In2 0.693

SO S
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T T
RM Bound

10 20 30 40 50 60 70 80 90 10C
n
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Proof Sketch for UB(RM, n) UNIVERSITY
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Note: The original proof for this theorem by Liu and Layland is not correct.
For a corrected proof, see R. Devillers & J. Goossens at
http://www.ulb.ac.be/di/ssd/goossens/lub.ps. Note the proof we
present is a bit different than the one presented by Buttazzo's textbook.
Without loss of generality (why?), we will only consider task sets with
distinct periods, i.e., Ty < To < --- < T,,. We will present our proof
sketch in two parts:

@ First, we consider the special case where T, < 2Tj.

@ Second, we show how to relax this constraint.

SO 5
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Definition
A task set 7, is called difficult-to-schedule under scheduling algorithm A if
T, fully utilizes the processor if scheduled under A.

Our Strategy

m We seek the most difficult-to-schedule task set 7, for n tasks:
A task set that is difficult-to-schedule with the minimal utilization.

m We derive a tight lower bound on the utilization of the most
difficult-to-schedule task set 7, in terms of n, the UB(RM, n).

TR e ]
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@ For a task set with given periods, define the execution times for the
most difficult-to-schedule task set.

@ Show that any difficult-to-schedule task set whose execution times
differ from those in step 1 has a greater utilization than the most
difficult-to-schedule task set provided in step 1.

© Compute a closed-form expression for UB(RM, n).

SO SS
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Suppose 7,f is a task set with T, < 2T; and

Ce = Tyq1— Tk fork=1,2,...,n—1
n—1
Co=Th— 22 Ck=2T,— T,. (Because: Zz;i Ck=Th—Th)
k=1
7’1T T T

Such a task set 7," is the most difficult-to-schedule task set. I

SO SS
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Proof of the Most Difficult-to-Schedule Statement UNvErsiTY
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Proof strategy:

We show that the difficult-to-schedule task set given on the previous slide
can be transformed into any difficult-to-schedule task set without
decreasing the task set's utilization:

Starting with the highest priority task and working our way down to the
lowest priority task, we incrementally modify the execution times of 7, to
match any other difficult-to-schedule task set, and for each modification,
utilization does not decrease.

If we need to increase (decrease) the execution time of task 7;, then we

compensate for this by decreasing (increasing) the execution time of some
Tk, where k > |.

July 4,203 33 /58
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Proof of the Most Difficult-to-Schedule: UNIVERSITY
Increase by A

COMPUTER SCIENCE

Let's increase the execution of some task 7; (i < n) by A (A > 0).
C,-,: T,‘+1— T,'—I—A: C;—i—A.

To keep the processor busy up to T,,, we can decrease the execution time
of a task 74 (k > i) by A.

C, = Ci— A

Since T; < Ty, the utilization of the above task set 7, is no less than the
original task set 7, by

u(T,) - U(77) =

> 0.

>

A
Ty

o Reineke SO A5
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Proof of the Most Difficult-to-Schedule: UNIVERSITY
Decrease by A
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Let's decrease the execution of some task 7; (i < n) by A (A > 0).
Cl=T1—T—A=C —A.

To keep the processor busy up to T,,, we can increase the execution time of
a task 7 (k > i) by 2A. (Why 2A7)

C;( = Ck + 2A.

Since Ty < 2T;, the utilization of the above task set 7, is no less than the
original task set 7, by

—A 27

U(TR) = UT3) = ==+ 5 =

July 4, 2013 35 /58
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Calculating UB(RM, n) =
The Utilization of the Most Difficult-ot-Schedule Tats(fli“gwm

m Utilization of T for given task periods:
Let x; be '“

T; n—1 n—1
" 2T — T, Ti1—T; Ty
U(ﬂ): T +Z +T' 22?+(ZXI)_'7
n i=1 ! n i=1
n—1

2
+ i)—n
I'I"lx, ( )

i=1

m Which task periods minimize the utilization?
By getting partial derivatives of U(7,") to the variables, we know that U(7;") is
minimized when

* I—In—l ;
ouTy) _ 4 A X)/X“:1—#—0,\%:1,2,...,,1—1.
8Xk (n 1X') Xkrll 1X’
m Therefore, all x; need to be equal for k =1,2,....,n—1: x1 = x2 = - -+ = Xp_1:
2 = 2= B
X = X = X = 2n.
k I_I;,;ll)(' k k

July 4,203 36 /58
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Calculating UB(RM, n) (cont.) UNIVERSITY
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o 1. I
m By substituting x; = 2 into our utilization formula, we have

U(Ty) < n(25 — 1)
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m Suppose that 7, is a difficult-to-schedule task set with n tasks.
m We are going to transform any difficult-to-schedule task set 7, with n
tasks and T, > 2T; for some i to 7, such that

@ the period T, in 7, is no more than twice of Ty in 7./, and
Q U(T») = U(Ty,).

Transform 7T}, step-by-step to get 7,
m Find a task 7 in task set 7, with T, < T, < ({+1)T, and £ is an
integer that is at least 2.
m Create a task 7], such that the period is T, and the execution time C],
is Cn + (K - 1)Ck.
m Create a task 7; such that the period is /T and the execution time
CL is Ck.
m Let 7 be Tp\ {7k, mn} U {T/,(,T,/,}
July 4, 2013 38 /58
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Conditions:

QO (T <Tp,<(l+1)Ty with ¢ > 2.

@ T, =T,C=C+{—-1)Cand T, =LT and C, = Cy.
Results: since £T, < T,, we know

oy U= G GGG G

1 1
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m Moreover 7, above is also a difficult-to-schedule task set.

m By repeating the above procedure, we can transform to a task set 7,/
with T, < 2T7 without increasing its utilization.

This concludes the proof of the following theorem:
Theorem

[Liu and Layland, JACM 1973] A set of n independent, preemptable periodic
tasks with relative deadlines equal to their respective periods can be sched-
uled on a processor according to the RM algorithm if its total utilization U
is at most n(2% —1). In other words,

UB(RM, n) = n(2% — 1) > 0.693.

lim UB(RM,n) = lim n(2n —1)=1In2>0.693

n—o0 n—o0o

SO 58
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m If the total utilization is larger than 0.693 but less than or equal to 1,
the utilization-bound schedulability test cannot provide guarantees for
schedulability or unschedulability.

m Sometimes, we can manipulate the periods such that the new task set
is a harmonic task set and its schedulability can be used.

T o 2yl i



