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universityRecurrent Task Models (revisited)

When jobs (usually with the same computation requirement) are
released recurrently, these jobs can be modeled by a recurrent task
Periodic Task ⌧i :

I
A job is released exactly and periodically by a period Ti

I
A phase �i indicates when the first job is released

I
A relative deadline Di for each job from task ⌧i

I (�i ,Ci ,Ti ,Di ) is the specification of periodic task ⌧i , where Ci is the

worst-case execution time. When �i is omitted, we assume �i is 0.

Sporadic Task ⌧i :
I Ti is the minimal time between any two consecutive job releases

I
A relative deadline Di for each job from task ⌧i

I (Ci ,Ti ,Di ) is the specification of sporadic task ⌧i , where Ci is the

worst-case execution time.
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For a task set, we say that the task set is with
implicit deadline when the relative deadline Di is equal to the period
Ti , i.e., Di = Ti , for every task ⌧i ,
constrained deadline when the relative deadline Di is no more than the
period Ti , i.e., Di  Ti , for every task ⌧i , or
arbitrary deadline when the relative deadline Di could be larger than
the period Ti for some task ⌧i .
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The jobs of task ⌧i are denoted Ji ,1, Ji ,2, . . . . . ..
Periodic Tasks:

I
Synchronous system: Each task has a phase of 0.

I
Asynchronous system: Phases are arbitrary.

Hyperperiod: Least common multiple (LCM) of Ti .
Task utilization of task ⌧i : ui :=

Ci
Ti

.
System (total) utilization: U(T ) :=

P
⌧i2T ui .
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1 Schedulability for Static-Priority Scheduling
Utilization-Based Analysis (Relative Deadline = Period)

Demand-Based Analysis

2 Schedulability for Dynamic-Priority Scheduling
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Different jobs of a task are assigned the same priority.
I ⇡i is the priority of task ⌧i .
I HPi is the subset of tasks with higher priority than ⌧i .
I

Note: we will assume that no two tasks have the same priority.

We will implicitly index tasks in decreasing priority order, i.e., ⌧i has
higher priority than ⌧k if i < k .
Which strategy is better or the best?

I
largest execution time first?

I
shortest job first?

I
least-utilization first?

I
most importance first?

I
least period first?
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(Liu and Layland, 1973)
Priority Definition: A task with a smaller period has higher priority, in
which ties are broken arbitrarily.

Example Schedule: ⌧
1

= (1, 6, 6), ⌧
2

= (2, 8, 8), ⌧
3

= (4, 12, 12).
[(Ci ,Ti ,Di )]
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⌧
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Whitehead)

Priority Definition: A task with a smaller relative deadline has higher
priority, in which ties are broken arbitrarily.

Example Schedule: ⌧
1

= (2, 8, 4), ⌧
2

= (1, 6, 6), ⌧
3

= (4, 12, 12).
[(Ci ,Ti ,Di )]
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⌧
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⌧
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⌧
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⌧
2

⌧
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⌧
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Example Schedule: ⌧
1

= (2, 4, 4), ⌧
2

= (5, 10, 10)

0 2 4 6 8 10 12 14 16 18 20

⌧
1

⌧
1

⌧
1

⌧
1

⌧
1

⌧
1

0 2 4 6 8 10 12 14 16 18 20

⌧
2

⌧
2

⌧
2 ⌧

2

⌧
2

The above system is schedulable.
No static-priority scheme is optimal for scheduling periodic tasks: However,
a deadline will be missed, regardless of how we choose to (statically)
prioritize ⌧

1

and ⌧
2

.

Corollary

Neither RM nor DM is optimal.
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Definition
A critical instant of a task ⌧i is a time instant such that:

1 the job of ⌧i released at this instant has the maximum response time
of all jobs in ⌧i , if the response time of every job of ⌧i is at most Di ,
the relative deadline of ⌧i , and

2 the response time of the job released at this instant is greater than Di
if the response time of some job in ⌧i exceeds Di .

Informally, a critical instant of ⌧i represents a worst-case scenario from ⌧i ’s
standpoint.
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Theorem
[Liu and Layland, JACM 1973] A critical instant of task ⌧i for a set of
independent, preemptable periodic tasks with relative deadlines equal to their
respective periods is to release the first jobs of all the higher-priority tasks
at the same time.

We are not saying that ⌧
1

, . . . , ⌧i will all necessarily release their first jobs
at the same time, but if this does happen, we are claiming that the time of
release will be a critical instant for task ⌧i .

Task utilization: ui =
Ci
Ti

.

System (total) utilization: U(T ) =
P

⌧i2T
Ci
Ti

.
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⌧
1

⌧
2

⌧
3

⌧
4

t�1 t 0 tR
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We will show that shifting the release time of tasks together will
increase the response time of task ⌧i .

Consider a job of ⌧i , released at time t 0, with completion time tR .
Let t�1

be the latest idle instant for ⌧
1

, . . . , ⌧i�1

at or before tR .
Let J be ⌧i ’s job released at t 0.
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We will show that shifting the release time of tasks together will
increase the response time of task ⌧i .

Moving J from t 0 to t�1

does not decrease the completion time
of J.
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We will show that shifting the release time of tasks together will
increase the response time of task ⌧i .

Releasing ⌧
1

at t�1

does not decrease the completion time of J.
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We will show that shifting the release time of tasks together will
increase the response time of task ⌧i .

Releasing ⌧
2

at t�1

does not decrease the completion time of J.
Repeating the above movement and proves the criticality of the
critical instant
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Definition
A system of periodic tasks harmonic (also: simply periodic) if for every pair
of tasks ⌧i and ⌧k in the system where Ti < Tk , Tk is an integer multiple
of Ti .

For example: Periods are 2, 6, 12, 24.

Theorem
[Kuo and Mok]: A system T of harmonic, independent, preemptable, and
implicit-deadline tasks is schedulable on one processor according to the RM
algorithm if and only if its total utilization U =

P
⌧j2T

Cj
Tj

is less than or
equal to one.
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The case for the “only-if” part is similar and left as an exercise.

⌧
1

⌧
2

⌧
3

Suppose that T is not schedulable and ⌧i misses its deadline by
contradiction.

The response time of ⌧i is larger than Di .
By critical instants, releasing all the tasks ⌧

1

, ⌧
2

, . . . , ⌧i at time 0 will
lead to a response time of ⌧i larger than Di .
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As the schedule is work-conserving, we know that from time 0 to time Di ,
the whole system is executing jobs. Therefore,

Di < the workload released in time interval [0,Di )

=
iX

j=1

Cj · ( the number of job releases of ⌧j in time interval [0,Di ))

=
iX

j=1

Cj ·
⇠

Di

Tj

⇡
=⇤

iX

j=1

Cj ·
Di

Tj
,

where =⇤ is because Di = Ti is an integer multiple of Tj when j  i .

By canceling Di , we reach the contradiction by having

1 <
iX

j=1

Cj

Tj


X

⌧j2T

Cj

Tj
 1.
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Theorem
A system T of independent, preemptable, synchronous periodic tasks that
have relative deadlines equal to their respective periods can be feasibly sched-
uled on one processor according to the RM algorithm whenever it can be
feasibly scheduled according to any static priority algorithm.

We will only discuss systems with 2 tasks, and the generalization is left as
an exercise.

Suppose that T
1

= D
1

< D
2

= T
2

and ⌧
2

is with higher priority.
We would like to swap the priorities of ⌧

1

and ⌧
2

.
Without loss of generality, the response time of ⌧

1

after priority
swapping is always equal to (or no more than) C

1

.
By the critical instant theorem, we only need to check response time
of the first job of ⌧

2

during a critical instant.
Assuming that non-RM priority ordering is schedulable, the critical
instant theorem also implies that C

1

+ C
2

 T
1

.
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After swapping (⌧1 has higher priority), there are two cases:

Case 1
There is sufficient time to complete all F jobs of ⌧1 before the second job arrival

of ⌧2, where F =
j

T2
T1

k
. In other words, C1 + F · T1 < T2.

⌧1

FT1
⌧2

To be schedulable
(F + 1)C1 + C2  T2 must

hold.

By C1 + C2  T1, we have

F (C1 + C2)  F · T1
F�1 )FC1 + C2  F · T1

(F + 1)C1 + C2  F · T1 + C1

)(F + 1)C1 + C2 < T2
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After swapping (⌧1 has higher priority), there are two cases:

Case 2
The F -th job of ⌧1 does not complete before the arrival of the second job of ⌧2.

In other words, C1 + F · T1 � T2, where F =
j

T2
T1

k
.

⌧1

FT1
⌧2

To be schedulable
FC1 + C2  FT1 must hold.

By C1 + C2  T1, we have

F (C1 + C2)  F · T1
F�1 )FC1 + C2  F · T1
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We have shown that if any two-task system with implicit deadlines
(Di = Ti ) is schedulable according to arbitrary fixed-priority assignment,
then it is also schedulable according to RM.

Exercise: Complete proof by extending argument to n periodic tasks.

Note: When Di  Ti for all tasks, DM (Deadline Monotonic) can be
shown to be an optimal static-priority algorithm using similar argument.
Proof left as an exercise.
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Task utilization:
ui :=

Ci

Ti
.

System (total) utilization:

U(T ) :=
X

⌧i2T

Ci

Ti
.

A task system T fully utilizes the processor under scheduling algorithm A if
any increase in execution time (of any task) causes A to miss a deadline.

UB(A) is the utilization bound for algorithm A:

UB(A) :=
G

{U 2 R | 8T .U(T )  U ) T is schedulable under A}

=
l

{U(T ) | T fully utilizes the processor under A}
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Feasible Unsure Infeasible

T? U(T?)

T
5

U(T
5

)

T
4

U(T
4

)

T
3

U(T
3

)

T
2

U(T
2

)

T
1

U(T
1

)

0 UB(A) 1

...
... ...
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Theorem
[Liu and Layland] A set of n independent, preemptable periodic tasks with
relative deadlines equal to their respective periods can be scheduled on a
processor according to the RM algorithm if its total utilization U is at most
n(2

1
n � 1). In other words,

UB(RM, n) = n(2
1
n � 1) � 0.693.

n UB(RM, n) n UB(RM, n)
2 0.828 3 0.779
4 0.756 5 0.743
6 0.734 7 0.728
8 0.724 9 0.720
10 0.717 ln2 0.693
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Note: The original proof for this theorem by Liu and Layland is not correct.
For a corrected proof, see R. Devillers & J. Goossens at
http://www.ulb.ac.be/di/ssd/goossens/lub.ps. Note the proof we
present is a bit different than the one presented by Buttazzo’s textbook.
Without loss of generality (why?), we will only consider task sets with
distinct periods, i.e., T

1

< T
2

< · · · < Tn. We will present our proof
sketch in two parts:

1 First, we consider the special case where Tn  2T
1

.
2 Second, we show how to relax this constraint.
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Definition
A task set Tn is called difficult-to-schedule under scheduling algorithm A if
Tn fully utilizes the processor if scheduled under A.

Our Strategy

We seek the most difficult-to-schedule task set Tn for n tasks:
A task set that is difficult-to-schedule with the minimal utilization.
We derive a tight lower bound on the utilization of the most
difficult-to-schedule task set Tn in terms of n, the UB(RM, n).
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1 For a task set with given periods, define the execution times for the
most difficult-to-schedule task set.

2 Show that any difficult-to-schedule task set whose execution times
differ from those in step 1 has a greater utilization than the most
difficult-to-schedule task set provided in step 1.

3 Compute a closed-form expression for UB(RM, n).
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Suppose T ⇤
n is a task set with Tn  2T

1

and

Ck = Tk+1

� Tk for k = 1, 2, . . . , n � 1

Cn = Tn � 2
n�1X

k=1

Ck = 2T
1

� Tn. (Because:
Pn�1

k=1

Ck = Tn � T
1

)

⌧
1

⌧
2

⌧
3

⌧n�1

⌧n

Theorem
Such a task set T ⇤

n is the most difficult-to-schedule task set.
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Proof strategy:
We show that the difficult-to-schedule task set given on the previous slide
can be transformed into any difficult-to-schedule task set without
decreasing the task set’s utilization:

Starting with the highest priority task and working our way down to the
lowest priority task, we incrementally modify the execution times of T ⇤

n to
match any other difficult-to-schedule task set, and for each modification,
utilization does not decrease.

If we need to increase (decrease) the execution time of task ⌧i , then we
compensate for this by decreasing (increasing) the execution time of some
⌧k , where k > i .
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Increase by �

Let’s increase the execution of some task ⌧i (i < n) by � (� > 0).

C 0
i = Ti+1

� Ti +� = Ci +�.

To keep the processor busy up to Tn, we can decrease the execution time
of a task ⌧k (k > i) by �.

C 0
k = Ck ��.

Since Ti < Tk , the utilization of the above task set T 0
n is no less than the

original task set T ⇤
n by

U(T 0
n)� U(T ⇤

n ) =
�

Ti
� �

Tk
� 0.
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Decrease by �

Let’s decrease the execution of some task ⌧i (i < n) by � (� > 0).

C 0
i = Ti+1

� Ti �� = Ci ��.

To keep the processor busy up to Tn, we can increase the execution time of
a task ⌧k (k > i) by 2�. (Why 2�?)

C 0
k = Ck + 2�.

Since Tk  2Ti , the utilization of the above task set T 0
n is no less than the

original task set T ⇤
n by

U(T 0
n)� U(T ⇤

n ) =
��

Ti
+

2�
Tk

� 0.
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The Utilization of the Most Difficult-ot-Schedule Task Set
Utilization of T ⇤

n for given task periods:

Let xi be

Ti+1
Ti

.

U(T ⇤
n ) =

2T1 � Tn

Tn
+

n�1X

i=1

Ti+1 � Ti

Ti
= 2

T1

Tn
+ (

n�1X

i=1

xi )� n

=
2

⇧n�1
i=1 xi

+ (
n�1X

i=1

xi )� n

Which task periods minimize the utilization?

By getting partial derivatives of U(T ⇤
n ) to the variables, we know that U(T ⇤

n ) is

minimized when

@U(T ⇤
n )

@xk
= 1 � 2(⇧n�1

i=1 xi )/xk

(⇧n�1
i=1 xi )2

= 1 � 2

xk⇧
n�1
i=1 xi

= 0, 8k = 1, 2, . . . , n � 1.

Therefore, all xi need to be equal for k = 1, 2, . . . , n � 1: x1 = x2 = · · · = xn�1:

xk =
2

⇧n�1
i=1 xi

) x

n
k = 2 ) xk = 2

1
n .
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By substituting xi = 2
1
n into our utilization formula, we have

U(T ⇤
n )  n(2

1
n � 1)
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1

Strategy

Suppose that Tn is a difficult-to-schedule task set with n tasks.
We are going to transform any difficult-to-schedule task set Tn with n
tasks and Tn > 2Ti for some i to T 0

n such that
1

the period Tn in T 0
n is no more than twice of T1 in T 0

n , and

2 U(Tn) � U(T 0
n ).

Transform Tn step-by-step to get T 0
n :

Find a task ⌧k in task set Tn with `Tk < Tn  (`+ 1)Tk and ` is an
integer that is at least 2.
Create a task ⌧ 0n such that the period is Tn and the execution time C 0

n
is Cn + (`� 1)Ck .
Create a task ⌧ 0k such that the period is `Tk and the execution time
C 0

k is Ck .
Let T 0

n be Tn \ {⌧k , ⌧n} [
�
⌧ 0k , ⌧

0
n
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(cont.)

⌧k

⌧n

⌧ 0k
⌧ 0n

`Tk Tn

Conditions:
1 `Tk < Tn  (`+ 1)Tk with ` � 2.
2 T 0

n = Tn,C 0
n = Cn + (`� 1)Ck and T 0

k = `Tk and C 0
k = Ck .

Results: since `Tk < Tn, we know

U(Tn)� U(T 0
n) =

Cn

Tn
+

Ck

Tk
� (`� 1)Ck + Cn

Tn
� Ck

`Tk

=

✓
1

`Tk
� 1

Tn

◆
(`� 1)Ck > 0
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Moreover T 0
n above is also a difficult-to-schedule task set.

By repeating the above procedure, we can transform to a task set T 0
n

with T 0
n  2T 0

1

without increasing its utilization.

This concludes the proof of the following theorem:
Theorem
[Liu and Layland, JACM 1973] A set of n independent, preemptable periodic
tasks with relative deadlines equal to their respective periods can be sched-
uled on a processor according to the RM algorithm if its total utilization U
is at most n(2

1
n � 1). In other words,

UB(RM, n) = n(2
1
n � 1) � 0.693.

lim
n!1

UB(RM, n) = lim
n!1

n(2
1
n � 1) = ln 2 � 0.693

Jan Reineke July 4, 2013 40 / 58



computer science

saarland
universityRemarks on Harmonic Task Set

If the total utilization is larger than 0.693 but less than or equal to 1,
the utilization-bound schedulability test cannot provide guarantees for
schedulability or unschedulability.
Sometimes, we can manipulate the periods such that the new task set
is a harmonic task set and its schedulability can be used.
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