Design and Analysis of
Time-Critical Systems

Introduction

Jan Reineke @

DA}
) Honey M
uuuuuuuuu

uuuuuuuu
uuuuuuu

UNIVERSITY [
I
COMPUTER SCIENCE

ACACES Summer School 2017

Fiuggi, Italy

Structure of this Course

2. How are they implemented? (briefly)

// Perform the convolution.

for (int 1=0; i<10; i++) {
x[i] = a[i]l*b[j-1];
// Notify listeners.
notify(x[i]);

}

1. What are real-
time systems?

3. How to verify
the real-time
4. How to design constraints?
timing-predictable

microarchitectures?

1. What are Real-time Systems?

In a real-time system, correctness not only depends on
the logical results but also on the time at which results
are produced.

Typical misconception:
Real-time computing # compute things as fast as possible

Real-time computing = compute as fast as necessary,
but also not too fast

1. What are Real-Time Systems?

o Real-time systems are often embedded control systems

o Timing requirements often dictated by interaction with
physical environment:
Examples in automotives:
ABS: Anti-lock braking systems

ESP: Electronic stability control
Airbag controllers

Many more examples in trains, avionics, and robotics...

-
== YouLLi[:

Classification of Real-time Systems
Hard and Soft

“A real-time constraint is called hard, if not meeting that
constraint could result in a catastrophe” [Kopetz, 1997]

> Safety-critical real-time systems
> Main focus of this course

All other time constraints are called soft.

“A guaranteed system response has to be explained
without statistical arguments” [Kopetz, 1997].

> Focus is on safe, static methods

2. How are they implemented?

Typical structure of control systems:

> Controllers:

A 4
Actuators

Sensors
A 4

Physical |

Plant
A very basic approach to program such a system:

initialize state;
every clock tick do Can be modeled by

read inputs; automaton.

compute outputs and next state; —f——>

emit outputs How to describe such
end-do automata?

- Synchronous Languages

6

Basic Approach:
Advantages

o Perfect match for sampled-data control theory
o Easy to implement, even on “bare” machine
o Timing analysis is comparably “simple”:

time
0 1 2 :.3 . 4.1

[N i [W

=» Need to make sure that:
Worst-case execution time (WCET) < Period

>

2. How are they implemented?
Preemptive Scheduling

What if different computations need to be
performed at different periods?

Preemptive scheduling:

1 2 3 4

0
Non-preemptive T_ 1_) 1_
execution of two T , I I

periodic tasks: T
T2

2. How are they implemented?
Preemptive Scheduling

What if different computations need to be
performed at different periods?

Preemptive scheduling:

1 2 3 4

0
Preemptive : A A A
execution of the T1 'l

two tasks:
T, T

2. How are they implemented?
Multiprocessor Scheduling

What if we have a multi-core at our disposal?

Multiprocessor scheduling:

0 ! 2 ; 4

10

3. How to verify the real-time constraints?
Timing Analysis

Traditional separation into two phases:

1. Worst-case Execution Time (WCET) Analysis
determines bounds on the execution time of a
task when run in isolation

2. Response-time Analysis
determines bounds on tasks’ response times
given WCET bounds, accounting for interference
due to scheduling decisions

11

3. How to verify the real-time constraints?
WCET Analysis

Worst-case execution time = maximum execution
time of a program on a given microarchitecture

// Perform the convolution.

for (int i=0; 1i<10; i++) {
x[i] = al[il*b[j-1];
// Notify listeners.
notify(x[i]);

}

12

What does the execution time depend on?

o The input, determining which path is taken
through the program.

Simple

CPU <+—>»| Memory

Challenge:
How to determine feasible paths through a
given program?

What does the execution time depend on?

o The input, determining which path is taken
through the program.

o The state of the hardware platform:
Due to caches, pipelining, speculation, etc.

Complex CPU
(out-of-order
execution, <>
branch
prediction, etc.)

L1 Main
Cache Memory

Challenge:
How to determine feasible ,microarchitectural
paths” through a given program?

14

" LOAD r2, a
x=a+b; ——| LOAD r1, b
ADD r3,r2,r1

Example of Influence of
Microarchitectural State: Caches

Execution Time (Clock Cycles)

—>

Best Case WorstCase

PowerPC 755
“flies” in Airbus planes

Challenge 1a:
How to precisely and efficiently

analyze cache behavior?

Challenge 1b:

How to account for cache-
related preemption delays?

Challenge 2:

How to design caches and memory hierarchy
to enable precise and efficient analysis?

\

Preemptions
are not free!

15

What does the execution time depend on?

o The input, determining which path is taken
through the program.
o The state of the hardware platform:
Due to caches, pipelining, speculation, etc.
o Interference from the environment:

External interference as seen from the analyzed

task on shared busses, caches, memory.
A

Complex - L1 \ \

CPU Cache

L2 Main
x Cache Memory
Complex L1

CPU Cache

Example of Influence of
Corunning Tasks in Multicores

Radojkovic et al. (ACM TACO, 2012) on Intel Atom
and Intel Core 2 Quad:

up to 14x slow-down due to interference
on shared L2 cache and memory controller

Challenge 1:
How to manage shared resources in a multicore?

Challenge 2:
How to structure timing analysis (WCET +

response-time analysis) in the presence of
interference on shared resources?

17

Overview of Remainder of this Course

WCET/Low-level Analysis
Basic Structure of Modern WCET Analyzers

Static Cache Analysis + Cache Predictability

Response-time Analysis with a Focus on Shared Resources
Single Cores with Cache-related Preemption Overheads
Multi Cores with Shared Resources

Design for Timing Predictability

Predictability and Analyzability

Case Studies:
« Academic: Precision-Timed ARM (PTARM)
* Industrial: Kalray MPPA-256

18

