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Fixed Preemption Points

● Limited Preemptive Scheduling 
● An attractive paradigm that combines the benefits of fully-

preemptive and non-preemptive scheduling.
● Fixed Preemption Points (FPP)
● Preemption allowed only at predefined selected locations 

inside the code, called preemption points.
● The selection enables control of preemption related delays, 

possibly reducing their impact on schedulability.
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Preemption-Related Delay

Preemption-related delay consists of different delay types:
bus-related, scheduling-related, pipeline-related, etc.

Cache-Related Preemption Delay (CRPD) has the largest impact 
on preemption-related delay.

Therefore, it is important to accurately and as tightly as possible 
compute its upper bound. 4
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CRPD calculation
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● CRPD depends upon two important factors:
1. Where the preemption occurs? 
2. Which preempting tasks affect the CRPD at this point?

● Different preempting tasks cause different CRPDs due to eviction!
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Related FPP approaches

● CRPD for each point is computed in isolation, which leads to:
● Maximized pessimism regarding the preemption scenarios.
● Pessimistic CRPD upper bounds
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Motivation

● What if we want to calculate the CRPD defined per task?
● To account for each CRPD computed in isolation is pessimistic.
● Take into account that preemption scenario at one point affects the 

possible preemption scenarios of the succeeding ones.
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Problem formulation

● How to tighten the CRPD bounds by taking into account the 
information that preemption scenario at a certain point may affect 
CRPD of the succeeding points?

● How do we identify the “mutual affection” of CRPDs of the two 
succeeding preemption points?

8

affects	CRPD

Preemption/Eviction

Combination

+					=?



Proposed approach

For each task:
1. Identify infeasible preemption scenarios.
2. Among the remaining preemption scenarios identify the one 

causing the worst CRPD.
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Identifying Infeasible Preemption 
Scenario?
● Scenario when the preempting task cannot affect the CRPD of both 

succeeding preemption points of the preempted task.
● Case when the preempting task cannot be released twice during the 

maximum time interval from the start time of one basic block until the 
start time of the succeeding basic block.
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Why it is not a trivial problem?
● There are many different preemption scenarios. Which one causes 

the worst CRPD? 
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Proposed approach

● Optimization formulation:
● Input

●Preemption scenarios (not deemed infeasible)
● Goal

●Considering the CRPD computations of those scenarios, identify the one 
causing the worst CRPD bound.

● Output
● CRPD bound, defined for task.
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Evaluation

● Goal of the experiment:
● To investigate to what extent the CRPD bounds are tightened, 

compared to the simplified CRPD approximation.
● Experiment setup
● Taskset size fixed to 10
● Taskset utilization fixed to 80%
● Total Cache utilization (20% - 90%)
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Evaluation

● Results:
● Tightening improved the CRPD bounds.
● CRPD bounds tightened by 30% to 50%.
● Taskset size increase does not significantly deteriorates the tightening.
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Evaluation
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● Experiment Setup
● Taskset size (3 - 12)
● Total cache utilization fixed to 40%

Proposed method
CRPD in isolation

● Results
● Bounds tightened by 40% to 50%
● Tightening scales well with the 

taskset increase



Conclusions

● We propose a novel method for computing the CRPD in 
sporadic task model scheduled under the Fixed Preemption 
Point approach. 

● The novelty of the method comes from the more detailed 
analysis of the infeasible eviction scenarios, compared to 
the SOTA.

● The proposed method achieves to tighten the bounds by 
30% to 50% compared to the over-approximating worst-case 
eviction methods.
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Future work

● A preemption point selection algorithm that exploits the 
proposed method.

● Scalability improvement.

● Heuristics and approximation methods with multiset-based 
CRPD estimation approaches combined with the analysis of 
infeasible preemption combinations.

● Method for tightening the bounds in Fully-preemptive systems.
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