
Tightening the Bounds on Cache-Related
Preemption Delay in Fixed Preemption Point

Scheduling

Filip Marković, Jan Carlson, Radu Dobrin
Mälardalen University, Sweden

Content

● Background and Motivation

● Problem formulation

● Proposed approach

● Evaluation

● Conclusions and Future Work

2

Fixed Preemption Points

● Limited Preemptive Scheduling
● An attractive paradigm that combines the benefits of fully-

preemptive and non-preemptive scheduling.
● Fixed Preemption Points (FPP)
● Preemption allowed only at predefined selected locations

inside the code, called preemption points.
● The selection enables control of preemption related delays,

possibly reducing their impact on schedulability.

1

!"##$!%&'(%*+,

!"##$!%#-	%*+,
Preemption

point

Preemption-Related Delay

Preemption-related delay consists of different delay types:
bus-related, scheduling-related, pipeline-related, etc.

Cache-Related Preemption Delay (CRPD) has the largest impact
on preemption-related delay.

Therefore, it is important to accurately and as tightly as possible
compute its upper bound. 4

!"##$!%&'(%*+,

!"##$!%#-	%*+,

estimated	delay

unschedulable

preemption	

delay

CRPD calculation

5

● CRPD depends upon two important factors:
1. Where the preemption occurs?
2. Which preempting tasks affect the CRPD at this point?

● Different preempting tasks cause different CRPDs due to eviction!

!"##$!%&'(%*+,

!"##$!%#-	%*+,

CRPD

1 2

3 2

2 1

1,2 ∩ 2,3 = {2} 1

2

3

K*Lℎ#

	N#$O"P

Block	2

evicted	by	the

preempting	task

Memory	blocks

to	be	used

3 2 1 1,2 ∩ 2,3,1 = {1,2}

Related FPP approaches

● CRPD for each point is computed in isolation, which leads to:
● Maximized pessimism regarding the preemption scenarios.
● Pessimistic CRPD upper bounds

6

!"##$!%#-	%*+,

VVW VVX

WCET	without

CRPD

WCET	with

CRPD

All	preempting tasks

evict		useful	cache	blocks

VVW VVX

…	same	concept	for	more	points

Motivation

● What if we want to calculate the CRPD defined per task?
● To account for each CRPD computed in isolation is pessimistic.
● Take into account that preemption scenario at one point affects the

possible preemption scenarios of the succeeding ones.

7

CRPD	computed	in	isolation

for	each	preemption	point

VVW VVX

Accounted	CRPD	at	one	point

affects	possible	CRPD	of	the

succeeding	point

VVW VVX

Problem formulation

● How to tighten the CRPD bounds by taking into account the
information that preemption scenario at a certain point may affect
CRPD of the succeeding points?

● How do we identify the “mutual affection” of CRPDs of the two
succeeding preemption points?

8

affects	CRPD

Preemption/Eviction

Combination

+					=?

Proposed approach

For each task:
1. Identify infeasible preemption scenarios.
2. Among the remaining preemption scenarios identify the one

causing the worst CRPD.

9
!"##$!%#-	%*+,

Worst	case

preemption

VVW VVX

Tightened	CRPD	

per	task

!"##$!%&'(%*+,+

cX

cW

Only	cW
preempts

Identifying Infeasible Preemption
Scenario?
● Scenario when the preempting task cannot affect the CRPD of both

succeeding preemption points of the preempted task.
● Case when the preempting task cannot be released twice during the

maximum time interval from the start time of one basic block until the
start time of the succeeding basic block.

10

!"##$!%#-	%*+,

VVW VVX

!"##$!%&'(%*+,, cX

VVW VVX

	cX	!"##$!%+	VVW

ef

	cX	!"##$!%+	VVX

Maximum time interval between
the first and the last basic block

Why it is not a trivial problem?
● There are many different preemption scenarios. Which one causes

the worst CRPD?

11

!"##$!%#-	%*+,

VVW VVX

!"##$!%&'(%*+,, cX

VVW VVX

+L#'*"&O	1: 	cX	!"##$!%+	VVW

+L#'*"&O	2:	 cX	!"##$!%+	VVX

KfVhW

KfVhX

iℎ&Lℎ	O'#	&+	%ℎ#	jklmjnj?

Proposed approach

● Optimization formulation:
● Input

●Preemption scenarios (not deemed infeasible)
● Goal

●Considering the CRPD computations of those scenarios, identify the one
causing the worst CRPD bound.

● Output
● CRPD bound, defined for task.

12

Evaluation

● Goal of the experiment:
● To investigate to what extent the CRPD bounds are tightened,

compared to the simplified CRPD approximation.
● Experiment setup
● Taskset size fixed to 10
● Taskset utilization fixed to 80%
● Total Cache utilization (20% - 90%)

13

Evaluation

● Results:
● Tightening improved the CRPD bounds.
● CRPD bounds tightened by 30% to 50%.
● Taskset size increase does not significantly deteriorates the tightening.

1420 30 40 50 60 70 80 90

Cache Utilization (%)

0

500

1000

1500

2000

2500

3000

3500

C
R

P
D

 (
m

ic
ro

 s
e
co

n
d
s)

Proposed method

Overaproximating ECB calculation
Proposed method
CRPD computed in isolation

Evaluation

153 4 5 6 7 8 9 10 11 12

Number of tasks

0

500

1000

1500

2000

C
R

P
D

 (
m

ic
ro

 s
e
co

n
d
s)

Proposed method

Over-approx. ECB

2 4 6 8 10 12

Number of tasks

0

2000

4000

6000

8000

10000

12000

14000

a
n
a
ly

si
s

tim
e
 (

m
s)

● Experiment Setup
● Taskset size (3 - 12)
● Total cache utilization fixed to 40%

Proposed method
CRPD in isolation

● Results
● Bounds tightened by 40% to 50%
● Tightening scales well with the

taskset increase

Conclusions

● We propose a novel method for computing the CRPD in
sporadic task model scheduled under the Fixed Preemption
Point approach.

● The novelty of the method comes from the more detailed
analysis of the infeasible eviction scenarios, compared to
the SOTA.

● The proposed method achieves to tighten the bounds by
30% to 50% compared to the over-approximating worst-case
eviction methods.

16

Future work

● A preemption point selection algorithm that exploits the
proposed method.

● Scalability improvement.

● Heuristics and approximation methods with multiset-based
CRPD estimation approaches combined with the analysis of
infeasible preemption combinations.

● Method for tightening the bounds in Fully-preemptive systems.

17

