
Embedded Systems:
Many Cores – Many Problems

(Invited Paper)

Reinhard Wilhelm and Jan Reineke
Informatik

Saarland University
D-66123 Saarbrücken

Email: {wilhelm | reineke}@cs.uni-saarland.de

Abstract

The embedded-systems industry is about to make a
transition to multi-core platforms. This is a highly risky
step as several essential problems are not yet solved.
In particular, the performance analysis problem has no
viable solution for the existing multi-core designs. The
main culprit is the interference on shared resources.
Several alternative approaches both in architecture
and system design and in analysis methods are dis-
cussed.

1. Introduction

The embedded-systems industry introduces multi-
core architectures for their good performance-energy
ratio. This trend coincides with the transition from
federated to integrated system architectures in the
automotive and the aeronautics industries. In federated
architectures, many computers—most of the time one
per application—are used, connected by buses. In in-
tegrated architectures, such as the Integrated Modular
Avionics (IMA) [1] and the AUTomotive Open System
ARchitecture (AUTOSAR)1, many applications—often
of mixed criticality— are integrated on powerful plat-
forms. This is expected to improve systems in sev-
eral dimensions, weight, space, energy consumption,
and maintainability. Composability of the resource
behavior is the main design goal as it will support
incremental cerification.

Multi-core platforms seem to be ideally suited for
these integrated software architectures. However, the
transition to multi-core platforms for embedded system
is problematic. Many problems are still awaiting their
solutions. Integrated software architectures on top of

1. http://www.autosar.org

multi-core platforms introduce single-point-of-failures
for possibly a whole set of application instances and
therefore require new redundancy concepts.

Mapping a set of (instances of) applications to a set
of cores of several multi-core platforms satisfying all
performance and redundancy requirements is a highly
complex problem, which currently does not seem to
have found a satisfactory solution.

As a last point, the question of how to derive perfor-
mance guarantees for embedded system implemented
on multi-core platforms is unsolved.

2. The Timing-Analysis Problem

We concentrate on the timing-analysis problem.

2.1. Single-Core Systems

Sound guarantees for the timing behavior of threads
are needed as soon as some of the applications to be
integrated on a multi-core platform are time-critical.
Total task isolation, also with respect to resource
consumption, is the method currently used to exclude
the influence of non-critical applications on critical
applications. it is implemented using temporal and
spatial partitioning.

The timing-analysis problem for uninterrupted exe-
cution on single-core platforms has long been solved
[2]. The necessary analyses for the determination of
preemption costs are available [3]. The effort needed
by sound static timing-analysis methods for single core
platforms is large, but tolerable. Extending the methods
to multiple threads executed on several cores will either
lead to an unacceptable increase in the analysis effort
or to an unacceptable decrease in precision of the
results.



Static analysis methods based on abstract interpreta-
tion have the, in principle positive, property that they
allow to trade efficiency of the analyses for precision of
the results. But trying to reduce the analysis effort this
way might possibly reduce the achievable precision to
unacceptable degrees.

2.2. Interference on Shared Resources

The challenge is caused by interferences on re-
sources shared between several threads running on
different cores. We observe two kinds of interferences:
Inherent interferences and virtual interferences.

Inherent interferences on a shared resource can
actually be observed in a run of the system. Such
interferences might increase the actual execution times
of tasks and therefore, inherently, the WCET bounds
of those tasks, too.

Virtual interferences are introduced by abstraction of
the system, i.e., loss of information about the system.
Although an interference might never happen in a
concrete run of the system, the analysis may not be
able to prove this, as it can only rely on its incomplete,
static information. For instance, if the timing analysis
for task T completely abstracts from concurrently
running tasks, it has to assume an interference by
another task T ′ every time T makes an access to a
shared resource. This information loss is caused by
a (total) abstraction from the set of tasks and the
system’s task scheduling policies, which restrict what
can actually happen concurrently. It is an open problem
how to limit the information loss about concurrently
running tasks by suitable abstractions. Hence, limiting
inherent interferences must be a high-priority design
goal: If there can be no interferences at all in the
concrete system, it is easy for an analysis to exclude
interferences even when abstracting completely from
other tasks. A rather radical proposal is presented in
Section 3.4.

2.2.1. Observed and Worst-Case Interference. The
inherent interference on shared resources reduces the
performance of tasks running on the individual cores.
A number of experiments have tried to find out
what the inherent interference of concurrently executed
benchmark programs or specially constructed worst-
case programs can be. The former experiments choose
a set of programs, measure their performance when
executed on one core in isolation, then run them in
combination on a number of cores to determine the
slowdown compared to the single-core execution. [4]
describes a Thales case study where several benchmark
programs are run concurrently on two cores. A worst

slowdown of 60% was observed when the same pro-
gram was run on the two cores. In such a scenario, the
accesses of the two programs to shared resources are
perfectly synchronized, and thus maximally interfere.

For the second class of experiments, programs are
designed that stress a particular shared resource to
determine the worst-case interference on that resource.
Nowotsch and Paulitsch [5] report a slowdown by
a factor of 20 on an 8-core platform, when threads
are concurrently run that maximally stress a shared
DDR SDRAM. Radojkovic et al. [6] have constructed
a set of benchmark programs, one for each resource,
maximally stressing this resource on a given platform.
The program under analysis is then run on one core,
the resource-stressing programs each on another core.
The authors claim that this produces an upper bound
on the slowdown that the program under analysis will
suffer.

The latter experiments exhibit an amount of inherent
interference that programs not designed to stress re-
sources will rarely show. On the other hand, efficient
static analysis methods will use abstraction to arrive
at acceptable effort. Abstraction in general introduces
imprecision in the form of virtual interference. So,
on the one hand static analyses of real-life programs
will most likely not exhibit the worst-case inherent
interference. On the other hand, they will produce
upper bounds that may be quite pessimistic. The goal
is to arrive at efficient analyses with high precision.

2.2.2. Increased Analysis Complexity. State-of-the-
art analyses integrate the analysis of all architectural
features, i.e., the pipeline, bus, and cache state, pre-
cisely tracking their interactions. For caches, compact,
yet precise, abstract domains exist: sets of concrete
cache states can be efficiently represented by abstract
cache states, which can be joined where control flow
joins, and which can be precisely and efficiently up-
dated upon memory accesses. Unfortunately, such ab-
stract domains have not been found for pipeline states.
As a consequence, current timing analyses need to
maintain large sets of pipeline states and–due to timing
anomalies [7], [8]–they need to follow all possible
cases, whenever several successor states are possible.
Even for complex single-core processors this makes
timing analysis expensive, yet still at an acceptable
level.

The increased analysis complexity for inade-
quate multi-core designs—unfortunately all existing
designs— results from the interference on shared re-
sources of different threads executed on different cores.
These threads, if running asynchronously, may access
the shared resources in many different interleavings,



possibly resulting in different execution states and in
different timing behaviors. The number of different
interleavings for a frequently accessed resource such
as a shared asynchronous bus is larger than what can
be exhaustively explored. Two threads that are run on
two cores with n and m accesses to a shared resource
allow for (n + m)!/(n! · m!) different interleavings.
When proving the correctness of concurrent programs,
global variables are the shared resources, and n and
m are typically rather small. Still, most attempts to do
the correctness proof encounter a severe state-space
explosion problem. In the case of timing analysis for
threads running on multi-core platforms with shared
resources such as buses, n and m are huge!

So, either interference needs to be eliminated, by
eliminating shared resources as discussed in Section 3,
or a fundamentally different analysis approach is re-
quired.

2.2.3. Improved Analysis Methods. One angle to at-
tack the above problem is to reduce the set of interleav-
ings that have to be considered by analysis. The model-
checking community has invented ingenious reduction
techniques. The most adequate seems to be partial-
order reduction [9]. It would reduce the state space
by exploiting the commutativity between concurrently
executed instructions of the different threads. However,
different interleavings of instructions need not lead to
the same execution states and need not have the same
timing. An efficiently computable equivalence relation
on interleavings needs to be developed that provides
for an architecture-specific reduction technique.

Another, more radical departure from current ap-
proaches, would be compositional timing analysis: in-
stead of analyzing the contributions of all architectural
components in an integrated fashion, one would sepa-
rately analyze the contributions of various components
to the overall execution time, such as the pipeline,
buses, and caches, summing them up in the end.

This would dramatically reduce analysis time, as
such analyses would not have to deal with the product
of the state spaces of the various components. In
particular, the contribution of interference on shared
resources could be calculated separately. Approaches
to bound cache-related preemption cost [3] are already
pursuing this direction.

Sometimes, “timing accidents” in different compo-
nents, such as pipeline stalls and cache misses overlap,
causing overall execution time to be smaller than the
sum of the timing penalties incurred in the different
architectural components. Compositional analyses will
lose precision compared with integrated analyses as,
by design, they cannot detect such scenarios. On the

other hand, compositional analyses can gain precision:
by focussing on individual architectural components,
much more precise abstractions can be employed that
may exclude timing accidents that a stronger abstrac-
tion in an integrated analysis would have to consider
possible.

3. Taking Constructive Influence

Several remedies have been proposed. A rather rad-
ical proposal ends this section.

3.1. Smart Configuration of Existing Multi-
Cores

Currently available multi-cores were not developed
with WCET analysis in mind. Consequently, they
exhibit timing anomalies, poorly analyzable cache re-
placement policies, or fully shared memory. Leaving
all those average-case performance-enhancing features
enabled renders static timing analysis almost inappli-
cable.

[4], [10] show how to configure multi-core proces-
sors in a way such that static timing analysis is made
easier. They do this for the MPC5668G, an automotive
processor, and the MPC8641D, an avionics processor.

3.2. Deterministic Access Protocols

The number of interleavings and the resulting un-
certainty about the timing behavior can be reduced
by introducing deterministic access protocols for the
shared resources [11] and then safely bounding the
access delay to the shared resources [12], [13], [14],
[15]. The disadvantage may be the encountered perfor-
mance loss. While the gain in predictability is clear, the
ultimate analysis of the expected performance loss is
still missing.

Deterministic access protocols can be computed for
the accesses to shared resources from the access pat-
terns to these shared resources [12] . This deterministic
protocol will allow to control the worst-case length of
an access delay and to derive safe and precise bounds
on the overall execution times.

Cumulative approaches use upper bounds on the
resource consumption by interfering tasks to determine
safe bounds on the access delays [16].

Resource access arbitration with bounded delays
use arbitration schemes that guarantee bounds on the
delays for the accesses to shared resources. The deriva-
tion of such bounds depends on the arbitration protocol
of the bus used to access shared resources. In [15] such



an arbitration scheme is complemented with a resource
front-end to completely isolate the temporal behavior
of tasks accessing a predictable shared resource.

3.3. Resource Partitioning

Deterministic bus protocols such as TDMA partition
the bus bandwidth allocating slots to different threads.
Similarly, space resources can be partitioned and parts
exclusively allocated to different threads to eliminate
interferences. This has been done in particular for 2nd-
level caches by cache partitioning, i.e., by allocating
disjoint partitions of a shared cache to different threads
running on different cores [17]. Partitioning of a shared
L2 cache does, however, not solve the interference
problem if accesses to the cache or to memory still
may collide on a shared bus. In [18], temporal and
spatial resource partitioning are combined to eliminate
any interference between different threads accessing a
shared DDR2 SDRAM device: each DRAM bank is
privately allocated to an individual hardware thread,
and access to the banks is granted in a time-triggered
fashion.

3.4. The PROMPT Approach

The more radical alternative is to abolish resource
sharing as far as possible [19], [20].

Design Principles. The PROMPT (PRedictability Of
Multi-Processor Timing) architecture design principles,
see [19], aim at embedded hard real-time systems in
the automotive and the aeronautics industry requiring
efficiently predictable good worst-case performance.

The small amount of sharing existing in the set of
applications allows to design a target architecture with
little interference on shared resources and thus little
variance of execution times and high predictability. Our
principle is Architecture follows Application. The goal
of this design discipline is to improve the worst-case
performance and to make the derivation of reliable
and precise timing guarantees efficiently feasible. This
design discipline will support the composability goal
of the IMA and AUTOSAR movements in the aero-
nautics and the automotive industries. We conjecture
that without this or a similar design discipline the
required modular development process will not be
realizable without an unacceptable loss of guaranteed
performance.

The architecture is designed in a multi-phase pro-
cess. It starts with the design or the selection of fully
timing-compositional cores as discussed in [21].

Then the set of applications is considered:

• Hierarchical privatization will decompose the set
of applications according to their sharing charac-
teristics on the shared global state. The resulting
partitioning of the set of applications could be
used to define an isomorphically structured target
architecture with no more shared resources than
required by the set of applications.

• Sharing of lonely resources would introduce shar-
ing of costly and infrequently accessed resources.
Input/output devices will most likely have to be
shared, for cost and space reasons.

• Controlled socialization would try to satisfy cost
constraints with an acceptable loss of predictabil-
ity. It would introduce sharing while controlling
the loss in predictability.

Ways to determine safe and sufficiently small delays
for the access to shared resources have been discussed
in Section 3.2.

Conclusion

The timing-analysis problem for embedded systems
running on multi-core platforms is still unsolved. Ar-
chitectures with better timing predictability, most likely
with fewer shared resources or more deterministic
access control are needed.

Acknowledgment

The authors would like to thank the members of
the chair and long-time collaborators at AbsInt for
valuable contributions and discussions.

References

[1] C. B. Watkins and R. Walter, “Transitioning from
federated avionics architectures to integrated modular
avionics,” in 26th AIAA/IEEE Digital Avionics Systems
Conference (DASC), 2007.

[2] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin,
M. Schmidt, H. Theiling, S. Thesing, and R. Wilhelm,
“Reliable and precise WCET determination for a real-
life processor,” in EMSOFT, ser. LNCS, vol. 2211,
2001, pp. 469–485.

[3] S. Altmeyer, C. Maiza, and J. Reineke, “Resilience
analysis: Tightening the CRPD bound for set-
associative caches,” in LCTES ’10: Proceedings
of the ACM SIGPLAN/SIGBED 2010 conference on
Languages, compilers, and tools for embedded systems.
New York, NY, USA: ACM, April 2010, pp. 153–
162. [Online]. Available: http://rw4.cs.uni-saarland.de/
∼reineke/publications/ResilienceAnalysisLCTES10.pdf



[4] D. Kästner, M. Schlickling, M. Pister, C. Cullmann,
G. Gebhard, C. Ferdinand, and R. Heckmann, “Timing
predictability of multi-core processors,” 2012, submit-
ted for publication.

[5] J. Nowotsch and M. Paulitsch, “Leveraging multi-core
computing architectures in avionics,” in EDCC, 2012.

[6] P. Radojkovic, S. Girbal, A. Grasset, E. Quiñones,
S. Yehia, and F. J. Cazorla, “On the evaluation of
the impact of shared resources in multithreaded cots
processors in time-critical environments,” TACO, vol. 8,
no. 4, p. 34, 2012.

[7] T. Lundqvist and P. Stenström, “Timing anomalies
in dynamically scheduled microprocessors,” in RTSS
’99: Proceedings of the 20th IEEE Real-Time Systems
Symposium. Washington, DC, USA: IEEE Computer
Society, 1999, p. 12.

[8] J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, I. Po-
lian, J. Eisinger, and B. Becker, “A definition and
classification of timing anomalies,” in Proceedings of
6th International Workshop on Worst-Case Execution
Time (WCET) Analysis, July 2006.

[9] A. Valmari, “A stubborn attack on state explosion,” in
CAV, ser. Lecture Notes in Computer Science, E. M.
Clarke and R. P. Kurshan, Eds., vol. 531. Springer,
1990, pp. 156–165.

[10] D. Kästner, M. Schlickling, M. Pister, C. Cullmann,
G. Gebhard, R. Heckmann, and C. Ferdinand, “Timing
Predictability of Multi-Core Processors,” Embedded
World Congress, 2012.

[11] H. Kopetz, “On the design of distributed time-triggered
embedded systems,” JCSE, vol. 2, no. 4, pp. 340–356,
2008.

[12] J. Rosen, A. Andrei, P. Eles, and Z. Peng, “Bus access
optimization for predictable implementation of real-
time applications on multiprocessor systems-on-chip,”
in Proceedings of the 28th IEEE International Real-
Time Systems Symposium, ser. RTSS ’07. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 49–60.
[Online]. Available: http://dx.doi.org/10.1109/RTSS.
2007.13

[13] R. Pellizzoni, A. Schranzhofer, J.-J. Chen, M. Cac-
camo, and L. Thiele, “Worst case delay analysis for
memory interference in multicore systems,” in DATE.
IEEE, 2010, pp. 741–746.

[14] A. Schranzhofer, R. Pellizzoni, J.-J. Chen, L. Thiele,
and M. Caccamo, “Worst-case response time analysis
of resource access models in multi-core systems,” in
DAC, S. S. Sapatnekar, Ed. ACM, 2010, pp. 332–
337.

[15] B. Akesson, A. Hansson, and K. Goossens, “Compos-
able resource sharing based on latency-rate servers,”
in Euromicro Symposium on Digital Systems Design.
IEEE, August 2009, pp. 547–555.

[16] R. Pellizzoni and M. Caccamo, “Toward the predictable
integration of real-time COTS based systems,” in Real-
Time Systems Symposium (RTSS), 2007.

[17] N. Guan, M. Stigge, W. Yi, and G. Yu, “Cache-aware
scheduling and analysis for multicores,” in Proceedings
of the seventh ACM international conference on Em-
bedded software, ser. EMSOFT ’09. New York, NY,
USA: ACM, 2009, pp. 245–254. [Online]. Available:
http://doi.acm.org/10.1145/1629335.1629369

[18] J. Reineke, I. Liu, H. D. Patel, S. Kim,
and E. A. Lee, “PRET DRAM controller:
Bank privatization for predictability and temporal
isolation,” in CODES+ISSS ’11: Proceedings of the
seventh IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis.
ACM, October 2011, pp. 99–108. [Online]. Available:
http://chess.eecs.berkeley.edu/pubs/851.html

[19] R. Wilhelm, C. Ferdinand, C. Cullmann, D. Grund,
J. Reineke, and B. Triquet, “Designing predictable
multicore architectures for avionics and automotive
systems,” in Workshop on Reconciling Performance
with Predictability (RePP), 2009.

[20] C. Cullmann, C. Ferdinand, G. Gebhard, D. Grund,
C. Maiza, J. Reineke, B. Triquet, S. Wegener, and
R. Wilhelm, “Predictability considerations in the de-
sign of multi-core embedded systems,” Ingénieurs de
l’Automobile, vol. 807, pp. 36–42, September 2010.

[21] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling,
M. Pister, and C. Ferdinand, “Memory hierarchies,
pipelines, and buses for future architectures in time-
critical embedded systems,” IEEE Trans. on CAD of
Integrated Circuits and Systems, vol. 28, no. 7, pp. 966–
978, 2009.


