
c© c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
DOI: 10.1109/ICCAD.2015.7372555

http://dx.doi.org/10.1109/ICCAD.2015.7372555


MEMIN: SAT-based Exact Minimization of
Incompletely Specified Mealy Machines

Andreas Abel and Jan Reineke
Department of Computer Science

Saarland University
Saarbrücken, Germany

Email: {abel, reineke}@cs.uni-saarland.de

Abstract—In this paper, we take a fresh look at a well-known
NP-complete problem—the exact minimization of incompletely specified
Mealy machines. Most existing exact techniques in this area are based
on the enumeration of sets of compatible states, and the solution of a
covering problem. We propose a different approach. In our approach,
first, a polynomial-time algorithm is used to compute a partial solution.
This partial solution is then extended to a minimum-size complete solution
by solving a series of boolean satisfiability (SAT) problems.

We evaluate our implementation on the same set of benchmarks
used previously in the literature. On a number of hard benchmarks, our
approach outperforms existing exact minimization techniques by several
orders of magnitude; it is even competitive with state-of-the-art heuristic
approaches on most benchmarks.

I. INTRODUCTION

The minimization of Mealy machines is a fundamental problem
with applications in many different areas. It is, for instance, an
important part of many approaches for logic synthesis, as it can reduce
the complexity of the resulting circuits. State reduction also plays
an important role in fault-tolerant design of sequential machines [1].
Another application is in the area of Model-Based Testing (MBT),
where an abstract model of a system can be used to automatically
derive test cases. Most approaches in this area require the models to
be minimized [2]. State minimization also has applications in compiler
design and language processing. Recently, it has been used as part
of a watermarking technique for copyright protection of IP cores [3],
as it can reduce the threat of losing states from the signature during
an attack.

While the problem of minimizing Mealy machines is efficiently
solvable for fully specified machines [4], it is NP-complete for
incompletely specified machines, i.e., machines where one or more
outputs or next states might not be specified [5]. Minimization of a
machine M in this context means finding a machine M ′ with the
minimal number of states that has the same input/output behavior on
all input sequences, on which the behavior of M is defined (but M ′

might be defined on additional input sequences on which M is not
defined). Unlike for fully specified machines, there is no canonical
minimal machine.

The problem has been extensively studied before, and a number of
exact and heuristic approaches have been proposed. The standard, or
classic, technique is a two-step approach, that was originally proposed
by Paull and Unger [6], and improved by Grasselli and Luccio [7].
With this approach, in a first step, a number of sets of compatible
states (i.e., states for which no input sequence exists, such that their
outputs are different) are determined. In the second step, a subset of
these sets is selected such that certain closure and covering criteria
are fulfilled.

Almost all exact methods and also many heuristic methods
follow this two step approach. The disadvantage of all of these
approaches is that in particular the enumeration in the first step can
be computationally expensive, as there can be an exponential number
of compatible classes.

In this paper, we propose a new approach, that is not based on
the standard approach and does not require the enumeration of a large
number of sets of compatible states. Instead, we propose a formulation
of the problem as a boolean satisfiability (SAT) problem. Even though
the search space of our method is larger compared to methods based on
the standard approach, we show that current SAT solvers are powerful
enough to efficiently solve these types of problems.

More specifically, in a precomputation step, we determine a set
of pairwise incompatible states that are part of any solution, i.e., we
compute some form of a “partial solution”. The size of this partial
solution also constitutes a lower bound on the number of states of
the minimal machine. We then iteratively call a boolean satisfiability
solver to check whether the partial solution can be extended to a
complete solution of the size of the lower bound. If this is not the
case, we increase the lower bound by one. This is repeated until a
solution is found. This solution is then guaranteed to correspond to a
minimal machine that covers the original machine.

We compare our method to several other approaches on two sets
of standard benchmarks: the ISM benchmarks, used by, e.g., [8],
[9], [10], [11], [12], and the MCNC benchmarks, used by, e.g., [13],
[14], [15], [16], [12], [17], [18], [19]. These benchmarks come from
several sources, e.g., logic synthesis, learning problems, and networks
of interacting FSMs.

Our approach outperforms the other exact approaches significantly,
in particular on a number of hard benchmarks. In some cases, it is
faster than existing approaches by several orders of magnitude.

On most benchmarks, our approach is also competitive with state-
of-the-art heuristic methods. There are only two benchmarks on which
a heuristic approach is significantly faster. However, in these two
cases, this heuristic approach is not able to find the minimal result.

A. Outline

In Section II, we introduce basic definitions used throughout the
paper, and we formally define the problem addressed in this paper.
Section III introduces the most important related work. In Section IV,
we describe our new approach in detail, and in Section V, we describe
details of our implementation. In Section VI, we evaluate our approach
on a set of standard benchmarks. Finally, Section VII concludes.

2



II. DEFINITIONS

In this section, we formally define several concepts used throughout
this paper.

A. Basic definitions

Definition 1 (Mealy Machine). A Mealy machine is a tuple M =
(I,O,Q, qr, δ, λ), where I 6= ∅ is a finite set of input symbols, O 6= ∅
is a finite set of output symbols, Q 6= ∅ is a finite set of states,
qr ∈ Q∪{⊥} is the initial (reset) state, δ : (Q, I)→ Q∪{φ} is the
transition function, and λ : (Q, I)→ O ∪ {ε} is the output function.
φ denotes an unspecified state, ε denotes an unspecified output, and
⊥ denotes an unspecified initial state.

Regarding the initial state, previous definitions in the literature
have not been consistent. Some approaches assume that there is always
a designated initial state, while others assume that any state can be the
initial state. With respect to minimization this can make a difference
if states are not reachable from the initial state. Our definition is a
generalization of the previous definitions.

A machine M is called completely specified if for all states, all
next states and outputs are defined, i.e., for all q ∈ Q and a ∈ I ,
δ(q, a) 6= φ and λ(q, a) 6= ε. M is called incompletely specified if
one or more next states or outputs may be unspecified.

With this definition, a completely specified machine is a special
case of an incompletely specified machine. Previous approaches often
defined an incompletely specified machine as a machine where at
least one transition is unspecified. However, since our approach can
also be used to minimize completely specified machines, we choose
this definition.

In the following, we will without loss of generality only consider
machines M that have no transition for which only the output is
specified, i.e., (δ(q, a) = φ) =⇒ (λ(q, a) = ε) for all q ∈ Q, a ∈ I .
Note that any machine M can be transformed to such a machine M ′

by adding an additional target state with no outgoing transitions.

We extend δ and λ to sequences in the usual way (where δ(φ, i) =
φ and λ(φ, i) = ε).

An input sequence a0 . . . an ∈ I∗ is called applicable for a
state q if there is a sequence of states q0 . . . qn with q0 = q s.t.
δ(qi, ai) = qi+1 and qi+1 6= φ for all 0 ≤ i < n. An input sequence
is called applicable for a machine M if it is applicable for its initial
state. If the machine has no initial state (qr = ⊥), the sequence
is applicable if it is applicable for at least one of the states of the
machine.

Two outputs o1, o2 ∈ O∪{ε} are compatible iff o1 = ε, or o2 =
ε, or o1 = o2. Two output sequences o = o0 . . . on and o′ = o′0 . . . o

′
n

are compatible if oi and o′i are compatible for all 0 ≤ i ≤ n. An
output sequence o = o0 . . . on subsumes a sequence o′ = o′0 . . . o

′
n

if for all 0 ≤ i ≤ n, o′i = ε ∨ oi = o′i.

Two states are compatible, if for all applicable input sequences
for both states, the corresponding output sequences are compatible.
Two states are distinguishable if they are not compatible. In this case,
there is a distinguishing input sequence that is applicable for both
states such that the corresponding output sequences differ.

A Mealy machine M ′ = (I,O,Q′, q′r, δ
′, λ′) covers a Mealy

machine M = (I,O,Q, qr, δ, λ), iff for all applicable input sequences

s ∈ I∗ for M , λ′(q′r, s) subsumes λ(qr, s). If the machine has no
reset state, we require that for all states q ∈ Q there is a state q′ ∈ Q′
such that for all applicable input sequences s ∈ I∗ for M , λ′(q′, s)
subsumes λ(q, s).

We are now ready to formally define the problem addressed in
this paper.

B. Problem statement

Given a Mealy Machine M , our goal is to find a Mealy machine
M ′ with the minimum number of states, such that M ′ covers M .

C. General approach

For a Mealy machine M = (I,O,Q, qr, δ, λ), a compatibility
class (also called a compatible) is a set C ⊆ Q, such that all elements
of C are pairwise compatible.

For a compatibility class C = {q0, . . . , qn} and an input a, we
define a successor function

Succ(C, a) =
⋃

0≤j≤n

{δ(qj , a) | δ(qj , a) 6= φ}.

In previous work, the set Succ(C, a) was often called the implied
set of C under input a.

A set S = {C1, . . . , Cn} of compatibility classes is closed if for
all Cj ∈ S and all inputs a ∈ I there exists a Ck ∈ S, such that
Succ(Cj) ⊆ Ck.

A closed set of compatibility classes covers a Mealy machine M
if every state of the machine is contained in at least one class of
the set.

The following theorem is based on a theorem that was first
proposed and proven by Paull and Unger [6].

Theorem 1. From a closed set S = {C1, . . . , Cn} of compatibility
classes with the minimum number of classes that covers Mealy machine
M = (I,O,Q, qr, δ, λ), one can derive a Mealy machine M ′ =
(I,O,Q′, q′0, δ

′, λ′) with the minimal number of states that covers M
as follows:

1) Q′ := S

2) q′r := Cj for some j s.t. qr ∈ Cj if qr 6= ⊥, and q′r := ⊥
otherwise

3) δ′(Cj , a) = φ if Succ(Cj , a) = ∅, and otherwise δ′(Cj , a) =
Ck for some k s.t. Succ(Cj , a) ⊆ Ck

4) λ′(Cj , a) = o if λ(q, a) = o for some q ∈ Cj and λ′(Cj , a) = ε
otherwise

It is important to note that the elements of S can overlap, i.e., S
is not necessarily a partition of Q.

III. RELATED WORK

The concept of Mealy machines was introduced by G. H. Mealy in
1955 [20]. While it was initially believed that incompletely specified
machines could be minimized by similar techniques as completely
specified machines [21], Ginsburg [22] discovered that there are
examples for which this is not possible. Pfleeger [5] proved in 1973
that the problem of minimizing incompletely specified machines is
NP-complete.

3



Paull and Unger [6] proposed an approach for exact state
minimization based on their general theory that was introduced in the
previous section. The approach consists of two steps:

1) Enumeration of all compatibility classes.
2) Solution of a covering problem, i.e., choosing a set of compat-

ibility classes (from step 1) of minimum size that satisfies the
closure and covering conditions.

Grasselli and Luccio [7] discovered that only some compatibility
classes (prime compatibles) need to be considered. Prime compatibles
are those compatibles that are not included in any larger compatible
with the same or fewer closure constraints. They proved that that for
any Mealy machine, there is at least one covering with the minimal
size that consists only of prime compatibles.

This approach is often called the “standard” [10] or “classic” [9]
approach, and has also been described in textbooks [23]. Almost
all subsequently proposed exact minimization techniques are based
on various improvements of this standard method. Rho et. al. [14]
presented a tool called STAMINA which implements Grasselli and
Lucio’s method, as well as an extension of their method based on
compatible pairs that was first proposed by Sarkar et. al. [24]. Kam et.
al. developed an approach that represents prime compatibles implicitly
as Binary Decision Diagrams (BDDs), and is thus able to handle
significantly larger sets of prime compatibles. Several approaches
proposed improvements of either the identification of compatibility
classes [25], [26], [1], or for solving the corresponding covering
problem [18], [27], [28].

The downside of all of these approaches is that the generation of
all compatibility classes can be computationally very expensive, as the
number of compatibility classes can be exponential in the number of
states [29]. This is also an issue for the implicit approaches, as not all
sets of compatibility classes can be efficiently represented as BDDs.

Pena and Oliveira [10] presented the tool BICA which implements
a method that is not based on the classic approach. Instead, it is based
on a modification of Angluin’s algorithm [30] for learning Mealy
machines. They generate a sequence of tree-FSMs (i.e., an FSM for
which the corresponding graph is a tree with the initial state as the
root). Each TFSM is reduced to a minimal consistent Mealy machine
using a variant of Bierman’s search algorithm [31] until a solution that
covers the original machine is found. Grinchtein and Leucker [32] later
modified BICA by replacing Bierman’s algorithm with a SAT-based
approach. This lead to significantly better results on two benchmarks,
for which the TFSM reduction time was the dominating factor before.

In addition to the exact approaches, a number of heuristic methods
have been proposed. Some of these are also based on the classic two-
step approach. Rho et. al. [14] described a method that uses a restricted
subset of the prime compatibles, but solves the covering step exactly.
On the other hand, Ahmad and Das [16] proposed a technique that
requires the enumeration of all prime compatibles, but uses a heuristic
for the second step. Several approaches use both a subset of the prime
compatibles (typically the maximal compatibles), and heuristics for
the covering step [33], [19], [17], [12], [15].

A few heuristic techniques are not based on the classic approach.
Avedillo et. al. [34] described a method that reduces the number
of states of a machine through a sequence of transformations on
a symbolic description of the machine. Gören and Ferguson [11]
presented an approach that is based on a checking sequence generation
technique. Klimowicz and Solov’ev [13] proposed a method based on

merging pairs of compatible states. Alberto and Simao [9] described
a technique that selects compatible states using maximum cliques on
the distinction graph.

IV. APPROACH

Unlike almost all previous exact minimization techniques, our
technique does not require the enumeration of compatibility classes.
Instead, we first compute a partial solution that is part of any solution.
The size of this partial solution also corresponds to a lower bound
on the number of states of the minimized machine. Then, we use a
SAT solver to determine if there is a machine that covers the original
machine with the size of the lower bound. If the SAT solver cannot
find a satisfying assignment, we increase the lower bound by one.

So, at a high level, our algorithm works as follows.

Algorithm 1: Main Algorithm
Input: M = (I,O,Q, qr, δ, λ)
begin

bool[][] m ← computeIncompatibilityMatrix(M)
set P ← computePartialSolution(m)
lowerBound ← |P|
for nClasses ← lowerBound to |Q| do

list clauses ← createSATProblem(nClasses, M, m, P)
(satisfiable, model) ← runSATSolver(clauses)
if satisfiable then

return buildMachine(model, M)

In the following subsections, we describe our approach in more
detail. We assume that we want to minimize a machine with |Q| states,
and that the states are numbered from 0 to |Q| − 1.

A. Incompatibility matrix

The first step of our algorithm is to determine which pairs of
states are compatible, and which pairs are incompatible. Similar to
previous approaches, we store this information in a matrix m, such
that m[i][j] = 1 if states i and j are incompatible, and m[i][j] = 0
if they are compatible.

However, to compute this matrix, we use a slightly different ap-
proach from the classic approach [7]. Our algorithm works as follows:

• Initialize all entries of the matrix with 0.
• Iterate over all state pairs (i, j). If m[i][j] is not already set to 1,

check whether there is an input symbol a such that the outputs of
i and j differ. If this is the case, set this entry of the matrix to 1.
• Whenever an entry (i, j) of the matrix changes its value from

0 to 1, we set the value of all predecessor pairs under the same
inputs to 1 as well.

The last step is executed at most |Q|2 times. To determine the
predecessor pairs efficiently, we can compute a list of predecessor
pairs for each state pair by iterating over all state pairs and inputs
once. Thus, these |Q|2 lists have at most |Q|2 · |I| elements in total.
Since the last step iterates over each of the lists at most once, the
overall complexity of our algorithm is in O(|Q|2 · |I|).

The classic algorithm does not perform the update upon a change.
Instead, it repeatedly iterates over all state pairs (i, j) and sets m[i][j]
to 1 if one of their successor pairs is set to 1. The algorithm terminates
upon reaching a fixed point. Thus, its complexity is in O(|Q|3 · |I|).

4



B. Encoding as a SAT problem

In this section, we describe, how we encode the problem “Is there
a closed set of compatibility classes of size n that covers the machine?”
as a boolean satisfiability problem. It is straightforward to show that
if the problem is unsatisfiable for n classes, but satisfiable for n+ 1
classes, a satisfying assignment for n+1 classes fulfills the conditions
of Theorem 1.

SAT solvers typically require the problem to be in conjunctive
normal form (CNF). We will first give a high level-description of each
subproblem, and then show how to translate it to CNF.

In the following, we will use literals of the form sx,i ∈ B to
denote that state x is in compatibility class i.

a) Covering Condition: All states of the original machine
must be in at least one compatibility class. We therefore add, for all
states x, a clause of the form

sx,0 ∨ sx,1 ∨ · · · ∨ sx,n−1.

b) Compatibility: All states that are in the same class must
be pairwise compatible. For a state x, let Inc(x) ⊆ Q be the set of
states that are incompatible to x. To ensure that no incompatible states
are in the same class, we add for each state x and each class i the
implication

sx,i =⇒
∧

y∈Inc(x)
y>x

¬sy,i.

Incompatibility is symmetric. However, it suffices to have one
constraint for each pair of states. This is ensured by y > x.

In CNF, the implication corresponds to the following set of clauses:∧
y∈Inc(x)

y>x

(¬sx,i ∨ ¬sy,i).

c) Closure: For all states that are in the same class, there
must be another class that contains all of their successor states. Thus,
we have for each input symbol a ∈ I and each class i a clause of the
form

∃j : ∀x : (sx,i =⇒ sx′,j),

where x′ is used to denote the successor state of x under input a.
If the successor state is undefined, the corresponding implication is
omitted.

Note that to fulfill the closure property it is not sufficient to
require that for all pairs of states that are in the same class, their
successor pairs must be in the same class. This is because the classes
are not disjoint. So it is possible that for three states s1, s2, s3, there
is a class i that contains the successors of s1 and s2, a class j that
contains the successors of s2 and s3, and a class k that contains the
successors of s1 and s3, but there might not be a single class that
contains the successors of all three states.

In the above formula, we can represent the existential quantifier
as a disjunction, and the universal quantifier as a conjunction. The
formula is thus equivalent to∨

0≤j<n

(
∧
x∈Q

(¬sx,i ∨ sx′,j)).

A direct conversion of this formula to CNF would lead to an expo-
nential increase in its size. To obtain a more compact representation,

we introduce an auxiliary literal for each input symbol and class of
the form Za,i

j . The following formula is then equisatisfiable to the
formula above:

(
∨

0≤j<n

Za,i
j ) ∧

∧
0≤j<n

∧
x∈Q

(¬Za,i
j ∨ ¬sx,i ∨ sx′,j).

C. Computing a partial solution

In this section, we present an approach to reduce the number of
symmetrical cases the SAT solver has to consider by precomputing
a “partial solution”. More specifically, we first compute a set S =
{x1, . . . , xk} of pairwise incompatible states. For all solutions of the
SAT problem, each of these states must be in at least one class, but
no pair of these states may be in the same class. However, since we
are only interested in sets of compatibility classes, the ordering of the
classes does not matter. Thus, we can obtain an equisatisfiable formula
by just assigning all elements of S to arbitrary, different classes. To
this end, we add a clause of the form

sx1,1 ∧ sx2,2 ∧ · · · ∧ sxk,k.

Moreover, we can use the cardinality of S as a lower bound for the
required number of classes.

If we represent the incompatibility matrix as a graph (such that
there is an edge in the graph whenever two states are compatible), the
problem of finding such a set S corresponds to finding an independent
set in the graph. While the problem of finding a maximum independent
set is NP-hard, a heuristic is sufficient for our purposes, since a non-
maximal set would just lead to a smaller reduction of symmetries, and
to a smaller lower bound, but it would still lead to a correct solution.

We use the following sequential greedy heuristic to find a set
of pairwise incompatible states. We first create a list of all states
that is sorted in reverse order based on the number of incompatible
states for each state (or equivalently, the degree of the states on the
incompatibility graph). The algorithm maintains a set S ⊆ Q of
pairwise independent states (S is initially empty). We then iterate
over the sorted list of states. Whenever we encounter a state that is
incompatible to all states in S, we add this state to S.

V. IMPLEMENTATION

We have implemented our approach in a tool called MEMIN.
MEMIN is available for download from1. The tool is written in C++,
and it uses MiniSat [35] as SAT solver. MiniSat is an open-source SAT
solver that can be used as a library and that provides a simple API.

Like many previous tools, MEMIN accepts inputs in the
widely used KISS2 input format [36]. In this format, Mealy ma-
chines are essentially described by a set of 4-tuples of the form
(input, currentState, nextState, output). input and output are
sequences of {0, 1,−}, where − means that the corresponding bit is
not specified. In the following paragraphs, we describe how we deal
with some of the implications of using this specification format.

A. Dealing with partially specified outputs

The KISS2 format allows for partially specified outputs, i.e., out-
puts in which a subset of the bits are undefined. A machine M covers
such a partially specified machine M ′ iff the set of possible outputs
of M is a (non-empty) subset of the set of possible outputs of M ′.

1http://embedded.cs.uni-saarland.de/MeMin.php

5

http://embedded.cs.uni-saarland.de/MeMin.php


We incorporate this generalization into our framework in a similar
way as the authors of [10]. We define two outputs to be compatible
if all of their bits at the same position are either the same, or at
least one of the bits is undefined. We then use this definition of the
compatibility of outputs in the definition of the compatibility of states.

B. Dealing with partially specified inputs

Partially specified inputs are used as a shorthand for sets of inputs.
One straight-forward way to deal with this would be to just add
transitions for all concrete inputs that are described by a partially
specified input. However, this approach is only viable when the number
of unspecified bits is small.

Instead, we use the following approach. We first partition the
set of states into equivalence classes such that two states are in the
same class if they are transitively compatible. For each equivalence
classes C we then compute a set of disjoint partially specified inputs
D such that all intersections of inputs from C can be expressed by
a combination of inputs from D. Finally, we replace all transitions of
states in C with transitions that have the corresponding inputs from D.

Furthermore, for the closure constraints in Section IV-B, if there
are multiple inputs that have exactly the same output/next state
behavior, we only need to consider one of these inputs.

C. Undefined reset states

The KISS2 format allows for the optional definition of a reset
state. According to the specification [36], if no reset state is specified,
the first state encountered in the transition list is implicitly assumed to
be the reset state. However, several of the benchmarks we use in the
evaluation would not make much sense with this specification, as for
example in rubin2250, only three (out of 2250) states are reachable
from the first state. We therefore added a command line parameter to
our tool that controls whether the first state should be the reset state,
or any state might be a reset state if no explicit reset state is specified.

VI. EVALUATION

In this section, we first evaluate our approach on two sets of
standard benchmarks against two other exact and two heuristic
techniques. We then investigate how the precomputation of a partial
solution, as described in Section IV-C, influences the execution time.

A. Benchmarks

We compare the performance of our implementation with
BICA [10], which is based on Angluin’s learning algorithm, and
STAMINA (exact mode) [14], which is a popular implementation of
the explicit version of the two-step standard approach. Furthermore,
we also compare our tool with STAMINA (heuristic mode), and
COSME [9], which is another, recently proposed, heuristic technique.

There are two standard sets of benchmarks that were used in the
evaluations of previous techniques: The ISM benchmarks, used by,
e.g., [8], [9], [10], [11], [12], and the MCNC benchmarks, used by,
e.g., [13], [14], [15], [16], [12], [17], [18], [19].

The ISM benchmarks contain several examples that exhibit a very
large number of prime compatibles, and are therefore not solvable
by techniques that are based on the explicit enumeration of prime
compatibles, such as STAMINA. The machines after minimization

are, however, rather small (at most 14 states), which makes them
amenable to the learning-based approach.

Most benchmarks from the MCNC suite, on the other hand, can
be easily solved by the standard approach. However, some of the
minimized machines are significantly larger (up to 135 states), which
makes these benchmarks harder for the learning-based technique, as
well as for the technique based on implicit enumeration, where “the
representation becomes inefficient”, “when there are many states and
few compatibles” [8].

The scatter plots in Figure 1 and 2 show the results of the different
tools on both sets of benchmarks. MEMIN reported a correct result on
all benchmarks. Cases, where the other tool did not return a correct
result are indicated with orange and red (for the exact approaches,
a non-minimal result is considered to be incorrect). The reported
runtimes are the averages over 5 runs; the timeout was set to 5
minutes. The standard deviations of the runtimes were in all cases
smaller than 4.5%. A table with all results is available online2.

1) ISM benchmarks: This set of benchmarks was compiled by
the authors of the ISM tool [8]. The benchmarks come from a
variety of sources, including asynchronous synthesis procedures, FSMs
constructed to be compatible with a given collection of examples of
input/output behavior, FSMs that are part of a surrounding network of
FSMs, FSMs contructed to have an exponential number (up to 21500)
of prime compatibles, and randomly generated machines.

MEMIN was able to solve all 34 benchmarks in under 0.2s, and
30 of them even in less than 10ms. BICA was on all benchmarks at
least 16 times slower; it could solve only one benchmark in less than
10ms. 16 benchmarks took more than 100ms, 7 more than 1s, and
one could not finish within a timeout of 5 minutes.

STAMINA (exact mode) was not able to solve 13 benchmarks
on our machine. This mostly corresponds to what was also reported
in previous publications, except for ifsm1, for which [10] reported
a time about twice as high as for ifsm2, and fo.20 and th.30, for
which [9] reported around 36s and 84s, respectively, though it is not
clear whether they used the exact or the heuristic mode of STAMINA.
Furthermore, for 5 benchmarks, the results of STAMINA (exact mode)
were not minimal.

The execution time of the heuristic mode of STAMINA was
in only one case significantly different from the exact mode. 15
benchmarks lead to error messages on our machine. [12] reported
results for the heuristic mode of STAMINA for these cases. For the
fo.* and th.* benchmarks, the resulting machines were in many cases
significantly larger than the minimal machines (e.g., 24 states instead
of 8 for th.55, or 14 instead of 7 for fo.70).

COSME was in two cases (fo.60 and fo.70) significantly faster
than MEMIN, however, the minimized machines had 3 and 2 additional
states, respectively. In 7 cases, COSME was more than 10 times slower
than MEMIN, and in 12 cases the resulting machines did not have
the minimal number of states.

2) MCNC benchmarks: Benchmarks from the MCNC suite [37]
are widely used in logic synthesis. Both MEMIN and STAMINA
were able to solve almost all benchmarks in less than 10ms. However,
STAMINA was unable to solve three cases, and reported non-minimal
results in four cases. BICA, on the other hand, needed more than
100ms in 17 cases, and more than 1s in 8 cases. On one benchmark,

2http://embedded.cs.uni-saarland.de/tools/MeMin/results.pdf

6

http://embedded.cs.uni-saarland.de/tools/MeMin/results.pdf


Fig. 1: Benchmark results - Exact approaches

100 101 102 103 104 105

100

101

102

103

104

105

BICA [ms]

M
eM

in
[m

s]

100 101 102 103 104 105

100

101

102

103

104

105

STAMINA (exact mode) [ms]
M

eM
in

[m
s]

ISM MCNC Correct result Result not minimal Incorrect result Timeout Other errors

100 101 102 103 104 105

100

101

102

103

104

105

COSME [ms]

M
eM

in
[m

s]

100 101 102 103 104 105

100

101

102

103

104

105

STAMINA (heuristic mode) [ms]

M
eM

in
[m

s]

Fig. 2: Benchmark results - Heuristic approaches

7



BICA did not terminate within a timeout of 5 minutes. On two
benchmarks, it ran out of memory. COSME reported invalid results
on a large number of these benchmarks. We assume that this might
be due to a bug in handling partially specified inputs, which are used
by many MCNC benchmarks. We noticed that the resulting machines
sometimes had multiple transitions for the same inputs.

B. Evaluation of MeMin

In this section, we analyze our approach in detail. Table I shows
the results for several experiments. The column “SAT only” shows the
execution time for a naive implementation that does not precompute a
partial solution, and uses 1 as the lower bound. The column “SAT+LB”
gives the time for an implementation that uses the size of the partial
solution as the lower bound, but does not add the constraints from
Section IV-C to the SAT problem. The column “SAT+LB+PS” shows
the time for the implementation that also adds these constraints (i.e.,
the same implementation that was also used for the scatter plots). For
this implementation, the column “SAT share” displays the time the
SAT solver needed in relation to the total execution time. The column
|Q| shows the number of states before minimization, |Qm| the number
of states after minimization, and |P | the size of the partial solution.
For space reasons, we omitted the benchmarks, for which all of these
implementations needed less than 2ms and for which the size of the
partial solution was equal to the size of the minimized machine.

All benchmarks, for which the minimized machines have more
than 9 states could not be solved by the naive implementation within
a timeout of 5 minutes. On the other hand, the solution that uses
the lower bound was able to solve all but one benchmark in under
5 minutes (and all but 5 in under 1s). We observed that the SAT
solver typically needs much more time to determine that there is no
solution for |Qm| − 1 than to find a solution of size |Qm|. For many
benchmarks, the size of the partial solution already corresponds to the
size of the minimal solution; thus the second implementation often
does not need to consider the |Qm| − 1 case.

The additional constraints used in the third implementation were
in particular helpful for larger machines (e.g., s298 and scf ), as well
as those machines, where |P | < |Qm|. The most noticeable speed-
up was on fo.60 and fo.70 (more than 600 times faster), and on
ifsm1, for which the first and second implementation did not terminate
within 5 minutes, while the final implementation was able to solve
the benchmark in 1.6ms.

C. Other tools

A number of other state minimization tools have been described in
the literature. Unfortunately, for the approaches described in [8], [12],
[16], [15], [13], we were unable to obtain working implementations.

For the ISM tool [8], which implements the implicit enumeration
approach based on BDDs, there is no public release available [38].
However, the authors of BICA compared their tool with ISM on the
same set of benchmarks that we used in Section VI-A1. ISM was
slightly faster than BICA on only one benchmark (ifsm1). It was
more than 100 times slower than BICA on 5 benchmarks, and was
unable to solve 7 benchmarks that BICA was able to solve.

Slim [12] is not available because it is Fujitsu’s proprietary [39].
Also, the source code of VOID [16] is not available any more [40].
While we were able to obtain a copy of CHESMIN [11] from the
authors, unfortunately, on our machine, the version we obtained yields
segmentation faults on most benchmarks.

TABLE I: Evaluation of MEMIN

Solution times [ms]

Benchmark |Q| |Qm| |P | SAT only SAT+LB SAT+LB+PS SAT share

IS
M

be
nc

hm
ar

ks

alex1 42 6 6 5.9 2.9 1.1 35%
intel edge.dummy 28 4 3 1.7 1.6 .8 36%
isend 40 4 4 2.1 1.6 1.0 35%
vbe4a 58 3 3 2.2 1.8 1.2 32%
vmebus.master.m 32 2 2 2.7 2.5 2.0 14%
fo.16 17 3 2 1.1 1.1 .6 30%
fo.30 31 3 2 1.2 1.2 .7 38%
fo.40 41 4 4 3.2 2.9 1.5 66%
fo.50 51 6 5 16.0 15.1 4.3 87%
fo.60 61 7 6 116423.5 117156.3 169.2 99%
fo.70 71 7 4 116371.3 114812.6 189.4 99%
th.20 21 4 3 1.4 1.3 .7 42%
th.25 26 4 3 1.3 1.2 .7 40%
th.30 31 5 5 2.2 1.7 .6 31%
th.35 36 7 7 8.1 2.0 .8 42%
th.40 41 8 8 40.1 2.2 .9 45%
th.55 55 8 8 94.1 8.5 1.5 63%
ifsm0 38 3 3 2.2 1.9 .9 9%
ifsm1 74 14 13 timeout timeout 1.6 54%
ifsm2 48 9 9 1616.7 7.2 1.5 35%
rubin1200 1200 3 3 39.6 37.8 37.4 13%
rubin2250 2250 3 3 163.9 159.3 160.1 8%
rubin600 600 3 3 10.1 9.3 8.8 20%

M
C

N
C

be
nc

hm
ar

ks

bbara 10 7 7 7.8 1.4 .5 9%
bbsse 16 13 13 timeout 8.1 .9 14%
bbtas 6 6 6 2.2 1.2 .5 8%
cse 16 16 16 timeout 4.2 .8 13%
dk14 7 7 7 10.1 1.6 .6 9%
dk16 27 27 27 timeout 32.7 .9 16%
dk17 8 8 8 30.9 1.6 .5 9%
dk27 7 7 7 5.8 1.3 .4 9%
dk512 15 15 15 timeout 3.4 .5 12%
ex1 20 18 18 timeout 9.3 1.0 12%
ex2 19 5 4 3.8 3.5 .9 48%
ex3 10 4 2 1.6 1.6 .8 47%
ex4 14 14 14 timeout 3.0 .5 13%
ex5 9 3 2 1.1 1.0 .5 22%
ex6 8 8 8 39.3 1.6 .5 11%
keyb 19 19 19 timeout 6.9 1.1 13%
kirkman 16 16 16 timeout 5.9 2.1 9%
mark1 15 12 12 timeout 9.5 1.0 35%
opus 10 9 9 265.3 1.7 .5 10%
planet1 48 48 48 timeout 78.7 1.4 26%
planet 48 48 48 timeout 78.3 1.4 26%
pma 24 24 24 timeout 8.1 .8 17%
s1488 48 48 48 timeout 137.7 2.0 22%
s1494 48 48 48 timeout 134.0 2.0 23%
s1a 20 1 1 3.3 3.2 2.7 8%
s1 20 20 20 timeout 8.3 1.0 15%
s208 18 18 18 timeout 7.6 1.0 13%
s298 218 135 135 timeout 5273.0 9.7 36%
s386 13 13 13 timeout 3.0 .7 13%
s420 18 18 18 timeout 8.7 1.0 13%
s510 47 47 47 timeout 89.6 1.2 30%
s820 25 24 24 timeout 16.6 1.5 15%
s832 25 24 24 timeout 18.9 1.6 15%
sand 32 32 32 timeout 32.9 1.5 18%
scf 121 97 97 timeout 1492.3 3.3 45%
shiftreg 8 8 8 37.6 1.7 .4 9%
sse 16 13 13 timeout 8.2 .9 14%
styr 30 30 30 timeout 29.4 1.2 17%
tbk 32 16 16 timeout 35.5 3.5 6%
tma 20 18 18 timeout 4.7 .7 20%

D. Experimental setup

All experiments were run on an Intel Core i5-4590 (3.3GHz) with
4GB of RAM. We disabled dynamic frequency scaling, and copied
all executables and benchmark files to a RAM disk, to minimize
timing variations due to hard drive accesses. The execution times were
measured using the perf3 tool.

We used BICA in version 5.0.3. We specified a hash table of size
100,000 (parameter “-h 100,000”). With the default size of 10,000
some benchmarks failed with the error message “Too many collisions.
Specify a large hash table.” We used the version of STAMINA that is
included in SIS 1.3.64. For the exact mode, we specified the parameter
“-s 0”, and for the heuristic mode “-s 3” (which combines the “tight
upper bound” and “isomorphic” heuristics). We used a version of
COSME (as of Aug. 2010) that was provided to us by one of the
authors. We specified the same parameters as in the evaluation in [9]
(“--comparemode --shownum --xincha”).

3https://perf.wiki.kernel.org/
4http://embedded.eecs.berkeley.edu/Alumni/pchong/sis.html

8

https://perf.wiki.kernel.org/
http://embedded.eecs.berkeley.edu/Alumni/pchong/sis.html


VII. CONCLUSIONS

With respect to the set of benchmarks used to evaluate previous
approaches, one can consider the problem of minimizing incompletely
specified Mealy machines to be solved: Our method can solve all of
these benchmarks in less than 0.2 seconds, and all but four in less
than 10ms.

To evaluate the limits of our approach, one problem that future
work will need to address is to identify a new set of challenging,
realistic benchmarks.

ACKNOWLEDGMENTS

We would like to thank Alex D. B. Alberto for providing us
with the ISM-benchmarks and the source code of COSME. This
work was supported by the German Research Council (DFG) as
part of the Transregional Collaborative Research Center “Automatic
Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS).
See http://www.avacs.org/ for more information.

REFERENCES

[1] I. Ahmad, “A distributed algorithm for finding prime compatibles on
network of workstations,” Microprocessors and Microsystems, vol. 25,
no. 4, pp. 195 – 202, 2001.

[2] A. Alberto and A. Simao, “Minimization of incompletely specified finite
state machines based on distinction graphs,” in 10th Latin American
Test Workshop (LATW ’09), March 2009, pp. 1–6.

[3] J. Echavarria, A. Morales-Reyes, R. Cumplido, and M. Salido, “FSM
merging and reduction for IP cores watermarking using genetic algo-
rithms,” in International Conference on ReConFigurable Computing and
FPGAs (ReConFig). IEEE, 2014, pp. 1–7.

[4] J. Hopcroft, “An n logn algorithm for minimizing states in a finite
automaton,” in Theory of Machines and Computations, Z. Kohavi and
A. Paz, Eds. Academic Press, New York, 1971, pp. 189–196.

[5] C. Pfleeger, “State reduction in incompletely specified finite-state
machines,” IEEE Transactions on Computers, vol. C-22, no. 12, pp.
1099–1102, Dec 1973.

[6] M. Paull and S. Unger, “Minimizing the number of states in incompletely
specified sequential switching functions,” IRE Transactions on Electronic
Computers, vol. EC-8, no. 3, pp. 356–367, Sept 1959.

[7] A. Grasselli and F. Luccio, “A method for minimizing the number of
internal states in incompletely specified sequential networks,” IEEE
Transactions on Electronic Computers, vol. EC-14, no. 3, June 1965.

[8] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli, “A fully
implicit algorithm for exact state minimization,” in 31st Conference on
Design Automation, June 1994, pp. 684–690.

[9] A. D. B. Alberto and A. Simao, “Iterative minimization of partial
finite state machines,” Central European Journal of Computer
Science, vol. 3, no. 2, pp. 91–103, 2013. [Online]. Available:
http://dx.doi.org/10.2478/s13537-013-0106-0

[10] J. Pena and A. Oliveira, “A new algorithm for exact reduction of
incompletely specified finite state machines,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 18,
no. 11, pp. 1619–1632, Nov 1999.

[11] S. Gören and F. J. Ferguson, “On state reduction of incompletely specified
finite state machines,” Comput. Electr. Eng., vol. 33, no. 1, pp. 58–69,
Jan. 2007.

[12] H. Higuchi and Y. Matsunaga, “A fast state reduction algorithm for
incompletely specified finite state machine,” in Proceedings of the 33rd
Annual Design Automation Conference. ACM, 1996, pp. 463–466.

[13] A. S. Klimowicz and V. V. Solov’ev, “Minimization of incompletely
specified mealy finite-state machines by merging two internal states,” J.
Comput. Syst. Sci. Int., vol. 52, no. 3, pp. 400–409, May 2013.

[14] J.-K. Rho, G. Hachtel, F. Somenzi, and R. Jacoby, “Exact and heuristic
algorithms for the minimization of incompletely specified state machines,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 13, no. 2, pp. 167–177, Feb 1994.

[15] H. Hu, H.-X. Xue, and J.-N. Bian, “HSM2: A new heuristic state
minimization algorithm for finite state machine,” Journal of Computer
Science and Technology, vol. 19, no. 5, pp. 729–733, 2004.

[16] I. Ahmad and A. S. Das, “A heuristic algorithm for the minimization of
incompletely specified finite state machines,” Computers & Electrical
Engineering, vol. 27, no. 2, pp. 159–172, 2001.

[17] J. Sanchez, A. Garnica, and J. Lanchares, “A genetic algorithm for
reducing the number of states in incompletely specified finite state
machines,” Microelectronics journal, vol. 26, no. 5, pp. 463–470, 1995.

[18] R. Puri and J. Gu, “An efficient algorithm to search for minimal closed
covers in sequential machines,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 12, no. 6, Jun. 1993.

[19] L. N. Kannan and D. Sarma, “Fast heuristic algorithms for finite state
machine minimization,” in Proceedings of the Conference on European
Design Automation, 1991, pp. 192–196.

[20] G. H. Mealy, “A method for synthesizing sequential circuits,” The Bell
System Technical Journal, vol. 34, no. 5, pp. 1045–1079, Sep. 1955.

[21] D. Aufenkamp, “Analysis of sequential machines II,” IRE Transactions
on Electronic Computers, vol. EC-7, no. 4, pp. 299–306, Dec 1958.

[22] S. Ginsburg, “On the reduction of superfluous states in a sequential
machine,” J. ACM, vol. 6, no. 2, pp. 259–282, Apr. 1959.

[23] T. Kam, T. Villa, R. K. Brayton, and A. L. Sangiovanni-Vincentelli,
Synthesis of Finite State Machines: Functional Optimization, 1st ed.
Springer Publishing Company, 2010.

[24] S. De Sarkar, A. Basu, and A. Choudhury, “Simplification of incom-
pletely specified flow tables with the help of prime closed sets,” IEEE
Transactions on Computers, vol. C-18, no. 10, pp. 953–956, Oct 1969.

[25] R. Bennetts, “An improved method of prime c-class derivation in the state
reduction of sequential networks,” IEEE Transactions on Computers,
vol. 100, no. 2, pp. 229–231, 1971.

[26] H. Higuchi and Y. Matsunaga, “Implicit prime compatible generation for
minimizing incompletely specified finite state machines,” in Proceedings
of the Asia and South Pacific Design Automation Conference, ser. ASP-
DAC ’95. ACM, 1995.

[27] S. Liao and S. Devadas, “Solving covering problems using LPR-based
lower bounds,” in Proceedings of the 34th Annual Design Automation
Conference, ser. DAC ’97. ACM, 1997, pp. 117–120.

[28] T. Villa, T. Kam, R. Brayton, and A. Sangiovanni-Vincentelli, “Explicit
and implicit algorithms for binate covering problems,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 16,
no. 7, pp. 677–691, Jul 1997.

[29] F. Rubin, “Worst case bounds for maximal compatible subsets,” IEEE
Transactions on Computers, vol. C-24, no. 8, pp. 830–831, Aug. 1975.

[30] D. Angluin, “Learning regular sets from queries and counterexamples,”
Information and computation, vol. 75, no. 2, pp. 87–106, 1987.

[31] A. W. Biermann and J. A. Feldman, “On the synthesis of finite-
state machines from samples of their behavior,” IEEE Transactions
on Computers, vol. 100, no. 6, pp. 592–597, 1972.

[32] O. Grinchtein and M. Leucker, “Learning finite-state machines from
inexperienced teachers,” in Grammatical Inference: Algorithms and
Applications. Springer, 2006, pp. 344–345.

[33] R. Bennetts, J. Washington, and D. Lewin, “A computer algorithm for
state table reduction,” Radio and Electronic Engineer, vol. 42, no. 11,
pp. 513–520, November 1972.

[34] M. Avedillo, J. Quintana, and J. Huertas, “New approach to the state
reduction in incompletely specified sequential machines,” in IEEE
International Symposium on Circuits and Systems, 1990, pp. 440–443.

[35] N. Eén and N. Sörensson, “An extensible SAT-solver,” in Theory and
Applications of Satisfiability Testing, ser. Lecture Notes in Computer
Science. Springer, 2004, vol. 2919, pp. 502–518.

[36] E. M. Sentovich et al., “SIS: A system for sequential circuit synthesis,”
Tech. Rep., 1992.

[37] S. Yang, Logic synthesis and optimization benchmarks user guide Version
3.0. Microelectronics Center of North Carolina (MCNC), 1991.

[38] T. Villa, Personal communication, March 2015.
[39] H. Higuchi, Personal communication, Fujitsu Laboratories, March 2015.
[40] I. Ahmad, Personal communication, March 2015.

9

http://dx.doi.org/10.2478/s13537-013-0106-0

	Introduction
	Outline

	Definitions
	Basic definitions
	Problem statement
	General approach

	Related Work
	Approach
	Incompatibility matrix
	Encoding as a SAT problem
	Computing a partial solution

	Implementation
	Dealing with partially specified outputs
	Dealing with partially specified inputs
	Undefined reset states

	Evaluation
	Benchmarks
	ISM benchmarks
	MCNC benchmarks

	Evaluation of MeMin
	Other tools
	Experimental setup

	Conclusions
	References

