
Sound WCET Analysis, Explanation of the Method
and of the Results

Reinhard Wilhelm
Informatik

Saarland University
Saarbrücken, Germany

ORCID ID 0000-0002-5599-7560

Jan Reineke
Informatik

Saarland University
Saarbrücken, Germany

ORCID ID 0000-0002-3459-2214

Abstract—Sound WCET analysis computes reliable upper
bounds to all execution times of a program as required by a
schedulability analysis. It is a complex method, composed of
many component methods. Software developers and certification
authorities are interested in understanding the derivation of
the results in order to develop trust in their correctness. The
results cannot be understood without a basic understanding of
the methods. We argue that essentially one of the component
methods, Microarchitectural Analysis, is critical for understand-
ing and accepting the results. In this article we therefore explain
Microarchitectural Analysis and show how its provides local
explanations for the overall result.

In addition, we show that progress monotonicity is a suffi-
cient condition for timing compositionality and that it increases
explainability.

Index Terms—WCET analysis, real-time, instruction execution
times, timing compositionality

I. INTRODUCTION

Sound WCET analysis computes reliable upper bounds to
all execution times of a program. The problems of WCET
analysis are caused by performance-enhancing features of
microarchitectures. They introduce a large variability of exe-
cution times of instructions. This article explains the principle
behind sound solutions of the WCET problem. This principle
is to prove the absence of timing accidents, i.e., events during
the execution of an instruction execution that increase the
execution time compared to the fastest execution. These proofs
are based on the determination of invariants about the set of
potential execution states at each program point. Such invari-
ants can be computed by a fixed-point iteration by Abstract
Interpretation. The particular ingredients of the employed
instances of abstract interpretations are explained and con-
nected to fundamental insights into the timing-predictability
of execution platforms. We show how the computed invariants
are essential for explaining the results of WCET analysis.

II. WCET ANALYSIS—THE PROBLEM

WCET analysis can be seen as the search for the longest
path through the control-flow graph of a program. The nodes
are the instructions of the program, annotated with their
execution times. This task was relatively easy in the (good
old) times of instructions with constant execution times [1],
[2]. Structural induction over the structure of a program was

used to compute global upper bounds on all execution times
of instructions.

Unfortunately, in modern high-performance processors the
execution times of instructions vary widely. This is caused
by their dependence on the execution state of performance-
enhancing features such as caches, pipelines, and all kinds
of speculation. The core of the WCET–analysis problem for
modern high-performance processors thus is, how to safely
bound the execution times of individual instructions in a
program. This is done by the analysis component called
Microarchitectural Analysis in the picture of the tool structure
in Fig. 1. The determination of a safe upper bound on the
execution time of the whole program and of the path on which
this bound is determined is called Global Bounds Analysis in
Fig. 1. This analysis explores all paths in a state space, spanned
by the program and the architecture. It would be desirable to
cut down the size of this space. However, as we will see later, a
ghost that haunts WCET researchers is the existence of Timing
Anomalies [3], [4], namely that cheaper continuations of
execution paths may lead to globally more expensive paths and
vice versa. For microarchitectures exhibiting timing anomalies,
it would be incorrect to explore only worst-case transitions.
The full graph needs to be explored. We will come back to
timing anomalies in the context of timing predictability.

III. WCET-ANALYSIS—A SOLUTION

The different execution times result from different execution
states in which an instruction may be executed. A memory
access is fast if the accessed memory block is in the cache,
it is slow if it has to be fetched from memory, and it is even
slower if the memory load is blocked on the bus. We call cache
misses, pipeline stalls, bus collisions, and mis-speculations
Timing Accidents and the associated extra cycles Timing
Penalties. The search through the annotated graph could safely
assume a cache hit if it were known, for example as results
of a static cache analysis, that the accessed memory block
were in the cache each time execution reaches that program
point. So, the solution consists in computing invariants at each
program point that safely describe the execution states, i.e., the
occupancy of the machine resources.

We now argue that all but one component analysis from Fig.
1 are nor critical for understanding sound WCET analysis.



Binary
Executable

CFG Re-
construction

Control-flow
Graph

Loop Bound
Analysis

Value
Analysis

Control-flow
Analysis

Annotated
CFG

Basic Block
Timing Info

Micro-
architectural

Analysis

Global
Bound

Analysis

Legend:

Data

Phase

Fig. 1. Architecture of WCET tools using static analysis based on an
abstraction of the execution platform such as AbsInt’s aiT tool [5].

The Value Analysis, shown in Fig. 1, computes enclosing
intervals for the values in program variables and machine
registers. The results restrict potential memory accesses to
enable a precise data-cache analysis and support Loop Bounds
Analysis. The Control-Flow Analysis determines facts about
the control flow, like infeasible control flow paths, that cannot
contribute to overall execution times. In case of doubt these
computed approximations can be inspected and compared with
the user’s expectations. The Global Bounds Analysis exhibits
the control-flow paths through the program, augmented by the
paths through the architecture, together with annotations of
the costs. The overall graph shows all cycle-wise evolutions
of the computation. The direct or indirect algorithm, used to
compute this graph, can be taken from textbooks and proved
correct. In case of doubt the annotated graph can be manually
checked.

The Microarchitectural Analysis in this solution to the
WCET-Analysis problem [6] consists in determining at each
program point an invariant that describes a safe approximation
of the set of execution states that are possible when execution
reaches this program point. Based on these invariants our
WCET analysis proves safety properties of the following kind:
A certain timing accident cannot happen when the instruction
at this program point is executed. These approximations are
safe in the sense that any timing accident excluded based on
them will indeed never happen. Each safety property proved in
this way allows WCET analysis to reduce the execution-time
bound of the instruction by the associated timing penalty.

The invariants are computed by an instance of Abstract
Interpretation [7], algorithmically by a fixed-point iteration
over the control-flow graph of the program. Abstract inter-
pretation is a semantics-based static analysis. Unlike most of
the instances of abstract interpretations used in practice or
published, abstraction interpretation used in WCET analysis
needs to include the semantics of the underlying execution
platform. Its core, therefore, is an abstraction of the underlying
microarchitecture. This abstraction is structured into different
components according to the structure of the architecture.
Abstractions of several architectural components are described
in Subsection III-A and Section IV.

A. Execution-state Invariants as Means to Explain the Result
of WCET-Analysis

The execution-state invariants and the transitions between
invariants at consecutive program points are the means to
show local correctness to a user or certification authorities.
Execution-state invariants describe possible occupancies of
machine resources, i.e. what is in the caches, how far have
instructions progressed through the pipeline, and which con-
flicts may they encounter in attempting to access pipeline
units, which part of the bus bandwidth is occupied by running
transfers. Microarchitectural execution states are structured as
a collection of components according to the overall structure of
the machine resources. The occupancy of different components
is represented in different abstract domains. Understanding the
invariants means being able to read the abstract states.

In Abstract–Interpretation terminology, concretization is
the function that returns the set of concrete states represented
by an abstract state. The abstract cache states, for instance,
describe sets of concrete cache contents, together with
replacement information. In the case of an LRU cache the
latter are upper bounds on the ages of the memory blocks
guaranteed to be in the cache. In the case of non–LRU caches
this information may be complex. Abstract pipeline states of
most current architectures are easier to understand since they
are collections of concrete pipeline states.

In addition to the concretization of the abstract cache
states, the transitions between invariants need to be explained.
In principle, one could imagine that all component states
described in an invariant would be concretized, then the
concrete transformation would be applied to all of the concrete
ones, and then the resulting set of concrete states would be
abstracted back into abstract states forming the new invariant
as illustrated by the following diagram:

a a′

c c′

abstract update

concretization
concrete update

abstraction

More realistically, the developer of the microarchitectural
analysis determines a conservative approximation of the com-
position of these three functions and explains the result to
the interested public. The abstract update needs to satisfy
the following local correctness condition: Given a set of



concrete caches states c described by abstract cache state a.
The transition from all the cache states in c yields concrete
cache states collected in a set c′. The application of the abstract
transition relation to a must yield an abstract cache state a′

that contains at least all the concrete cache states in c′. This
is captured by the following diagram:

a a′

c′′

c c′

abstract update

concretization

concretization

⊇

concrete update

Fig. 2 shows an example of an abstract transition in the case
of caches. This figure should be read as follows: Transitions
from one concrete cache state to a successor state happen
under a memory access. In the lower part of Fig. 2 transitions
from four concrete cache states under an access to memory
block C lead to two potential successor states. The initial
four concrete cache states are described by (can be abstracted
to) the abstract cache state pictured above them. This is an
abstract cache state that contains all memory blocks contained
in all of these concrete cache states with an age at least as
large as that of all their ages in the concrete cache states. The
transition from the abstract cache state leads to an abstract
cache state that describes the two resulting concrete cache
states in the same way. We also say that the concretization
of the resulting abstract cache state contains the two concrete
cache states.

In this particular case, the abstraction is exact, i.e., the
resulting abstract cache states represent the two potential
successor states, and no more. In general, the cache abstraction
from the example, and other abstractions, may introduce
additional spurious concrete states, which may result in a loss
of precision, but correctness remains guaranteed by overap-
proximating any set of reachable concrete states.

The local correctness condition we have just explained is
the basis to explain the global correctness of the analysis. If
each abstract transition is locally correct, then it can be shown
that the concretization of the reachable set of abstract states
computed by fixed-point iteration is guaranteed to contain all
reachable concrete states.

Again, abstract transitions on non–LRU abstract cache states
may be complex. However, there is no way to give a simple
explanation of a complex mechanism.

IV. MICROARCHITECTURAL ABSTRACTIONS

Attempting to determine the real worst-case execution time
by exhaustive exploration of the space of all paths is a hopeless
endeavor for all but trivial programs. Not only the space of all
paths through the control-flow graphs needs to be explored,
but also the much larger space of paths through the sets of
execution states of the underlying microarchitecture.

This latter space can be reduced by abstraction, considering
abstract execution states instead of concrete execution states.

0:
1:
2:
3:

0:
1:
2:
3:

Access to C: “hit”

{C}
{}

{A,B}
{D}

{}
{B}
{A,C}
{D}

concretization

C
B
A
D

B
A
C
D

B
C
A
D

A
B
C
D

C
A
B
D

C
B
A
D

Access 
to C

concretization

Fig. 2. Transition from one abstract LRU cache state to a successor abstract
cache state and their concretizations

The different components of the execution platform are ab-
stracted as to make the space exploration feasible, but on the
other hand keep enough information for the above mentioned
exclusion of timing accidents. It turns out that different types
of components need different types of abstractions.

A. Abstractions of State–Dependent Resources

The essential property of state-dependent resources as far as
timing of instruction execution is concerned is that their state
influences instruction execution times, that is, the execution
of instructions takes different number of cycles depending on
the state of the resource. For example, an instruction or an
operand fetch takes different number of cycles depending on
the state of the instruction or data cache. The access to a
memory bank takes a different number of cycles depending
on whether the bank is open or closed. The next instruction to
be fetched depends on the state of the branch predictor. Static
cache analysis has been the mother of all WCET analyses.
Compact abstractions of cache states with efficient updates,
such as the one shown in Fig. IV, have been identified for
caches with LRU-replacement policy [8].

B. Abstractions of Bandwidth Resources

We call microarchitectural components such as buses and
other interconnects bandwidth resources since they offer lim-
ited resources in time to different competing actors. Contention
is resolved based on some protocol, sometimes based on the
state of the resource. In contrast to storage resources, where the
actual state of a resource can still be influenced by long-passed
state changes, this state usually results from recent actions, i.e.,
whether two cores are currently competing for access or not.
Abstract states in the static analysis of bandwidth resources
record everything needed to predict guaranteed access to the
resource, such as all potential states of the access protocol,
all maximal delay times caused by running accesses, and the
minimal available bandwidth of the resources.

Bandwidth resources are particularly challenging when they
are shared, as e.g. buses are in multi-core processors, due to
the large number of possible interactions between processes
running on different cores. A promising approach to efficiently



analyze shared bandwidth resources is compositional analysis,
which we discuss in the next section.

C. Abstractions of Progress Resources

Pipelining overlaps the execution of multiple instructions
to improve performance. From an analysis point of view
pipelining is challenging as it prohibits decomposing the
problem into the analysis of one instruction at a time. Flowing
through the pipeline, each instruction gradually progresses
through the resource. We thus regard pipelines as progress
resources. Abstract pipeline states in static pipeline analysis
record the minimum progress instructions under execution can
be guaranteed to have made at a program point.

Efficient abstractions for pipeline states have been par-
ticularly hard to find. Out-of-order pipelines required using
expensive power-set domains [9], [10]. This means that the
pipeline analysis computed (often very large) sets of pipeline
states at each program point instead of small descriptions of
such sets like in the case of caches. Out-of-order pipelines
also unavoidably came with timing anomalies, which we will
discuss further in the following section. In contrast to common
belief, even in-order pipelines can exhibit timing anomalies as
shown in [11].

V. TIMING PREDICTABILITY

The notion of Timing Predictability has been around even
before the WCET problem became exciting [12]. Varying
instruction execution times were not a problem at this time.
The method described in this paper was first instantiated
for two different microarchitectures used by Airbus [6]. It
became immediately clear that these two microarchitectures,
a Motorola Coldfire and a PowerPC 655 had different Timing
Predictabilities [13].

Thiele and Wilhelm [14] published a first recommendation
for the design of timing-predictable microarchitectures based
on empirical evidence. The dissertation of Jan Reineke was
the first to present a formal notion of timing predictability,
namely that of cache replacement strategies [15], [16].

A. Timing Anomalies and Timing Compositionality

Microarchitectures exhibiting timing anomalies force sound
WCET analyses to explore inherently larger search spaces.
On the other hand, microarchitectures that are provably free
from anomalies lead to more scalable WCET analyses and
more explainable results, as the analysis and its explanation
can focus on a smaller set of states. A natural question thus
is how to systematically construct microarchitectures that are
free from timing anomalies.

Similarly, multi-core platforms with shared resources offer
a severe challenge for WCET analysis since different interfer-
ences on the shared resources, in general, lead to different
timing behaviors. Explicitly exploring all interleavings of
accesses to shared resources leads to an enormous increase
in the size of the search space [17], [18]. A promising
approach to scalably analyze WCET in multi-core systems

is compositional analysis [19], [20], where the timing con-
tributions of shared resources are analyzed separately and
then composed. In such an approach, the “base” WCET of
each task is analyzed assuming the task is run in isolation.
Then, the amount of interference on each shared resource is
bounded separately and added to the base WCET to obtain a
bound on the execution time under contention. We argue that
compositional analyses are naturally more explainable than
integrated analyses as each individual analysis is less complex.
Unfortunately, such an approach requires timing composition-
ality [21], the ability to soundly compose contributions from
multiple resources. Complex processors have been shown to
violate timing compositionality.

It turns out that timing compositionality and freedom from
timing anomalies are strongly related. In fact, Hahn and
Reineke [22] showed that progress monotonicity is a sufficient
condition for both properties. More precisely, consider two
microarchitectural states a and b in which every instruction
exhibits more progress towards retirement in b than it does in
a, we say that a ≤ b. A microarchitecture exhibits progress
monotonicity if for any pair of states a ≤ b, the immediate
successor states s(a) and s(b) maintain the ordering, i.e.,
s(a) ≤ s(b). In [22] they also demonstrate how to construct
a processor that provably satisfies progress monotonicity and
thus facilitates fast and explainable WCET analysis.

Computer architects are mainly concerned with increasing
the average-case performance and ignore the requirements of
the embedded real-time domain. The most notable exception
is the Kalray many-core processor which is designed to avoid
interferences and make sound and precise WCET analysis
possible [23].

VI. EXPLAINABILITY CHALLENGES

The correctness of the architectural abstraction is the critical
point for customers and certification authorities when it comes
to the soundness of a WCET–analysis tool. Formal verification
of the soundness is infeasible in the absence of formal models
of the underlying execution platforms. Sophisticated testing
strategies have been used to convince one of the correct-
ness [24].

The ideal would be a formal or at least semi–formal
derivation of the abstract model from an available architecture
description in a HW description language like VHDL or Ver-
ilog. Marc Schlickling and Markus Pister [25] have attempted
this approach, but were bogged down with too many detail
problems as tool support for analysis and verification of HW
description languages was under–developed at the time of their
attempt. The growing ecosystem of RISC-V [26] open-source
cores and systems-on-chip along with open-source synthesis
toolchains such as Yosys [27] make such an approach appear
more viable today.

In this context, it would even be conceivable to generate
two tools from the Verilog code describing the underlying
hardware:

1) An abstract hardware model used within WCET anal-
ysis. Based on this model the WCET analysis would



generate “WCET certificates” explaining the WCET
bound.

2) A WCET certificate checker relying purely on the
concrete hardware model to confirm the correctness
of the WCET analysis result. This would reduce the
trusted compute base by eliminating the need to trust
the correctness of the abstract model.

ACKNOWLEDGEMENTS

We appreciate the comments of the reviewers who helped
us to improve the paper. This work has received funding
from the European Research Council under the European
Union’s Horizon 2020 research and innovation programme
(grant agreement No. 101020415).

REFERENCES

[1] A. C. Shaw, “Reasoning about time in higher-level language software,”
IEEE Trans. Software Eng., vol. 15, no. 7, pp. 875–889, 1989.

[2] P. P. Puschner and C. Koza, “Calculating the maximum execution time
of real-time programs,” Real Time Syst., vol. 1, no. 2, pp. 159–176,
1989.

[3] T. Lundqvist and P. Stenström, “Timing anomalies in dynamically
scheduled microprocessors,” in RTSS, pp. 12–21, 1999.

[4] J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, I. Polian, J. Eisinger,
and B. Becker, “A definition and classification of timing anomalies,”
in Proceedings of 6th International Workshop on Worst-Case Execution
Time (WCET) Analysis, July 2006.

[5] AbsInt Angewandte Informatik GmbH, “aiT WCET Analyzers.” https:
//www.absint.com/ait/.

[6] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt,
H. Theiling, S. Thesing, and R. Wilhelm, “Reliable and precise WCET
determination for a real-life processor,” in EMSOFT, vol. 2211 of LNCS,
pp. 469 – 485, 2001.

[7] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in POPL ’77: Proceedings of the 4th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, (New York, NY,
USA), pp. 238–252, ACM Press, 1977.

[8] C. Ferdinand and R. Wilhelm, “Efficient and precise cache behavior
prediction for real-time systems.,” Real-Time Systems, vol. 17, no. 2-3,
pp. 131–181, 1999.

[9] S. Thesing, Safe and Precise WCET Determinations by Abstract Inter-
pretation of Pipeline Models. PhD thesis, Saarland University, 2004.

[10] M. Langenbach, S. Thesing, and R. Heckmann, “Pipeline modeling
for timing analysis,” in Static Analysis, 9th International Symposium,
SAS 2002, Madrid, Spain, September 17-20, 2002, Proceedings (M. V.
Hermenegildo and G. Puebla, eds.), vol. 2477 of Lecture Notes in
Computer Science, pp. 294–309, Springer, 2002.

[11] S. Hahn, J. Reineke, and R. Wilhelm, “Toward compact abstractions
for processor pipelines,” in Correct System Design - Symposium in
Honor of Ernst-Rüdiger Olderog on the Occasion of His 60th Birthday,
Oldenburg, Germany, September 8-9, 2015. Proceedings, pp. 205–220,
2015.

[12] J. A. Stankovic and K. Ramamritham, “Editorial: What is predictability
for real-time systems?,” Real Time Syst., vol. 2, no. 4, pp. 247–254,
1990.

[13] R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm, “The
influence of processor architecture on the design and the results of
WCET tools,” IEEE Proceedings on Real-Time Systems, vol. 91, no. 7,
pp. 1038–1054, 2003.

[14] L. Thiele and R. Wilhelm, “Design for timing predictability,” Real-Time
Systems, vol. 28, no. 2-3, pp. 157–177, 2004.

[15] J. Reineke, Caches in WCET Analysis: Predictability - Competitiveness
- Sensitivity. PhD thesis, Saarland University, 2009.

[16] J. Reineke, D. Grund, C. Berg, and R. Wilhelm, “Timing predictability of
cache replacement policies,” Real-Time Systems, vol. 37, no. 2, pp. 99–
122, 2007.

[17] A. Abel, F. Benz, J. Doerfert, B. Dörr, S. Hahn, F. Haupenthal,
M. Jacobs, A. H. Moin, J. Reineke, B. Schommer, and R. Wilhelm,
“Impact of resource sharing on performance and performance prediction:
A survey,” in CONCUR 2013 - Concurrency Theory - 24th International
Conference, CONCUR 2013, Buenos Aires, Argentina, August 27-30,
2013. Proceedings (P. R. D’Argenio and H. C. Melgratti, eds.), vol. 8052
of Lecture Notes in Computer Science, pp. 25–43, Springer, 2013.

[18] T. Kelter and P. Marwedel, “Parallelism analysis: Precise WCET values
for complex multi-core systems,” Sci. Comput. Program., vol. 133,
pp. 175–193, 2017.

[19] S. Altmeyer, R. I. Davis, L. S. Indrusiak, C. Maiza, V. Nélis, and
J. Reineke, “A generic and compositional framework for multicore
response time analysis,” in RTNS, pp. 129–138, 2015.

[20] R. I. Davis, S. Altmeyer, L. S. Indrusiak, C. Maiza, V. Nélis, and
J. Reineke, “An extensible framework for multicore response time
analysis,” Real Time Syst., vol. 54, no. 3, pp. 607–661, 2018.

[21] S. Hahn, J. Reineke, and R. Wilhelm, “Towards compositionality in ex-
ecution time analysis: definition and challenges,” SIGBED Rev., vol. 12,
no. 1, pp. 28–36, 2015.

[22] S. Hahn and J. Reineke, “Design and analysis of SIC: a provably timing-
predictable pipelined processor core,” Real Time Syst., vol. 56, no. 2,
pp. 207–245, 2020.

[23] B. D. de Dinechin, D. van Amstel, M. Poulhiès, and G. Lager, “Time-
critical computing on a single-chip massively parallel processor,” in
Design, Automation & Test in Europe Conference & Exhibition, DATE
2014, Dresden, Germany, March 24-28, 2014 (G. Fettweis and W. Nebel,
eds.), pp. 1–6, European Design and Automation Association, 2014.

[24] R. Wilhelm, M. Pister, G. Gebhard, and D. Kästner, “Testing implemen-
tation soundness of a WCET analysis tool,” in A Journey of Embedded
and Cyber-Physical Systems - Essays Dedicated to Peter Marwedel on
the Occasion of His 70th Birthday (J. Chen, ed.), pp. 5–17, Springer,
2021.

[25] M. Schlickling and M. Pister, “Semi-automatic derivation of timing mod-
els for WCET analysis,” in Proceedings of the ACM SIGPLAN/SIGBED
2010 conference on Languages, compilers, and tools for embedded
systems, LCTES 2010, Stockholm, Sweden, April 13-15, 2010 (J. Lee
and B. R. Childers, eds.), pp. 67–76, ACM, 2010.

[26] K. Asanović and D. A. Patterson, “Instruction sets should be free: The
case for RISC-V,” Tech. Rep. UCB/EECS-2014-146, Aug 2014.

[27] C. Wolf, “Yosys open synthesis suite.” https://yosyshq.net/yosys/.


