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Abstract—For hard real-time systems, timeliness of operations
has to be guaranteed. Static timing analysis is therefore employed
to compute upper bounds on the execution times of a program.
Analysis results at high precision are required to avoid over-
provisioning of resources. For current processors, timing analysis
is a complex task mainly due to interdependencies of the proces-
sors’ features that affect the overall timing behaviour. To still
obtain tight bounds, state-of-the-art approaches collect detailed
information about these interdependencies by exploring the state
space of the system as a whole.

Modern systems, such as multi-core processors, introduce
even more timing dependencies – e.g. due to interference on
shared resources between functionally independent programs run-
ning on different cores. This will eventually render the above, non-
compositional, approach infeasible in terms of analysis runtime
and memory consumption. Therefore, recent analysis approaches
often assume a certain independence of system components –
referred to as timing compositionality.

We aim at a formal definition of timing compositionality as it
was previously only introduced informally. How to achieve timing
compositionality in general is an unsolved question. We highlight
challenges and summarise open problems that arise in the context
of compositional analyses.

I. INTRODUCTION

In general-purpose computing, the fast execution of pro-
grams in most cases is a desirable property. In safety-critical,
hard real-time (embedded) systems, program execution on time
in all cases is strictly required [1]. Therefore, static analysis
methods are employed to derive guarantees on the timing
behaviour of a program – prior to the deployment of the system.

Analysis results at high precision are required to prove the
system’s timeliness without over-provisioning its resources. The
timing of a program depends not only on its inputs such as
sensor values, but also on the state of its underlying hardware
platform. A memory access during program execution, e.g.,
can be served in a few cycles if the requested memory block
is cached, while taking hundreds of cycles otherwise. In order
to obtain precise results, this microarchitectural influence on
the execution time has to be considered during analysis.

Modern microprocessors have several performance-
enhancing features such as complex pipelining, caching, branch
prediction, and speculation. Each of these features enlarges
the microarchitectural state that has to be considered during
analysis to obtain tight timing bounds. Additionally most
of these processors’ features are also highly interdependent
[2] – often enough in a subtle way. These interdependencies
cause interferences between processor features during program
execution – e.g. a speculative memory access influences the
cache content and thereby its timing behaviour. Timing analysis

for such microprocessors has become a complex task due to
these interferences.

To obtain tight timing bounds, state-of-the-art approaches
employ a highly-integrated, non-compositional analysis that
simultaneously keeps track of all the interferences caused by
interdependencies. They explore the space of whole system
states that can evolve during program execution and search for
the longest path. Such approaches allow to precisely capture
the detailed execution behaviour of a program – at the cost
of significant analysis effort. To allow for a more compact
representation of system states, abstractions are employed.
Efficient and sufficiently precise abstractions have been found
for some isolated features, e.g. caches [3], while abstractions
for other components and their complex interplay are still
to be found. The integrated approach using abstractions, as
implemented in the industry-strength tool aiT1 by AbsInt GmbH,
is successfully applied for programs that execute uninterruptedly
and in isolation – even on complex processors [4]. Despite the
employed abstractions, the state space exploration is still very
expensive in terms of analysis time and memory consumption.
Thus, any change to the analysis setting or any additional
processor feature might render this approach computationally
infeasible.

The need for compositionality by two examples: In
modern and future embedded systems, tasks are scheduled
preemptively as this increases the overall schedulability com-
pared to non-preemptive scheduling. This introduces additional
interferences, as the preempting task might evict useful cache
content that has to be reloaded by the preempted task. Multi-
core platforms are emerging also in the embedded domain as
they offer a better performance-energy ratio and reduce the
total weight compared to multiple single-core computers. As a
consequence, several programs are grouped together to execute
concurrently on different cores sharing common resources
such as buses and memory. Thus, due to resource sharing,
interferences with an impact on the timing behaviour between
originally independent programs are introduced [5]. Keeping
track of this increasing amount of interferences in an integrated
analysis will lead to state space explosion and will finally render
the above approach infeasible.

For that reason, complexity, there is a need for a composi-
tional view on (analyses of) the timing behaviour of a system
– moving away from the integrated, non-compositional view.
Recently, efficient and precise analyses have been proposed
that focus on the (timing) behaviour of selected features –
not of the whole system at once. Examples are the analysis
of shared buses in a multi-core system [6] [7] as well as

1http://www.absint.com/ait/



analyses for preemptively scheduled systems [8]. The inherent,
underlying assumption is that the system allows for such a
decoupling of analyses. This assumption is referred to as timing
compositionality.

Up to now, timing compositionality is a term whose meaning
is solely based on intuition without a rigorous, formal definition.
A first attempt towards a definition has been made in [9] and
is discussed in Section III-D.

A. Our Contributions

Our contributions are threefold. First, we examine existing
approaches that assume “timing compositionality” with respect
to their, often intuitive, understanding of compositionality.
Second, based on our findings, we present a new, unified, and
thorough formal definition of timing compositionality. Thereby,
we want to soundly replace the analysis of a whole system by a
combination of individual analyses that focus only on selected
features. We discuss timing compositional architectures as
introduced by [9] and highlight the differences to our definition
of compositionality.

How to achieve timing compositionality in general is an
unsolved question. Is it possible to construct compositional
analyses even for complex processors, as well as to design
hardware (features) that allow for precise and compositional
analyses by construction? We identify challenges and pose open
problems that are subject to future work.

B. Overview

We start with a discussion of compositionality assumptions
in the literature in Section II and identify the main ingredients
for our formal definition. Our definition is then given in Sec-
tion III and discussed in detail. In particular, we distinguish our
definition from the previous definition of timing compositional
architectures [9]. Further related work is described in Section V.
In Section IV, we present a summary of challenges and open
problems. We conclude in Section VI.

II. TIMING COMPOSITIONALITY BY EXAMPLES

Recently, approaches have been proposed that make use of
a compositional rather than an integrated view on the timing
behaviour of systems. This enables focusing on the analysis
of selected features of a system in isolation while maintaining
overall soundness – given timing compositionality and sound
analysis results for the rest of the system. We give several
examples where timing compositionality is assumed or required.

A. Resource-Sharing Systems

Schranzhofer et al. [6] [7] are concerned with the analysis
of the interference on a shared bus in a resource-sharing system.
As an example, consider a multi-core system with a shared
memory that is accessed via a shared bus as depicted in Figure 1.
A task executes on one core and can access the shared memory
through the shared bus. Each resource/bus access might be
blocked until access is granted by the arbiter (e.g. TDMA
arbitration [6] or adaptive arbitration [7]).

Timing compositionality enables the decoupled analysis
of the timing contributions of selected features and allows
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Figure 1. Multi-core system with shared bus and memory. Compositional
view of the worst-case response time of a task running on Core 1.

to combine the individual results to a globally safe result.
First, an upper bound on the execution times of the task under
consideration execmax (excluding resource accesses) as well as
an upper bound on the number of resource accesses µmax are
computed. With these bounds in mind, the authors search for the
worst distribution of accesses and execution time to maximize
the blocking time B – e.g. given the static TDMA schedule and
the initial offset (starting time). For other arbitration policies
such as Round-Robin, the computation of B might also depend
on execmax and µmax of the tasks running on the other cores.
In the given scenario, a globally safe bound is computed by

execmax + µmax · C +B,

where the constant C bounds the access time to the resource
once access is granted.

The authors explicitly assume a fully timing compositional
architecture in the sense of [9], i.e. an architecture without
timing anomalies. In general, the absence of timing anomalies
allows to prune parts of the abstract state space that an
analysis has to consider and thus affects the efficiency of
analyses. The presence of timing anomalies, however, does
not generally preclude timing compositionality in the sense of
decoupled analyses, e.g. as they are described in the previous
paragraph. For an in-depth discussion, see Section III-D. In
contrast to timing compositionality, the absence of any timing
anomaly is not strictly required by the above approach and
only constrains the usable hardware platforms. Most known
analyses for modern microprocessors (except for very simple
ones) exhibit timing anomalous behaviour. Therefore, having a
“fully timing compositional architecture” is a quite strong and
possibly overly restrictive assumption.

B. Preemptively Scheduled Systems

Altmeyer et al. [8] present a response time analysis for
systems with fixed priority, preemptive scheduling in the
presence of caches. An example schedule of two tasks is
depicted in Figure 2. The worst-case response time of Task 2
is prolonged by Task 1 preempting it.

The response time of a task i is decoupled into (a bound
of) its execution time(s) Ei without preemption, (a bound of)
the execution time(s) Ej of tasks j possibly preempting it,
and the preemption cost γi,j , i.e. the additional execution time
of task i due to preemption by task j (and tasks with higher
priority than j). In [8] and [10], Altmeyer et al. focus on the
computation of the preemption cost that results from evicting
useful cache blocks by preempting tasks. (Other effects, not
related to the cache, are considered constant and are assumed
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Figure 2. Compositional view on preemptively scheduled systems: Task 2 is
preempted by task 1. Task 1 evicted useful cache content resulting in additional
cache re-loads. aTi arrival time of task i, dTi deadline of task i.

to be incorporated in the execution time bound.) Their analyses
approximate the number of additional cache misses a due to
preemption in the worst-case and thus yield γi,j = a · BRT.
The block reload time (BRT) – the penalty that one additional
cache miss might contribute to the overall execution time – is
assumed to be bounded by a constant. This does not always
have to be the case: one cache miss could trigger a chain
reaction in other parts of the system, whose timing effect is
only bounded by the size of the program (so-called domino
effects). Note, that chain reactions within the cache are already
captured by a.

The calculation of the timing contributions Ei, Ej , and γi,j
entails possible over-approximations. As an example consider
the block reload time (BRT) that soundly approximates the
timing contribution of one additional cache miss incurred at any
point during execution. Depending on the execution context,
e.g. the number of outstanding bus accesses to main memory,
the time needed for one reload varies. Necessarily, a sound
BRT might overestimate the actual reload time in some cases.

In case of multiple preemptions, the overall preemption cost
depends on the number of preemptions which again depends
on the response time. Therefore, the authors employ a fixed
point iteration scheme to compute a valid response time [8].
During an iteration step, the results of the previous iteration
step are used to calculate nj the number of preemptions by
task j.

Timing compositionality is required to allow for a de-
coupling of the computation of the preemption costs and
the execution time of the tasks without preemption. The
combination of the individual analysis results

Ei +
∑

j preempts i

nj · (Ej + γi,j)

leads to a globally sound result – in case of timing composi-
tionality.

C. Dynamic Random Access Memory (DRAM)

The use of DRAM (compared to static SRAM) complicates
timing analysis as the behaviour of the DRAM controller has
to be additionally modeled. One complication arises from
DRAM refreshes that prolong ongoing memory accesses and
appear (in general) asynchronously of program execution. A
possibility to account for these DRAM refreshes in timing

analysis is described by Atanassov et al. [11]. Let t be a bound
on the worst-case execution time (WCET) assuming no DRAM
refreshes, n the maximum number of refreshes occurring during
program execution and p the maximal delay caused by a refresh.
They claim that the WCET with enabled refreshes is bounded
by t+n·p. Thus, they implicitly assume timing compositionality
because the penalty due to DRAM refreshes and the WCET
are independently computed and then summed up to obtain a
valid bound.

D. The Essence

The examples presented above highlight the intuitive
understanding of timing compositionality and thus form the
basis for our formal definition in the next section. Therefore,
we summarise the key insights gained in this section.

First, we have a system, e.g. a program executed on a
multi-core processor, whose timing is of interest to us, i.e.
the execution time of the program running on the multi-core.
Next, the timing of the system is decomposed into several
timing contributions that capture a part of the system’s timing
behaviour – e.g. the execution time without bus accesses, the
resource access time and the bus blocking time. The individual
timing results are then combined to a sound upper bound on
the system’s timing.

Each timing contribution is associated with a component
of the system – e.g. a processor core, a shared resource such
as a bus (Section II-A). The term component (and system)
might refer to a hardware component, but also to a software
component such as an individual task (Section II-B). It is
general and can thus capture timing decompositions at different
levels, such as the actual hardware level as well as the software
level.

III. TIMING COMPOSITIONALITY

In the previous section, we introduced the intuition behind
timing compositionality in depth. In this section, we want to
first present our formal definition and then discuss it in detail.

A. Formal Definition – The Basics

First of all, we need a notion of time. The set of possible
timings is denoted by T . There are several possible choices for
T : Using T := N0, we can model discrete processor cycles,
while T := R+ could be used to model timings at a finer level
(e.g. in case of multiple clock domains).

System and Components: As already stated in the
previous sections, we consider a system together with a set of
components where the system’s timing will later be decomposed
into timing contributions of components. Note, the generality
of the term system and component. Depending on the intended
application, it might correspond to hardware units in a processor
(e.g. caches, pipelines or buses) or to tasks on the software
level. A component can again be seen as a system whose timing
could be further decomposed – vice versa, a system can be seen
as a component of a larger system. We denote the component
under consideration, the system, by C, and its i-th component
by Ci .

The behaviour of a system/component is dependent on its
current state. E.g. the execution of a program depends on the



program itself, the current program counter, the values of its
input variables, the microarchitectural state and the state of
the environment (such as co-running programs on a multicore).
The current state thereby determines the subsequent behaviour
of a system/component. Associated to system C, S denotes
the set comprising the states C can be in (analogously Si for
component Ci ).

The states of individual components are not necessarily
independent, they can overlap, i.e. the can share common
information. As an example consider a concrete processor
system with a cache and a pipeline component: both timing
contributions depend on the instructions to execute. Necessarily,
they share common information about the current state of the
program, and so their states overlap.

Timing Behaviour: Next, we need a notion of timing
behaviour of a system/component. The timing behaviour of a
system/component is state-dependent, e.g. the execution time
of a program varies depending on whether a memory access
hits or misses the cache. The timing behaviour of a system C
captures the time needed to reach a final state starting in a
given state s. Final means e.g. the termination of the program
implicitly given by s, or the point in time where all tasks
were successfully scheduled and executed. For a component
i, we are interested in the timing contribution of component
i to the overall system’s timing. As an example, consider the
timing contribution of the shared bus in terms of additional
blocking time (Section II-A) or the contribution of additional
cache reloads due to preemption (Section II-B).

To capture these timing contributions, we employ state-
dependent functions as described below.

Definition 1. Let C be a component (or a system) with
associated state space S. Furthermore let T denote the set
of possible timings. We call a function tc : S → T timing
contribution of C.

The definition is quite general and the precise meaning
of a timing contribution function depends on its intended
application. How to derive these state-dependent timing con-
tribution functions systematically is challenging (Section IV).
For one system/component, there exist different functions that
conservatively capture, i.e. over-approximate, the respective
timing contribution.

The timing contribution of a system reflects the system’s
overall timing.

Decomposition of Timing Behaviours: Before defining
timing compositionality, we need a notion of decomposition of
a system’s timing (contribution) into the timing contributions of
its components. As the timing contributions are state-dependent,
the decomposition also relates states of the system with the
corresponding states of each component. Furthermore, the
decomposition provides a combination function that combines
the timings of the individual components. As examples for a
decomposition, refer to Section II-A and Section II-B.

Definition 2. Let C be a system with state space S,
and (Ci)i=1..n components with associated component
state spaces (Si)i=1..n. Furthermore, let tc : S → T and
(tci : Si → T )i=1..n be the timing contributions of the system
and its components, respectively. We call (tci)i=1..n together

with a family of functions (ai : S → Si)i=1..n and a
combination function

⊕
: Tn → T , a decomposition of tc .

Each function ai : S → Si maps a system state to a
corresponding component state. It can be seen as an abstraction
function as it only keeps the state relevant for component Ci ,
based on the state of the system. In some cases, the abstraction
might simplify to a projection (if the system state is a tuple
of component states), but it can be more complex. We write
si instead of ai(s) for short to denote the state relevant for
component Ci .

The combination function captures the type of composition.
In the examples presented in Section II, the combination is given
by the addition operator – the individual timing contributions are
added up to obtain an overall timing bound. The combination
function might e.g. compute the maximum of the components’
individual timings in case the components execute in parallel
and independently from each other. In general, the combination
function can be more complex and is solely determined by the
chosen decomposition.

For one given system, there might exist multiple decompo-
sitions of the system’s timing into different components’ timing
contribution functions – associated with different abstraction
functions and a different combination operator, respectively.

B. Definition

Now, we give the definition of timing compositionality.

Definition 3. Let C be a system and (Ci)i=1..n its components
with associated state spaces S and (Si)i=1..n. Furthermore,
let the timing contributions (tci : Si → T )i=1..n together
with state abstraction functions (ai : S → Si)i=1..n and
combination operator

⊕
: Tn → T be a decomposition

of the system’s timing tc : S → T . We call the decomposition
timing compositional if and only if

∀s ∈ S. tc(s) ≤
n⊕

i=1

tci(ai(s)).

Timing compositionality is not a property of the system
under consideration but of the specific decomposition. It
states that the contribution of individual components to the
overall system’s timing can be considered separately. Which
components can be considered separately depends on the chosen
decomposition.

Besides the aspect of separating the overall system’s
timing into timing contributions of components, Definition 3
comprises a view on the “complexity” of the individual timing
contributions. In case the state abstraction function ai is the
identity function (ai(s) = s), the timing contribution tci uses
whole system states to capture the timing of Ci . It has the
same information need as the timing contribution tc of the
original system C and is thus similarly complex. But the goal of
timing compositionality is to reduce the complexity of analysing
the whole system by employing less complex component
analyses. Therefore, the abstraction functions capture the
information need of the timing contribution functions and
thereby of the component analyses. In general, the smaller the
component states ai(s) and the smaller the overlap between



component states ai(s) and aj(s), the better for the complexity
of individual component analyses.

Note that the definition also captures nesting, i.e. that the
definition is again applicable to any constituent component Ci

(if considered as system itself) and so on. Thus compositionality
can be employed at different levels within a system.

As already stated, timing compositionality is a property
that always depends on a chosen decomposition. There exist
trivial decompositions (e.g. n = 1, S1 = C and tc1 = tc )
such that compositionality becomes a weak statement. Thus the
significance of timing compositionality strongly relies on the
significance of the decomposition. Whether a decomposition is
significant, depends inherently on the intended application.

So far, timing compositionality (Definition 3) makes a
statement solely about the correctness of the combined timings
with respect to the system’s timing. However, there might exist
several different timing compositional decompositions of one
system’s timing into component timing contributions. For some
decompositions, the combination of the timing contributions
might approximate the overall system’s timing quite closely,
while the system’s timing is overestimated by a lot for other
decompositions. Therefore, we now refine our definition of
timing compositionality by introducing a notion of precision.

Definition 4. Let C be a system and (Ci)i=1..n its components
with associated state spaces S and (Si)i=1..n. Furthermore,
let the timing contributions (tci : Si → T )i=1..n together with
state abstraction functions (ai : S → Si)i=1..n and combination
operator

⊕
: Tn → T be a decomposition of the system’s

timing tc : S → T . We call the decomposition (µ, α)-timing
compositional where µ ∈ R≥1, α ∈ R+

0 if and only if

∀s ∈ S. tc(s) ≤
n⊕

i=1

tci(ai(s)) ≤ µ · tc(s) + α.

The additional inequality restricts the Definition 3 of timing
compositionality because µ and α are finite constants. While the
original definition is a boolean property, this refined definition
offers several shades of timing compositionality by introducing
the concept of precision. If a decomposition is (µ, α)-timing
compositional, we have an upper bound on the overestimation
of the combined components’ timings compared to the system’s
timing. The values µ and α are thus a measure of how precise
the results for a specific decomposition are at least – the
system’s timing is never overestimated by more than a factor
of µ and an additive constant α. For a given decomposition
and timing contribution functions, we are generally interested
in the minimal µ and α such that compositionality still
holds. Furthermore, a decomposition (together with timing
contribution functions) that permits small constants µ and α is
preferable.

Next, we introduce some specific notions of timing com-
positionality based on Definition 4. Consider a (µ, α)-timing
compositional decomposition of a component. We call the
decomposition

• timing compositional with bounded effects if µ = 1, and
• fully timing compositional in case µ = 1 and α = 0.

Core 1 Core 2 Core 3 Core 4

Shared Memory
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using e.g. TDMA

Figure 3. Multi-core system with shared resources: Composability by temporal
isolation.

In case of a fully timing compositional decomposition, the two
inequalities in Definition 4 imply equality,

∀s ∈ S. tc(s) =

n⊕
i=1

tci(ai(s)).

C. Compositionality and Composability

Timing compositionality and timing composability are two
orthogonal properties; both with applications in timing analysis
and often mixed up.

Timing compositionality as defined in the previous section
is a property of a decomposition of a given system’s timing
behaviour. It states that the timing behaviour of the system
as a whole can be inferred from the timing contributions of
its constituent components and the type of composition. This
enables a modular view on the system’s timing behaviour as
described by examples in Section II.

In contrast, timing composability is a property of an indi-
vidual component’s timing behaviour within a larger system. It
states that the timing behaviour of the component is independent
of the behaviour of the other components, and can thus be
analysed in isolation.

Timing compositionality of a decomposition does not
imply timing composability of its constituent components, and
vice versa. Next, we present two examples to highlight that
compositionality and composability are orthogonal.

Compositionality: As an example, consider the multi-
core setting in Figure 1 together with the analysis presented
in Section II-A. The response time of the program running on
core 1 is decomposed into its computation time, the memory
access time and the bus blocking time. Given correct timing
contribution functions, this decomposition is compositional.
However, the calculation of the bus blocking time needs
information about the computation time and the number of
accesses (the other components) – thus it is not composable.

Composability: Consider the multi-core system in
Figure 3 with the cores as components. The timing behaviour
of one core, i.e. the worst-case response time of the program
running on the respective core, is composable, if the timing
behaviour is independent of the behaviour (e.g. accesses to
the shared resources) of the other cores. Thus, composability
allows for a separate verification of the timing behaviour of
(the program running on) one core without knowledge about
the behaviour of the other cores.



How to achieve Composability: It is desirable, that the
timing of the program running on one core is not influenced
by other programs running on other cores – the timing is then
composable. However, for current multi-core architectures this
is not true: Interference on the shared bus as well as possible
state changes of the shared memory (e.g. a cache) influence
the timing of programs. One way to achieve composability is
to enforce temporal isolation at the implementation level as
depicted in Figure 3. Several approaches to temporal isolation
have been proposed such as TDMA arbitration of the shared
bus and partitioning of the cache. A survey on the possible
interferences in multicores as well as techniques to achieve
temporal isolation is given in [5]. Akesson et al. [12] and
Goossens et al. [13] provide an overview on how to achieve
temporal isolation in a system-on-chip setting. Another way
to achieve timing composability at the analysis level is to
conservatively account for the possible interference by other
components. As an example, round-robin arbitration does not
achieve temporal isolation at the implementation level, yet,
the latency of bus accesses can be bounded independently of
interfering accesses.

Interplay between Compositionality and Composability:
However, there is an interplay between compositionality and
composability. Consider the two above examples together:
the compositional decomposition of the response time of the
program running on core 1 (Figure 1), and the composable
behaviour of the cores in a multi-core system (Figure 3).
In case the cores operate in a composable fashion, the bus
blocking time only depends on the behaviour of the core
under consideration, not on the behaviour of the other three
cores. Thus, the computation of the bus blocking time can be
(tremendously) simplified.

D. Timing Compositional Architectures

Previously, there have been attempts towards defining a
notion of compositionality. In [9], Wilhelm et al. give definitions
for timing compositional architectures based on the notion
of so-called timing anomalies and domino effects. A timing
anomaly describes a situation during analysis where the locally
worst choice (cache miss) does not lead to the globally worst
timing. If the effect of the wrong local choice cannot be
bounded by a constant, the anomalous situation is called domino
effect. A definition of timing anomalies and domino effects as
well as concrete examples can be found in [14]. Fully timing
compositional architectures are then defined as architectures
whose abstract model does not exhibit timing anomalies (and
domino effects). In case there are timing anomalies but no
domino effects, the architecture is classified as compositional
with bounded effects – and non-compositional otherwise.

Compared to our definition, their notion of timing compo-
sitionality is a property of a model of a system and not of a
behavioural decomposition of a model of a system, which we
consider an important aspect. Our definition of composition-
ality is always meant with respect to a specific, underlying
decomposition of a system’s timing behaviour into component
timing contributions. In contrast to the definition of timing
compositional architectures [9], our definition does not forbid
arbitrarily complex timing behaviours within one component.
In particular timing anomalous behaviour is not forbidden
in general. As an example, consider the decomposition of a
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Figure 4. Scheduling anomaly [15]: Shorter execution of instruction A leads
to longer overall execution. Timing compositionality is not necessarily affected
by anomalous behaviour within the components.

processor with out-of-order execution into pipeline and cache
component. The analysis of the pipeline component might
have to take timing anomalies into account due to dynamic
scheduling effects caused by the out-of-order execution – so-
called scheduling anomalies (see Figure 4, [14]). However, the
decomposition pipeline-cache can be timing compositional, e.g.
in case the pipeline stops execution while servicing a cache miss
from main memory. Timing compositionality is thus unaffected
by the anomalous behaviour within one component.

Furthermore, the abstract model of an architecture is not
uniquely defined. As already stated in Section III-A and
Section III-B, there might exist several decompositions of a
system’s timing; and multiple different timing contribution
functions are possible for each system/component. Similarly,
several different abstract models exist for one architecture —
some of which may exhibit timing anomalies while others do
not. Therefore, relating the above definition to architectures
rather than to specific formal models is problematic.

E. Summary

We started by introducing basic concepts such as timing con-
tributions and the decomposition of a system’s timing behaviour.
Next, we presented our definition of timing compositionality,
following the intuition given in Section II. A decomposition
is called timing compositional if and only if the combination
of the timings of individual components is always an upper
bound on the system’s timing. We later refined this notion
to (µ, α)-timing compositionality to incorporate a notion of
precision.

In the following, we distinguished timing compositionality
from timing composability of a system’s decomposition and
we described their respective applications in timing analysis.

Finally, we discussed a previous definition of timing
compositional architectures [9]. We sketched the issues that
arise from this definition and we highlighted the differences
with respect to our definition of timing compositionality.

IV. CHALLENGES AND OPEN PROBLEMS

In the remainder of the paper, we discuss challenges and
open problems in the context of compositionality applied to
execution time analysis.
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Figure 5. Overall structure of compositional analyses.

A. Achieving Timing Compositionality

Having timing compositionality formally defined, the chal-
lenge to achieve compositionality remains. We identify the
following two tasks:

1) finding compositional analyses for a given system, e.g. a
complex processor, and

2) designing new (hardware) systems that “support” timing
compositionality.

Analyses: Consider the compositional analysis frame-
work in Figure 5 that relates analyses and compositionality.
Component analyses are always based on the timing contri-
bution functions that describe the timing behaviour of the
respective component. First, these functions have to be derived
– potentially automatically – from a formal system description.
Second, analyses have to be designed that soundly approximate
these timing contribution functions.

For existing analyses such as presented in Section II, the
challenge is to check whether the (compositional) timing
contribution functions for a given platform are correctly
approximated. This might include the computation of sound
penalties, such as the block reload time (BRT), for specific
processor systems. In the ideal case, this computation is done
automatically using a formal model of the processor, e.g.
provided as Verilog/VHDL code.

Another challenge is to design new analyses that make use
of compositionality to precisely and efficiently analyse complex
processor systems. Potential applications of compositionality
include the following scenarios:

• Write-back Caches. In contrast to write-through caches,
a store only modifies a cache line, marks it as dirty and
delays the main memory operation until the dirty cache
line is evicted. Uncertainty as to when the memory oper-
ation happens, renders the integrated, non-compositional
analysis approach infeasible in terms of complexity. A com-
positional view enables the use of cumulative information
about the number of performed write backs – independent
of the point in time they happen. The number of potentially
performed write backs could be approximated efficiently
by tracking the dirty bit of a cache line during a separate
cache analysis.

• Shared Caches in Multicores. The execution of a program p
using a shared cache experiences interference: Co-running
programs might evict cache lines that were still useful
for p. If at all, bounding the amount of interference in

a cumulative way rather than locally classifying memory
accesses as hit/miss seems more likely feasible in terms
of precision and efficiency.

Hardware Design: Finding a suitable timing composi-
tional decomposition can, in general, be difficult. Designing
hardware that “supports” timing compositionality, i.e. that
allows for a compositional decomposition by construction,
might be a solution. The challenge is to find hardware
designs that support compositionality with low or even without
performance degradation.

Whether a decomposition is compositional depends on how
components are connected and how they interact with each other.
As seen in Section III-D, the behaviour within one component is
not a concern as long as it does not influence the interaction with
other components. Therefore, hardware design that supports
compositionality has to focus on how hardware components
are connected and interact.

B. Compositional vs. Non-Compositional Analyses

There is a trade-off concerning when to use compositional or
non-compositional analyses. Tightly-coupled systems (e.g. out-
of-order pipeline with several functional units acting in parallel)
favour non-compositional analyses in order to precisely capture
timing effects at a fine-grained level. However, with increasing
complexity of the systems (e.g. multi-core processors), the
non-compositional approach becomes infeasible in terms of
computational effort and memory consumption.

In such situations, compositional analyses are inevitable
due to efficiency. But compositional analyses can also be
profitable in terms of precision, e.g. when only cumulative
information is precise (for write-back caches or shared caches in
multicores). Therefore, it is worth to investigate the gain/loss in
precision/efficiency when compositional methods are employed,
e.g. in the scenarios mentioned above.

V. RELATED WORK

In Section II, we described approaches that use timing
compositionality in order to decouple analyses of different
parts of a system. The topics include the analysis of

• the bus blocking time in resource-sharing systems [6] [7],
• the cache-related preemption delay in preemptively sched-

uled systems [10] [8], and
• the refreshes in a DRAM system [11].

In [16], Schliecker et al. present their approach to per-
formance analysis of real-time multiprocessor systems with
resource sharing. They assume timing compositionality “in
the sense that any shared resource delays are additive to the
execution times”. Such additive behaviour may be achieved by
the processor stalling execution on accesses to shared resources.

Wilhelm et al. [9] introduce the notion of timing composi-
tional architecture. We discussed problems and limitations of
this definition in detail in Section III-D.

In [17], Liu et al. present a precision timed (PRET)
architecture for timing predictability and timing composability.
The timing composability enables a modular verification of
systems with concurrent programs. The microarchitectural



design includes a thread-interleaved pipeline, scratchpad mem-
ories, and a specialised, predictable DRAM controller. The
design also allows for compositional decompositions e.g. of
a thread’s execution time into computation time and memory
access time. On memory access, the thread continues execution
only after the memory access has completed, thereby clearly
separating computation and memory access time of the thread.
Furthermore, their predictable DRAM controller allows for
precise bounds on the latency of a memory access independently
of the execution context.

Goossens et al. [13] as well as Akesson et al. [12] give
an overview on how to achieve timing composability in a
system-on-chip setting. In [13], the authors survey their previous
work on the CompSOC architecture that provides temporal
isolation between applications by, e.g., employing time-division
multiplexing (TDM) techniques. Besides techniques to achieve
composability, the authors of [12] additionally discuss that
composability and predictability (i.e. the ability to determine
precise performance bounds) are orthogonal properties. This
discussion partially resembles our discussion in Section III-C.

The increasing complexity in real-time software makes
composable and compositional methods necessary to efficiently
reason about its timing [18]. Puschner et al. introduce compos-
ability of execution times and I/O-compositionality of worst-
case execution times (WCETs) and discuss ways to achieve
these properties. The timing of a task executed on a processor
must not be affected by co-running tasks (composability). The
WCET of sequentially executed tasks should be the sum of the
WCETs of each task (I/O-compositionality). These notions are
more restrictive than the definitions we give in this paper.

In [19], Lee et al. tackle the scalability problems of
multiprocessor simulation for performance estimation. They
propose the so-called composable performance regression that
splits multiprocessor simulation as follows. First, a uniproces-
sor model estimates the baseline performance assuming no
interference from other cores. Second, a contention model is
used to capture the interference effects (e.g. due to memory
accesses) caused by co-running cores. Third, a penalty model
combines the result of the two previous models to estimate the
multiprocessor performance. The models are obtained by using
regressions on a set of training data.

VI. CONCLUSIONS AND FUTURE WORK

With the increasing complexity of processors, state-of-the-
art approaches to execution time analysis become more and
more problematic in terms of computational effort and memory
consumption. This trend makes it necessary to move from
these non-compositional approaches towards compositional
methods as done e.g. in [6] for resource-sharing systems or [8]
for preemptively scheduled systems. This paper contributes a
formal definition of timing compositionality that is based on the
previous, intuitive understandings. The definition may serve as
a foundation for correctness proofs of compositional analyses.
We have discussed the definition in detail and contrasted it
with the definition of timing compositional architectures [9].
Furthermore, we have presented challenges and open problems
in the context of compositional execution time analysis, which
we consider future work.
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