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Abstract
Real-Time and Embedded Systems Lab

Master of Science

by Darshit Shah

Cache partitioning is often used in multi-core systems to improve predictability. Prior
work has mostly focused on static per-core cache partitioning. We conjecture that
there is significant remaining potential if the cache is partitioned at the granularity
of individual jobs. The problem of finding the optimal cache partition and core
assignment for a set of jobs is NP-Hard. In this thesis, we discuss our ideas for a
new algorithm—an extension of the A* algorithm—to find optimal schedules for
non-recurrent sets of jobs. We demonstrate how the A* algorithm can be adapted
to the problem of real-time scheduling and present some methods on how to better
guide the algorithm towards the goal of a optimal schedule. Several state-space
pruning approaches, which can help the overall performance of the search, are also
discussed. Finally, we also demonstrate how these approaches can be modified to
obtain feasible schedules with guarantees on their quality.

A part of the work in this thesis was also published at ECRTS-2018 [SR18], during
the Work-In-Progress (WiP) session.
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Chapter 1

Introduction

Upon impact, one expects the airbag in their car to deploy at precisely the right
time. Too early, and the airbag may prevent reaction from the driver, too late and
it may result in the driver’s death. Such systems which need to satisfy temporal
constraints are known as real-time systems.

Real-time systems are divided into two categories, hard and soft real-time systems.
Soft real-time systems are those that should meet most of their temporal constraints.
Not meeting a few temporal constraints will degrade the quality of the system, but
it will continue functioning without any major issues. Examples of soft real-time
systems are audio/video players, weather recording stations. Hard real-time systems
on the other hand must meet all of their temporal constraints or risk complete
and catastrophic failure of the system. Examples of hard real-time systems are
autonomous cars, all aviation and avionic systems, medical devices, etc. In many
jurisdictions, manufacturers of such systems are required by law to prove the correct
behaviour of their systems under critical conditions. In this thesis, we focus only on
hard real-time systems.

Traditionally, such safety-critical systems have been deployed on single-core machines.
However, in order to address size, weight, and power constraints (SWaP) there is
a recent trend to transition from federated architectures, where each application
is deployed on a private single-core processor, to integrated architectures, where
multiple applications share a single multi-core platform. Today, multi-core chips are
smaller, faster and cheaper than ever before. As a result, real-time systems are being
increasingly deployed on such multi-core chips [Bak10].

In safety critical real-time systems this trend poses a major challenge for the ver-
ification process due to the possibility of interference on shared resources such as
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buses [RMMA15], networks-on-chip [SS16], shared caches [WHKA13], and memory
controllers [YMWP14]. Safely and tightly bounding this interference is extremely
difficult as the shared resources and their hardware management mechanisms have
usually not been designed with predictability in mind, and very often their internal
workings are not publicly available either.

A rather general approach to address this challenge is to partition the shared resources
for temporal and spatial isolation. By partitioning the resources, interference can be
eliminated, making the use of multi-core platforms feasible. Such an approach is also
advocated in the recent position paper on certification issues CAST-32A [Cer16],
where it is referred to as robust partitioning.

In this thesis, we focus on the challenge of efficiently partitioning shared caches and
scheduling in multi-core systems. The problem of finding a perfect schedule is NP-
Hard. It has already been shown that this cannot be solved by an online scheduler
in multi-core systems [DM89]. However, with the benefit of foresight, an offline
scheduler may explore the entire state space to find the optimal schedule. Most prior
work in this area takes the simple approach by partitioning caches statically among
the cores. In this thesis, we first show that such partitioning leads to non-optimal
use of the available hardware resources. Later, we present the idea of dynamically
re-partitioning the cache at runtime in order to provide adequate cache capacity to
individual jobs when needed.

Contributions We present a novel technique to adapt the A* path-finding algo-
rithm to searching for the optimal schedule in multi-core hard real-time systems
with dynamically partitioned caches. We show how A* can be used in this unique
setting and present state-space pruning approaches to improve the performance of
the algorithm. We also demonstrate two different heuristics for guiding the search
towards the optimal schedule and evaluate their effectiveness.

Thesis Structure Chapter 2 introduces caches and the different ways in which
prior work has accounted for caches during scheduling analysis. A brief introduction
to the A* algorithm is presented in Section 2.3. Next, we formally describe the entire
system model for this thesis in Chapter 3. We also formally state the problem and
define the precise optimization criteria for schedules in Section 3.2. In Chapter 4
we describe our modifications to the A* algorithm and how it is adapted to the
problem of finding the optimal schedule for multi-core systems. It also discusses our
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implementation of the various parts of the modified A* algorithm in more detail.
Chapter 5 introduces two different methods for early pruning of the state space. We
then show a novel technique for finding a feasible schedule with bounded quality
guarantees in Chapter 6. In Chapter 7 we present an evaluation of the performance
of the techniques presented in this thesis and the various trade-offs that can be made
in practice.
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Chapter 2

Background and Related Work

2.1 Processor Caches

Over the last couple of decades, processor speeds have grown much faster than the
speed to access main memory [LGBS05]. Modern systems thus use a hierarchy of
small, but fast caches to store the most frequently used data. The principle of
temporal and spatial locality tells us that memory regions that have been accessed
will often be accessed again in the near future, and that adjacent locations also have
a high probability of being accessed in the near future. Thus, storing the recently
accessed memory locations along with its immediate neighbours in a fast cache,
allows modern systems to amortise the long access times to main memory over many
accesses.

Typically, a computer system has multiple layers of gradually larger caches between
the processor core and the main memory. The L1 cache is usually core-private. That
is, each core has a small, private, and extremely fast cache which stores data most
likely to be used in the very-near future. The next levels of caches (L2, L3, . . . ) are
progressively larger and slightly slower, and are usually shared among the different
cores of a multi-core system.

When a core tries to access a memory location, it first tries to find it in the nearest
cache. If it is found, this is known as a cache-hit. Else, it iteratively searches each of
the other caches till it finds the data. In the worst case the memory location has not
been cached; this is known as a cache-miss and forces an expensive access to the main
memory to fetch the data. This data, and its adjoining memory locations are then
cached for future reuse. If the cache is full, some older data must be evicted from it,
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to make space for the new data. Caches use various cache replacement policies to
decide which data gets selected for such eviction.

In the analysis of hard real-time systems, it is important to consider the role of the
cache when evaluating the Worst-Case Execution Time (WCET) of tasks. Since
caches significantly speed up the average memory access times, not considering them
would lead to very pessimistic estimations of the WCET. Most WCET analysis tools
try to predict whether a memory access will be a cache-hit or a cache-miss in an
attempt to not be too pessimistic about the WCET estimations.

2.1.1 Cache Contention

In multi-core systems, accounting for the effects of shared caches adds a lot of
unpredictability and pessimism to the analysis. Consider for example, a system with
two cores executing different programs. It might be the case, that they keep trying to
evict each others’ data in the cache in order to make room for their own. This results
in severe degradation of performance since both the cores need to keep accessing the
main memory very frequently. This is known as cache contention.

Such severe contention on the shared cache is not only bad for performance but for
analysis as well. Accounting for cache contention requires knowledge about all the
other tasks that may be executing simultaneously on different cores. In order to
deal with the unpredictability of shared caches in multi-core systems, prior work has
generally picked one of the two following approaches:

1. Cache Partitioning: These approaches [MCHvE06, LPM09, BCSM08] partition
the shared cache using either hardware or software techniques. In this way
they achieve temporal isolation between different tasks, thereby easing timing
verification.

2. Analysing Cache Contention: Other approaches [ACD06, DZ13, ZWN17,
XAP17, NS14] compute bounds on the contention between different tasks
on a shared cache and use these bounds within response-time analysis.

Precisely analysing cache contention is challenging, as very different cache states
and cache behaviours may arise, depending on the precise relative timing of memory
accesses coming from different cores. The problem is slightly easier if tasks are
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scheduled non-preemptively. Still, even analyses assuming non-preemptive schedul-
ing [XAP17] make use of coarse abstractions of the cache behaviour, and thus we
expect them to be rather imprecise.

On the other hand, Nagar and Srikant [NS14] try to analyse a task to find the
worst interference points for cache accesses. This however leads to highly pessimistic
estimate of the WCET.

Cache partitioning is often the suggested way to improve the predictability of multi-
core hard real-time systems. This is largely due to the fact that partitioning the
cache helps prevent inter-task contention for the same location in the cache, thus
simplifying the computation of the WCET of a task. Cache partitioning thus makes
it possible to use existing analysis techniques for single-core systems to analyse
tasks in a multi-core system. Even outside the realm of real-time systems, cache
partitioning is used to improve the predictability and the overall throughput of
systems [FAK+12, LCG+15, MCHvE06].

2.1.2 Cache Partitioning

Cache partitioning allows the system to provide spatial isolation across the different
cores of a system. Instead of having one large cache that is shared across multiple
cores, the system divides the cache into smaller parts and provides them to the
various cores for exclusive, private access. As a result, a core may no longer evict
data belonging to another core on a shared cache. Such isolation makes analysis of
tasks significantly easier and helps reduce the estimated WCETs.

There are two cache partitioning methodologies: hardware- [Kir, LSK04, SKI08,
SM08, RLT06, Lee16] and software- [KKR13, MKR10, LLD+, CM05, LHH97, GSYY09]
based approaches.

In hardware partitioning, the processor provides the operating system with a set
of instructions allowing it to define rules on how to partition the caches. It is then
the duty of the processor itself to enforce such partitioning in a transparent manner.
Intel has recently released COTS processors with built-in hardware support for cache
partitioning [HVA+16, Int16].

On the other hand, software partitioning of the cache is done with the help of the
compiler and the operating system. In this method, both the compiler and the
operating system decide on a set of rules and cooperatively enforce them. There
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exist a growing number of modules to add software-based cache partitioning support
to the Linux Kernel [SKS16, PTH11]. Software partitioning is usually more flexible
but incurs higher overhead than hardware partitioning.

When partitioning caches in real-time systems, we are aware of two lines of approach
in prior work:

1. Per-core cache partitioning [BCSM08, LPM09]: Here, the shared cache is
statically partitioned among the cores of a multi-core, and tasks are assigned
to cores depending on their cache footprint.

2. Per-task cache partitioning [GSYY09]: Here, each task is allocated a certain
share of the cache, and whenever a job of the task is scheduled, its share of the
cache is made available to it privately.

Per-task cache partitioning is more flexible and may thus provide better performance.

The prior work by Guan et al. [GSYY09] considers the cache space allocated to each
task to be an input to their non-preemptive scheduling algorithm. In other words,
the amount of cache space allocated to each task is not optimised to globally improve
schedulability.

Lokuciejewski et al. [LPM09] attempt to generate cache partitions using the WCET
values of tasks with varying amount of cache available to them. However, they
generate only static per-core cache partitions.

To our knowledge, none of the prior work has attempted to look at the schedulability
of task sets using caches that can be dynamically repartitioned at runtime. Such a
system can potentially improve the overall response time of a task set by co-scheduling
tasks with complementary cache requirements on separate cores. Our aim is to fill
this gap, by developing a novel method for computing offline schedules of sets of
non-preemptible tasks using per-job cache partitioning.

2.2 Generalised Assignment Problem

The problem of assigning tasks to cores with a certain size of cache partitions is
an instance of the Generalised Assignment Problem (GAP), which is a well-known
NP-Hard problem. A naïve algorithm would need to explore the entire state space
of all possible task assignments to find the optimal result. It is however possible to
reduce the state space through some techniques.
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Chou and Chung [CC94] proposed the idea for representing a set of tasks with
precedence constraints as a DAG and to perform an exhaustive state-space search to
find the optimal schedule. They also suggest using pruning techniques and domination
relations in order to reduce the size of the state space. However, they assume each
task to have a fixed execution time, preventing the approach from being used in
more generalised scenarios.

Chand and Jiang [CJ94] also considered the idea of state-space searches for finding
schedules of tasks on multiprocessor systems. However, they consider solving the
NP-Complete problem from the optimal schedule to be too expensive and instead
look for approximate approaches.

Kwok and Ahmed [KA05] propose the use of A* for navigating the DAG of a set of
parallel tasks to find the optimal schedule. They also introduce the idea of isomorphic
schedules as a state-space pruning approach. However, their approach is designed for
a single parallel task with temporal and spatial precedence constraints, and does not
generalise well to scheduling multiple independent tasks.

Moreover, none of the approaches described here account for the effect of caches
on the execution time of the tasks. Neither are they designed for a hard real-time
setting, where tasks must also finish before a prescribed deadline.

2.3 A* Algorithm

A* is a path-finding algorithm [HNR68, KK83, KP82] for finding the cheapest path
through a graph. It is a best-first search algorithm that uses information about the
graph to guide the search in the direction of the cheapest path. This is an improvement
over Djikstra’s Algorithm [Dij59] which is a uniform cost search algorithm.

Given a graph, A* finds a path from a given starting state to the goal state, having
the smallest cost. Algorithm 1 shows the high level functioning of A*.

It evaluates at every iteration of the main loop which of the possible paths to follow
next. The evaluation is performed by considering both, the cost of the path already
covered (g) and the estimated (heuristic, h) cost of completing that path to the goal
state. It steers the algorithm towards following the most promising path leading to
the goal state. This is why, A* is also known as an informed search algorithm. A
more detailed explanation of evaluation functions and their features is presented in
Section 2.3.1
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Most implementations of A* include a priority queue called OPEN which contains the
set of states that have not yet been explored. The OPEN queue is sorted in increasing
order of the heuristic cost of reaching the goal state. The CLOSED list is the set of
states that have already been explored. Φ is the state in the graph from which we
want to find the path to the goal state, γ. Let s be an arbitrary state in the graph.
Then Algorithm 1 shows the functioning of the A* search.

Algorithm 1 A* Algorithm
1: procedure AStar(Φ, γ, g, h)
2: OPEN ← {Φ}
3: CLOSED ← φ
4: while |OPEN | > 0 do
5: s← ExtractMinimum(OPEN)
6: if s = γ then
7: return BacktrackPath(s,Φ)
8: end if
9: CLOSED ← CLOSED ∪ {s}

10: for all v ∈ ChildState(s) do
11: if v ∈ CLOSED then
12: continue
13: end if
14: f = g(s) + h(s, γ)
15: Insert(OPEN, s, f)
16: end for
17: end while
18: return φ . No path found from Φ to γ
19: end procedure

2.3.1 Cost Evaluation Function

The cost evaluation function is used by the A* algorithm to guide the search towards
the path with the least cost leading to the goal state. Let s be any arbitrary point on
the graph that lies between a path from Φ to γ. Then, the cost evaluation function
for state s is defined as:

f(s) = g(Φ, s) + h(s, γ) (2.1)

Where, f(s) estimates the minimum cost of any path through state s for the given
optimization objective. g(Φ, s) is the minimum cost of a path for the objective from
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Φ to the state s. And finally, h(s, γ), the heuristic cost function, estimates the
minimum cost of a path from the state s to γ.

Since for any non-trivial graphs, the cost evaluation function must be computed for
a large number of states, it is imperative that it is cheap to compute.

In most cases, the exact cost of the path from Φ to s is already known when evaluating
the cost function. This is computed iteratively as each new state is explored and
stored alongside as metadata. Hence, almost all the cost of evaluating the cost
function comes from the evaluation of the heuristic cost function, h.

The job of the cost evaluation function is to guide the search towards the cheapest
path to the goal state. Hence the closer it, and transitively the heuristic cost function,
estimates the real cost of a path, the better the algorithm will perform. Given a
perfect heuristic cost function, the cost evaluation function will lead A* to only
explore states on the cheapest path, ignoring all the others.

Next, we discuss some of the features of the heuristic cost function and how they
affect the performance of A*.

Admissibility

A cost function is said to be admissible if it never overestimates the true cost of
reaching the goal state. Let f∗(s) be the real cost of the optimization objective on
the cheapest path from Φ to γ. Then an admissible cost function is one which always
meets the following criteria:

f(s) ≤ f∗(s) (2.2)

With an admissible cost function, Pearl et al [KP82] show that A* is guaranteed to
terminate with the cheapest path if one exists. A simple way to reason about this is
as follows:
When A* terminates with a path, it has found a path with an actual cost that is
lower than the estimated cost of all the other paths it is yet to explore. However,
since each of these is an underestimation of the real cost, they can never lead to a
path with a lower actual cost.

It would also be possible to run A* with a non-admissible heuristic. In such a case,
it is possible that A* misses the optimal path due to an overestimation of the cost.
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There exist several ε-admissible algorithms as well, which provide guarantees that the
returned path has a cost no worse than (1 + ε) times the optimal path. Some such
strategies include, Static Weighting [Poh70, Pea84], Dynamic Weighting [Poh73] and
A∗ε [GA83].

Monotonicity

A heuristic cost function is said to be monotone or consistent, if its cost estimate to
a goal state is never greater than the estimated cost from a successor state, plus the
cost to reach said state. Formally, it can be stated as follows:

∀P ∈ successor(N), h(N, γ) ≤ g(N,P ) + h(P, γ) (2.3)

This ensures that the value of the heuristic is always monotonic, and that it is never
more optimistic than a previous guess. It is trivial to see that a consistent heuristic
function is always admissible. However, the opposite is not true. An admissible
heuristic is not always consistent.

A consistent heuristic makes the A* search more efficient. Without the guarantee of
consistency, it is feasible that the same node in the graph is reached from different
paths, each time with a different cost. In such a case, every time a state is reached
again with a better cost than the previous times, it must be expanded again. This
can severely degrade the performance of the search in the worst case where the state
is reached multiple times, each time with an iteratively better cost. The algorithm
presented in Algorithm 1 also assumes the use of a consistent heuristic.
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Chapter 3

Real-Time System Model and
Problem Statement

In this chapter, we introduce the system model that will be used throughout this
thesis. We also describe our problem statement in terms of the system model and
the criteria for optimality.

3.1 System Model

3.1.1 Machine Model

We consider a machine with K identical cores and a shared global cache of size M .
The shared cache can be partitioned into S equal slices, such that S ≥ K. At runtime,
the set of cache slices may be (re-)partitioned arbitrarily among the cores and thus,
among the tasks running on those cores.

Given a set-associative cache and way-based partitioning, the cache slices would
correspond to the ways of the cache. Given a set-associative cache and set-based
partitioning, which can be implemented in software, the cache slices would correspond
to subsets of the cache’s sets. The methods proposed here work independently of the
way the cache is partitioned.

3.1.2 Task Model

We consider a system which must schedule a set of n real-time jobs, J = {j1, j2, . . . , jn}
on a machine as described in Section 3.1.1. Each job ji is characterised by a 3-tuple
(Ci, ai, Di), where Ci is the job’s worst-case execution time, ai is the arrival time of
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job ji, and Di is the (absolute) deadline before which the job must be completed. As
the execution time depends on the amount of allocated cache space, Ci is a function,
Ci = {0, . . . , S − 1} → N, capturing the dependence of the job’s execution time on
the number of cache slices available to it. Evidently, the allocation of cache slices is
done only once at the time of dispatch and cannot be changed later.

We also implicitly assume that Ci is a monotonically decreasing function, i.e. the
WCET of a job only decreases with increasing cache slices. This is not necessarily true,
since timing anomalies [RWT+06, SHK14, RS09] can cause the WCET to increase
with larger cache sizes. However, such cases are easily dealt with by dropping them
from Ci.

The model also makes an assumption that a job requires at least one slice in the
shared cache in order to execute on the core.

Since our approach allows each job of a periodic task to be executed with different
cache slices, we only deal with jobs in this thesis. Periodic tasksets are handled by
unrolling them for the duration of their hyper-period in order to generate a jobset
for scheduling.

Given a particular schedule, the lateness of a job ji is defined as Li = fi −Di, where
fi denotes the finishing time of job ji under the given schedule.

3.1.3 Scheduling Model

We consider global non-preemptive scheduling, where each job is assigned a fixed
number of cache slices throughout its execution. Global scheduling implies that jobs
are free to be scheduled on any core without any restrictions. Under non-preemptive
scheduling, once a job is scheduled on a core it runs to completion without any
interruptions.

A job is said to arrive when it is available to the scheduler for being scheduled. This
is the earliest time at which the job can begin execution. The scheduler may instead
place the job in the ready queue where it waits for its turn to be scheduled. Jobs in
the ready queue are called ready jobs and the scheduler is free to schedule them at
any point. A job is released when the scheduler removes it from the ready queue and
assigns it to a core for execution.



3.2. Problem Statement 15

3.2 Problem Statement

Our goal is to find an optimal offline schedule that considers the available number
of cores and cache slices. For an optimal schedule, we would like to minimise the
maximum latenesses across all jobs.

For the purpose of finding such a schedule, we propose a new algorithm in Chapter 4
which takes into account the effect of the available cache on the execution time of a
job and partitions the shared cache on a per-job basis.

3.2.1 Optimization Criteria

Optimality of a schedule can be defined in many different ways. The A* algorithm
and its modifications presented in this work can be easily adapted for each of these
definitions. For the purpose of this thesis, an optimal schedule is one that:

1. Is feasible, i.e. ∀ji ∈ J, fi ≤ Di, and

2. Minimises the maximum lateness across all jobs

Let Ψ be the set of all possible schedules for a given system model. Each of the
schedules is represented by a sorted vector of the latenesses of each of the jobs in the
jobset J . Then, the optimal schedule is one which has the smallest number as the last
element of such a vector. Ties are broken by considering the next highest lateness. If
all the latenesses are the same, the two schedules are considered equivalent and ties
are broken arbitrarily.

3.3 Static Partitioning Not Optimal

Here, we show that static partitioning of the cache is not optimal in terms of feasibility
of the given jobsets. We show this by presenting a counter-example where a jobset is
infeasible under static per-core partitioning but would be feasible if the caches were
dynamically repartitioned at runtime.

3.3.1 Example System

First we describe an instance of the system model for demonstrating that static
per-core partitioning is not optimal. This system will also be used for demonstrating
the algorithms and their impact throughout this document.
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Let there be a machine with 2 identical cores and a shared global cache that is split
into 4 equal slices. Table 3.1 describes a set of 3 jobs along with their execution
times corresponding to the number of cache slices available during execution. This
set of jobs must be scheduled on the machine described above such that every job
meets its deadline.

Table 3.1: Jobset showing non-optimality of static cache partitioning

Di
Ci

s: 1 2 3 4
j0 5 7 5 4 4
j1 10 8 8 5 5
j2 5 7 5 4 4

There are 3 different ways in which 4 slices of cache can be statically partitioned
across 2 cores: (4,0), (3,1), (2,2). The schedules with each of these potential partitions
are shown in Figure 3.1. In Figure 3.1a, core 0 has all 4 slices of cache, while core 1
has none. Thereby, effectively rendering it useless. This allows j0 to finish in 4 units
of time, ahead of its deadline. However, j2 then misses its deadline at t = 5. If
instead, a single slice of cache is provided to core 1, then j0 still finishes at the same
time, but j2 can now be run in parallel on core 1. Nevertheless, the schedule is still
infeasible as with just one slice of cache j2 finishes at t = 6, as shown in Figure 3.1b.
An equal partitioning of the cache will allow both j0 and j2 to meet their respective
deadlines, as shown in Figure 3.1c. j1 will still miss its deadline since it needs 8 units
of time to execute with 2 slices of the cache, whereas its deadline is 5 units later.

As can be seen above, with static partitioning of the cache, the given jobset cannot
be scheduled on this system. However, it is trivial to see that if we could provide
j1 additional cache in Figure 3.1c, the deadline would be met. This is shown in
Figure 3.2, where the cache is repartitioned at t = 5. This allows j1 to use the
remaining unused cache and makes the jobset feasible.

Another way to see the example is through the vector of latenesses for each of the
possible schedules:

3.1a : < −1, 3, 3 >

3.1b : < −1, −1, 1 >

3.1a : < 3, 0, 0 >

3.2 : < 0, 0, 0 >
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Figure 3.1: Scheduling Graphs with Static Partitioning
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Figure 3.2: Dynamic Repartitioning of Cache

The vectors of latenesses show that the schedule shown in Figure 3.2 has the smallest
maximum lateness. Being that none of the latenesses are higher than zero, this
schedule is feasible; making it an optimal schedule for the given instance of a system.
In this simple case, it is trivial to manually verify that no other schedule has a smaller
maximal lateness.
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Chapter 4

Adapting A* for Real-Time
(AART)

In this chapter, we describe how the A* graph search algorithm can be adapted for
finding the optimal schedule of a set of real-time jobs.

4.1 Scheduling Trees

A scheduling decision (Figure 4.1a) defines when a job will execute, where it will
execute and with what resources it will execute. That is, a scheduling decision D is
characterised by the 4-tuple, D = (ji, k, s, t). Where, ji is the job being scheduled,
k ∈ [0,K) is the core on which the job will execute, s ∈ [0, S) is the number of cache
slices with which the job executes and t is the absolute time at which the job begins
executing.

A schedule (Figure 4.1b) then can be seen as a sequence of scheduling decisions that
account for each of the jobs in the jobset. For a given jobset there may exist many
different schedules each corresponding to a different permutation of job ordering,
core assignment and resource allocation. A large subset of the set of all possible
schedules will share a common prefix and hence can be merged to form a prefix-tree
or trie [FBN60, De 59]. We call such trees, scheduling trees.

The set of all possible schedules of a jobset possibly contains many schedules which
do not meet the feasibility criteria laid out in Section 3.1.3. Hence, it can be seen that
traversing any path that leads to an infeasible schedule is not useful when searching
for the optimal schedule. The task of our algorithm then is to quickly traverse the
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scheduling tree and find the optimal schedule while trying to avoid exploring as many
infeasible schedules as possible.

4.2 State Space Exploration

We model the problem of finding the optimal schedule as one of searching for the
shortest path within a scheduling tree. In such a tree, each node represents a
scheduling decision and each edge represents the execution of the scheduling decision
it points to. A set of edges and their corresponding nodes (beginning from the
root node) represent a partial schedule. When a partial schedule contains nodes
representing each job in the jobset, it is known as a complete schedule. A full
scheduling tree will contain a large number of nodes and possible schedules, making
an explicit exploration of the entire tree infeasible for all but the smallest jobsets.

We propose to use the A* algorithm, introduced in Section 2.3, to efficiently explore
this tree. As the term state is commonly used in the A* literature to refer to a node
in the tree, we will also refer to nodes as states in the remainder of this document.

Let σ represent a partial schedule of the given jobset. Then, the A* algorithm as
adapted for real-time scheduling is shown in Algorithm 2.

There are a few changes in this algorithm when compared to the standard A*
algorithm presented in Algorithm 1:

1. ExpandState on Line 10 replaces ChildState. Unlike the standard A* algo-
rithm, we do not feed the entire scheduling tree to AStarRealTime. Instead,
ExpandState expands the given scheduling state by exhaustively matching
all ready jobs to all available cores for each possible partition size from the
available cache space. This is called Dynamic State Expansion and is described
in more detail in Section 4.6

2. In hard real-time systems, we must also ensure that each job finishes before
its deadline. There may exist partial schedules with a lower cost for the given
optimization objective (lateness), but which cause one or more jobs to miss
their deadline. Such partial schedules can never lead to a feasible schedule,
which is one of our criteria for optimality. Thus, such partial schedules need
not be explored once identified and can be safely pruned.



4.2. State Space Exploration 21

j1 → k0
s = 2; t = 0

(a) Scheduling Decision

j1 → k0
s = 2; t = 0

j2 → k1
s = 2; t = 0

j3 → k1
s = 2; t = 5

(b) Schedule

j1 → k0
s = 2; t = 0

j2 → k1
s = 3; t = 0

j3 → k1
s = 3; t = 5

j1 → k0
s = 2; t = 0

j2 → k1
s = 2; t = 0

j3 → k1
s = 3; t = 5

j1 → k0
s = 2; t = 0

j2 → k1
s = 2; t = 0

j3 → k1
s = 2; t = 5

(c) Multiple Schedules

j1 → k0
s = 2; t = 0

j2 → k1
s = 3; t = 0

j3 → k1
s = 3; t = 5

j2 → k1
s = 2; t = 0

j3 → k1
s = 3; t = 5

j3 → k1
s = 2; t = 5

(d) Scheduling Tree

Figure 4.1: Scheduling Trees
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Algorithm 2 Adapting A* to Real-Time Scheduling
1: procedure AStarRealTime(JobSet, h)
2: OPEN ← {Φ}
3: CLOSED ← φ
4: while |OPEN | > 0 do
5: σ ← ExtractMinimum(OPEN)
6: if isCompleteSchedule(σ) then
7: return BacktrackPath(σ,Φ)
8: end if
9: CLOSED ← CLOSED ∪ {σ}

10: for all σ′ ∈ ExpandState(σ) do
11: f = Heuristic(σ′)
12: if isInfeasible(σ′) then . If any job misses a deadline
13: continue
14: end if
15: PruneExistingSchedules(OPEN, σ′)
16: if PruneNewSchedule(σ′, {OPEN ∪ CLOSED}) then
17: continue
18: end if
19: Insert(OPEN, σ′, f)
20: end for
21: end while
22: return φ . No feasible schedule possible
23: end procedure

3. In order to prevent a state-space explosion, we can also eagerly eliminate parts
of the tree that are redundant or can never lead to the optimal schedule. We
call this, state space pruning and it is discussed in more detail in Chapter 5.

4.3 Cost Evaluation Function

Let Ψ(σ) be the set of all schedules that are completions of the partial schedule
represented by σ. Then, the cost evaluation function is defined as:

f(σ) = g(σ)
⊕

h(σ) (4.1)

Where, f(σ) estimates the minimum value of the optimization objective across all
schedules in Ψ(σ). Unlike the cost evaluation function in equation 2.1, the function
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here is not a sum of two entities. Rather, under our definition it is any meaningful
combination of the exact cost and heuristic costs for the given optimization objective.

4.3.1 Admissibility

Let, f∗(σ) be the real minimum of the optimization objective for all schedules in
Ψ(σ):

f∗(σ) = min{g(σ′) | σ′ ∈ Ψ(σ)} (4.2)

Then, an admissible heuristic is one that never over-estimates the value of f∗(σ):

f(σ) ≤ f∗(σ) (4.3)

A trivial heuristic function which meets the admissibility criteria is one that assumes
that all the pending jobs complete at time t = 0. In this case, A* would degenerate
into a breadth-first search, looking for the optimal scheduling under the given
objective.

4.4 Running Example

Figure 4.2 shows the scheduling tree that is generated when the modified A* algorithm
using the trivial heuristic function described at the end of Section 4.3.1 is used to
schedule the set of jobs shown in Table 3.1 on a system as described in Section 3.3.1.
A total of 58 different scheduling decisions were evaluated by the algorithm before
identifying the set that leads to the optimal schedule.
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Figure 4.2: Scheduling Tree with Naïve Heuristic

As is evident from Figure 4.2, even a simple problem can potentially generate a large
number of states. Hence, it is important that the algorithm uses efficient and effective
heuristic functions (described in Section 4.5) and other approaches to smartly prune
non-optimal paths from the search space (described in Chapter 5).
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4.5 Heuristic Functions

As mentioned in Section 4.3, the heuristic function is an important concept for the
efficiency of this approach. In this section, we discuss different heuristic cost function
implementations and how they affect the overall performance of the search.

4.5.1 Simulation-EDF Heuristic

The Simulation-EDF Heuristic works on the basis of the intuition that Earliest-
Deadline-First (EDF) is an optimal scheduling strategy on uniprocessor systems [Hor74,
SG92]. That is, it is guaranteed to minimise the vector of latenesses of all the jobs
in the system [SG92].

Next, assume that there exists a machine with a single processor that has a cache of
size M and is as fast as all the K cores combined, i.e. it executes jobs K× faster.
Under EDF scheduling, such a machine is guaranteed to result in a vector of latenesses
that is not greater than the optimal scheduling case on a K-core multi-core machine.
This aligns perfectly with the admissibility criteria laid out in Section 4.3.1, that the
heuristic function always underestimates the optimization goal.

In order to compute the Simulation-EDF Heuristic, we simulate EDF based scheduling
on a faster processor for all pending jobs. In order to ensure the admissibility of the
computed heuristic it is mandatory that the simulation start from time t = min

K
(tK).

Where tK is the earliest time that any of the K cores is available for scheduling a
job, starting from the instant of searching. Figure 4.3a shows an example of the
computation of such a heuristic for the example problem in Section 3.3.1 after job j1
has already been scheduled. A more general case with more jobs already scheduled
is shown in Figure 4.3b. It shows that the computation of the Simulation-EDF
Heuristic for j4 begins at t = tK = 5.
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Figure 4.3: Simulation-EDF Heuristic
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Figure 4.4a shows the scheduling tree that is generated during the process of finding
the optimal schedule. A total of 34 different scheduling decisions are generated out
of which the algorithm needed to consider and expand 28 decisions. Figure 4.4b
shows the full scheduling tree generated by the trivial heuristic with the set of 28
decisions used by the Simulation-EDF Heuristic highlighted in purple.
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Figure 4.4: Scheduling Tree with Simulation-EDF Heuristic

Proof of Admissibility

Let there be a machine with 2 identical cores, a and b, each running at a speed l.
We define the schedule for each core as a mapping from a discrete point in time to
the job it is executing at that point. Then, the schedule sk for a core k is a function,
N→ ji ∪ ⊥, where a mapping to ⊥ implies that the core is idle.

Now, let us assume there is another machine with a single core, c, that runs at a
speed of 2l. Since it runs at double the speed, in each instant of time, it executes
twice as many instructions compared to a and b. We can create a schedule for this
core such that it leads to no worse lateness for each job compared to an arbitrary
schedule available for the multi-core machine.

sc(2i) = sa(i)
sc(2i+ 1) = sb(i)

In such a schedule, every even instant of time executes the job from core a and every
odd instant of time executes the job from core b. Hence, at every point during the
execution, the schedule on core c is never executing things later than it would be
executed on the two cores, a and b.
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Here, we see that it is easily possible to create a single core schedule that is no worse
than the schedules for both the slower cores. This method can be applied iteratively
to an arbitrary number of cores, allowing us to make the following generalised
statement:

Given a set of k cores and a corresponding schedule for each of them, it is possible to
generate a schedule for a single core which runs at k times the speed, resulting in
latenesses that are no worse than in each of the separate schedules.

Now, since we know that Preemptible-EDF (P-EDF) is an optimal scheduling
strategy for single core machines, we can state that the latenesses of each of the
jobs as scheduled by P-EDF will be no worse than the latenesses of our generated
schedule. Combining the two, we can see that P-EDF will never result in a worse
lateness than the optimal schedule on a multi-core system.

4.5.2 Stepped Heuristic

The Simulation-EDF heuristic is an improvement over the trivial heuristic of consid-
ering only the jobs that have already been scheduled. However, the Simulation-EDF
heuristic is too optimistic about possible response times of each of the jobs. As
mentioned in Section 4.5.1, the simulation of EDF begins at the earliest time that
any core is scheduled to be free. This means, the heuristic does not account for the
fact that there may exist cores which are scheduled to execute other jobs during this
period and hence will be unavailable. This can be seen in action in Figure 4.3b, where
between time t = 5 and t = 10 only the core P1 was free and yet the computation
assumes 2× the core speed. Such optimism prevents the algorithm from pruning
parts of the graph which will later lead to infeasible schedules.

The Stepped Heuristic is an improvement on the Simulation-EDF Heuristic. Instead
of always assuming that we have available a uniprocessor machine running K times
faster, we assume that the hypothetical machine has tunable speeds. When only one
core is free, the hypothetical core also runs at a normal 1× speed. When k different
cores are free, the hypothetical core is capable of instantaneously ramping up its
speed such that it executes jobs k× faster.

This method reduces the excess optimism that exists in the Simulation-EDF Heuristic
and provides for a more accurate guess of the latenesses of pending jobs. Figure 4.5a
shows the computation of this heuristic for the running example introduced in
Section 3.3.1 for the case when only job J0 has been scheduled. According to EDF,
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the job J2 is scheduled first and it executes for 4 time units on the hypothetical
processor StH0 which runs at the same speed as core P0. Next, the job J1 is scheduled
which requires 5 time units. It executes for the first unit on the hypothetical core,
at which time, both cores P0 and P1 would become free. Hence, the core doubles it
clock speed instantaneously. This faster core is shown as StH1 and finishes executing
the 4 units of execution pending for J1 in only 2 time units.

0 5 10

P1

StH1
J1
S : 4

StH0
J2

S : 4
J1

P0
J0

S : 2

(a) Running Example

0 5 10
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J4

S : 4
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J3

S : 4
J4

P0
J0

S : 2
J1

S : 3

(b) General Case

Figure 4.5: Stepped Heuristic

As can be seen in Figure 4.6a, with this method, only 28 different scheduling decisions
are generated and 21 of them need to be evaluated before the optimal schedule is
identified. Figure 4.6b shows the 21 different decisions that had to be evaluated
highlighted in green. The nodes highlighted in purple indicate the scheduling decisions
that were evaluated for the Simulation-EDF Heuristic, but not the Stepped Heuristic.

Figure 4.5b shows this heuristic being applied in a more general case. For a system
with K cores, the Stepped Heuristic modulates its core frequency from 1× to K× in
K steps, lending the name of this algorithm. Such a computation also leads to cases
where under EDF, a job is scheduled to run on a hypothetical core, but mid-way
through, the core must ramp up its frequency. This case is handled naturally and the
completion time of the job is scaled proportionally to the amount of time it executed
on each clock frequency.

4.6 Dynamic Graph Expansion

The standard A* graph search algorithm expects the entire graph along with all the
edge weights to be provided to the algorithm. However, in the case of a scheduling
tree, the resulting graph is too large to completely expand and store in memory. Each
potential scheduling decision incurs a memory overhead that is directly proportional
to the number of jobs in the jobset. And the number of potential scheduling decisions
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Figure 4.6: Scheduling Tree with Stepped Heuristic

increases exponentially with the number of jobs in the jobset. Hence, the proposed
algorithm expands the scheduling tree for only those partial schedules that it intends
to explore.

In this section we discuss a simple, naïve approach to expanding the graph and
another that optimises the method for better performance.

4.6.1 Fully Exhaustive Matcher

The Fully Exhaustive Matcher (FEM), is a simple and naïve approach to expanding
the scheduling graph. Given a scheduling state σ, the FEM will generate a new
scheduling state by exhaustively matching every pending job with every CPU core for
all possible cache slice allocations. A high-level overview can be seen in Algorithm 3.
As can be seen in Algorithm 3, the only case where a scheduling action is not
considered is when the number of cache slices(s) used does not improve the WCET(Ci)
of the job compared to using fewer slices

This algorithm seems reasonable at first sight. It is the obvious way to expand the
scheduling tree on demand. However, this technique has two major drawbacks which
affects the performance of the overall A* algorithm.

1. Generation of (potentially) bad schedules
When the arrival time of the job being considered is after all cores finish their

scheduled executions, one of the cores must idle waiting for the job to arrive. However,
if the arrival time is significantly later in the future, it is feasible that the core will
be forced into an idle state longer than the maximum execution time of a ready job.
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Algorithm 3 Fully Exhaustive Matcher
1: procedure FEMExpansion
2: NextSchedules← list()
3: for all ji ∈ PendingJobs do
4: for all kj ∈ K do
5: EarliestReleaseT ime← max(ai, cores[kj ])
6: for all s ≤ S do
7: if Ci(s) ≥ Ci(s− 1) then
8: continue
9: end if

10: ReleaseT ime← SlicesAvailableAt(s, EarliestReleaseT ime)
11: SchedAction← CreateSchedulingAction(ji, kj , s, ReleaseT ime)
12: NextSchedules.add(SchedAction)
13: end for
14: end for
15: end for
16: return NextSchedules
17: end procedure

Even if no deadlines are missed, such idling causes a loss of optimality since the
ready job could have been executed during that idle period. Hence, generating such
schedules only wastes time and memory, and should be avoided when possible.
2. Generation of redundant schedules

A fully exhaustive matching also causes generation of redundant schedules. For
example, the partial schedule depicted in Figure 4.7 can be reached from 2 different
paths after j0 has been scheduled. Either the Job j1 is scheduled first on processor
P0 and then Job j2 on P1, or vice versa. However, both these paths will lead to
precisely the same complete schedule in the future. Such redundant partial schedules
are also captured and eliminated by the state-space pruning approaches described in
Chapter 5. However, those approaches incur a runtime cost and memory overhead
and hence it is useful to simply not generate such redundant schedules when possible.

0 5 10

P1
J2
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P0
J0

S : 2
J1

S : 4

Figure 4.7: Sample Schedule
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4.6.2 Chronological Match Generator

The drawbacks mentioned in the previous section add up to a significant performance
hit for most jobsets. In order to alleviate these issues, we implemented another graph
extension algorithm called, the Chronological Match Generator (CMG). A high level
overview of the CMG can be seen in Algorithm 4, with the changes highlighted.

Algorithm 4 Chronological Match Generator
1: procedure SkipSchedulingJob(j)
2: for all jp ∈ PendingJobs do
3: if Dp < aj then
4: return True
5: end if
6: end for
7: end procedure

8: procedure CMGExpansion(CurrentSchedule)
9: NextSchedules← list()

10: for all ji ∈ PendingJobs do
11: if SkipSchedulingJob(ji) then
12: continue
13: end if
14: for all kj ∈ K do
15: EarliestReleaseT ime← max(ai, cores[kj ])
16: for all s ≤ S do
17: if Ci(s) ≥ Ci(s− 1) then
18: continue
19: end if
20: ReleaseT ime← SlicesAvailableAt(s, EarliestReleaseT ime)
21: if ReleaseT ime < CurrentSchedule.LastReleaseT ime then
22: continue
23: end if
24: SchedAction← CreateSchedulingAction(ji, kj , s, ReleaseT ime)
25: NextSchedules.add(SchedAction)
26: end for
27: end for
28: end for
29: return NextSchedules
30: end procedure

Under the Chronological Match Generator, we attempt to skip the generation of
partial schedules which are guaranteed to not lead to a unique complete schedule.
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The call to SkipSchedulingJob on Line 11 handles the first drawback of the Fully
Exhaustive Matcher. It prevents generating a scheduling decision where a job would
idle-block a core for an amount of time that is long enough to completely schedule a
ready job. Similarly, the check on Line 21 deals with the second drawback mentioned
for the FEM. It will forces generation of scheduling decisions in a chronological
order. That is the release times of the generated scheduling decisions are always
monotonically increasing. This prevents generating redundant schedules from different
paths.

It is important to note here that the schedules pruned in these checks would other-
wise have been deemed infeasible or marked redundant by the state-space pruning
approaches explained in Chapter 5. However, as mentioned earlier, each generated
scheduling decision incurs a memory overhead proportional to the size of the jobset.
Hence, avoiding the generation of these decisions helps to reduce the peak memory
usage of the algorithm.
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Chapter 5

State Space Pruning

The set of all possible schedules for a given job set is extremely large. Even navigating
it with a good heuristic function can require large amounts of memory and time. In
order to improve the overall performance of the A* algorithm, we propose another
modification to it. These modifications are called State Space Pruning and work to
reduce the size of the search space that the algorithm must navigate. In this section
we talk about the different methods for state space pruning.

5.1 Isomorphic Schedules

Multiple schedules may be equivalent to one another. Such schedules will always
lead to the exact same result in terms of the optimization objective. For example,
consider two states, σ1 and σ2, which represent the following partial schedules:

σ1 σ2

j0 → k0 j0 → k1
j1 → k1 j1 → k0

In this case, it is trivial to see that for every complete schedule in Ψ(σ1), there exists
a complete schedule in Ψ(σ2) with the exact same value of the optimization objective.

We call such partial schedules, isomorphic schedules. The algorithm needs to follow
only one schedule from a set of isomorphic schedules in order to ensure that the
entire state space is searched.

The pruning of isomorphic schedules happens most frequently at the very early stages
of the algorithm, and is most useful during the first iteration when it eliminates a
significant chunk of the potential scheduling trees. Figure 5.1a shows the scheduling
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Figure 5.1: Scheduling Tree with Pruning of Isomorphic Schedules

tree generated after applying pruning of isomorphic schedules while using the Stepped
Heuristic. Only 12 potential scheduling decisions were generated out of which 11
had to be evaluated before the optimal schedule was identified. The 11 decisions
that were evaluated by the algorithm are highlighted in light-blue on the cumulative
scheduling tree shown in Figure 5.1b. As before, the purple and green nodes indicate
the scheduling decisions that were evaluated when applying only the Simulation-EDF
and Stepped Heuristics respectively, but not when also applying pruning of isomorphic
schedules. This shows us how effective the pruning of isomorphic schedules is and
how it can be used to significantly reduce the size of the search space.

5.2 Dominated Schedules

During the exploration of the entire state space, one may come across partial
schedules which are objectively worse than another partial schedule. That is, there
may exist partial schedules whose completions will never result in a lower value of
the optimization objective than another schedule in the tree. Such partial schedules
are called dominated schedules and it is trivial to see that they can never lead to the
optimal path. Hence pruning them early can potentially prevent the algorithm from
exploring parts of the graph which will not result in the optimal path.
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Let v be an operator that defines the domination relation and σ1 and σ2 be two
partial schedules. Then:

σ2 v σ1 =⇒ min{g(σ′1) | σ′1 ∈ Ψ(σ1)} ≤ min{g(σ′2) | σ′2 ∈ Ψ(σ2)}

=⇒ f∗(σ1) ≤ f∗(σ2) (5.1)

In other words, if state σ2 is dominated by σ1 then for every possible completion of
σ2, there exists a completion of σ1 with the same or lower value of the optimization
objective. From this, we can see that the best complete schedule that is an extension
of σ2 will never be better than the best complete schedule extending from σ1. By
pruning all completions of the dominated state, σ2, we can reduce the search space
of the algorithm, allowing it to be faster and more memory efficient. The earlier a
dominated schedule is identified, the larger the portion of the overall search space
that can be pruned.

As can be seen in Algorithm 2, on line numbers 15 and 16, the pruning of dominated
schedules is done in two steps:

1. Remove any partial schedules that the algorithm has not yet explored which
are dominated by the current schedule

2. Stop processing the current schedule if it is dominated by any schedule in
OPEN ∪ CLOSED

We can then define the domination relation σ2 v σ1 as:

• σ1 has finished scheduling a superset of the jobs scheduled in σ2

• For each of the jobs scheduled in σ2, the finishing time of the same job under
σ1 is the same or earlier

• σ1 has required the same or fewer cache slices to schedule the jobs until now

Considering each of the above points together, we can see that for every schedule
in Ψ(σ2), there will always exist a schedule in Ψ(σ1) where the jobs finish with a
smaller lateness.

Below we describe two mechanisms for identifying and pruning dominated states.
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Figure 5.2: Scheduling Tree with Pruning of Dominated Schedules

5.2.1 List-Based Domination Checker

After filtering the isomorphic schedules as seen in Section 5.1, all the remaining
schedules are tested for domination. Our implementation maintains two doubly
linked-lists, Domination::OPEN and Domination::CLOSED. Each of these lists contain
elements composed of a DominationState. A DominationState consists only of
information required for the domination checks. This includes, 1. The latenesses of
every job scheduled in that partial schedule, 2. The times during which each of the
CPU cores were in use, 3. The times when each of the cache slices were allocated to
a job.

Each scheduling state that is removed from the top of the OPEN queue for dynamic
graph expansion, is also removed from the Domination::OPEN list. This requires a lin-
ear search through the list. After, expansion, a DominationState is created for each
of the states, σg, that are both feasible and not isomorphic. This DominationState
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is compared, linearly, with each of the states in Domination::OPEN to see if it domi-
nates any partial schedule that has not yet been explored. Any states found to be
dominated are removed from both, the Domination::OPEN list and the OPEN queue.

Next, the DominationState is checked against all the elements in both the lists,
Domination::OPEN and Domination::CLOSED to see if any of those elements domi-
nate it. If they do, the state, σg is dropped since we have found a partial schedule
that will always perform better than it. This check also entails a linear search across
both the lists.

Since every new partial schedule is checked against every schedule that has been
generated so far, the complexity of this search is O(n2) in the total number of partial
schedules generated.

Partial schedules that are identified as dominated can prune away large parts of the
search-space. This can be seen in Figure 5.2a, which shows that only 7 scheduling
decisions had to be considered before finding the optimal schedule. The 7 decisions
are also highlighted in dark-blue in the cumulative scheduling tree in Figure 5.2b.

5.2.2 Depth Domination Checker

Profiling of the implementation runtime shows that about 95% of the running time
is spent in performing the domination check described above. This is a very large
percentage of the total runtime, however, we expect it to be more efficient on the
whole since it prevents exploration of large parts of the state space. Any optimisations
made to the List-Based Domination Checker have a potential to be very effective
since it dominates the overall runtime cost.

Let σ1 and σ2 be two scheduling states such that σ2 v σ1. Then, under the List-Based
Domination Checked described above, it is possible that the set of scheduled jobs
in σ1 is a strict superset of the set in σ2. That is, it has not only scheduled all the
jobs in σ2 with a lower finishing time, but also scheduled some additional jobs on
top of it. We call the number of scheduled jobs in a partial schedule, the depth of
the schedule since it corresponds to the depth of the tree.

An analysis of the runtime logs shows this case indeed occurs and it is not just
theoretical. However, we also noticed that it does not occur often enough. In an
overwhelming majority of the domination relations identified, the depth of both the
partial schedules is the same, i.e. ScheduledJobs(σ1) = ScheduledJobs(σ2).
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The cost of finding such domination relations seemed to be greater than the time saved
by the pruned states resulting from them. Thus, we implemented the Depth Domina-
tion Checker. In this checker, separate Domination::OPEN and Domination::CLOSED

lists are maintained for each depth of the tree. The depth here indicates the number
of scheduled jobs. The checks are then performed exactly as described for the List-
Based Domination Checker, with the caveat that only states with equal depths are
compared.

Since, under this method, every partial schedule against every partial schedule
generated so far that has the same number of scheduling decisions, the complexity of
this method is, O(n2) in the total number of partial schedules generated at every
depth. Hence, this algorithm is never worse than the List-Based Domination Checker.
It may however result in missing some branches that could potentially be pruned.
The effects of this are shown and discussed in more detail in Section 7.1.3.

For our simple running example, the change to Depth Domination Checker, does not
change the number of states explored.
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Chapter 6

Non-Optimal Scheduling

Throughout this thesis, our focus has been on searching for the optimal schedule.
Finding the optimal schedule is an intractable problem that requires exploring most
of the state space to solve. This is important when the target system is heavily
resource constrained and efficient use of the available hardware is a necessity. In
such cases, one must bear the high computational cost of a full state-space search in
order to find the optimal schedule.

However, the target system is not always extremely resource constrained. In such
cases, one may be more interested in quickly finding a feasible schedule rather than
the optimal one. Feasible schedules cause sub-optimal use of the hardware resources,
but incur a lower computational cost compared to searching for the best possible
schedule.

We would also like to know how a certain feasible schedule compares to the optimal
schedule. It may also be useful to generate not just a feasible schedule, but one
which is within a certain bounds of optimality. In this chapter, we present one
technique that allows us to identify a feasible schedule with a bounded guarantee on
how efficiently it uses the available hardware.

Section 4.5 first introduced the idea of assuming a faster single core for computing the
heuristic cost of a partial schedule. The faster core was used to simulate a single core
that performs an equivalent number of computations as a corresponding multi-core
system. A scaling factor (s.f.), f , represents the factor by which the hypothetical
core is sped-up.

Similarly, we can assume a core that is slower than the actual system model by
setting 0 < f < 1. We can use such a hypothetical core to simulate EDF during the
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heuristic computations. That is, for the purpose of computing the heuristic latenesses
of each of the pending jobs, we assume a core that is slower by a factor of f . Hence,
we estimate a longer execution time than required for each of the pending jobs. This
results in dropping partial schedules where the finishing time of a job is very close to
its deadline.

Since the A* algorithm will pick the next scheduling decision based on the value of the
heuristic lateness and actual latenesses of scheduled jobs, the final schedule generated
by this method is guaranteed to perform no worse than the optimal schedule on a
machine that is slower by a factor of f .

Consider the example introduced in Section 3.3.1 and the Simulated-EDF Heuristic
as the heuristic cost function. Next, let us assume a scaling factor of f = 0.5. This
implies that during the evaluation of the heuristic, we assume that the core runs
at only half its speed. Hence for our example, the effective scaling factor, after
considering the speedup due to number of cores is 2 × 1

2 = 1. We can see this in
Figure 6.1, where the heuristic costs of both J2 and J1 are doubled as compared to
the Simulated-EDF Heuristic (Figure 4.3a).

0 5 10

P1

SH
J2

S : 4
J1

S : 4

P0
J0

S : 2

Figure 6.1: Effect of Scaling Factor, f = 0.5



41

Chapter 7

Experimental Evaluation

In this chapter, we will discuss the performance of the algorithm presented in
Chapter 4. We will discuss the various factors that affect the runtime performance
and also how it compares to standard static per-core partitioning. Section 7.4 also
shows how the non-optimal scheduling strategy presented in Chapter 6 affects the
performance.

Experimental Setup

The algorithm presented in Chapter 4, titled AART, was implemented in C++14. The
implementation is single-threaded and is designed to be memory efficient, sometimes
at the cost of performance. AART takes a JSON file containing the jobset as input
and prints out an optimal schedule if it can find one. The input for the running
example used throughout the thesis is shown in Listing 7.1.

For the evaluations presented here, the jobsets were generated by first generating a
taskset and then unrolling them for the duration of their respective hyperperiods.
The tasks of the tasksets were selected at random (without replacement) from the
set of all tasks available in TACLeBench [FAH+16].

AART requires the partition size sensitivity of tasks as part of its input. The partition
size sensitivity of a task represents the WCET of the task when it is executed in
isolation on a single core with different amounts of cache. For the analysis of the
WCETs, the low-level timing analysis tool LLVMTA [HJR16] was used. Each of the
tasks was provided with a 4 KiB instruction cache and a data cache ranging from
128 bytes to 1 KiB in steps of 128 bytes.



42 Chapter 7. Experimental Evaluation

1 {
2 "J1": {
3 "wcet": {"16": 7, "32": 5, "48": 4, "64": 4},
4 "id": 1,
5 " arrival ": 0,
6 " deadline ": 5
7 },
8 "J2": {
9 "wcet": {"16": 8, "32": 8, "48": 5, "64": 5},

10 "id": 2,
11 " arrival ": 0,
12 " deadline ": 10
13 },
14 "J3": {
15 "wcet": {"16": 6, "32": 5, "48": 4, "64": 4},
16 "id": 3,
17 " arrival ": 0,
18 " deadline ": 5
19 }
20 }

Listing 7.1: Running Example

A WCET Profile is then generated for each of the analysed tasks. The WCET
Profile shows the partition size sensitivities of a task relative to the WCET at a fixed
reference point (1 KiB data cache). An example of a WCET Profile with 4 slices is
shown in Table 7.1 for the task minver. It shows the real WCET in the first column
and the WCET relative to the case with the maximum cache in the second column.
This information tells us how the size of available cache influences the WCET of a
task.

The total utilization of tasksets is varied in the range [0.05, 2.00] with a step of 0.05.

Table 7.1: Example of WCET Profile for minver

Slices Real WCET WCET Profile
1 212831 1.24813
2 174653 1.02424
3 171309 1.00463
4 170519 1.00000
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The number of tasks per taskset is varied from 2 to 10 tasks. For each combination
of the total utilization and number of tasks, 100 tasksets are randomly generated,
yielding a total of 36,000 tasksets.

Each of the tasks in a taskset is assigned a WCET Profile at random. The utilization
of each of the tasks is computed using the randFixedSum algorithm [ESD10]. Periods
are chosen uniformly at random from a fixed set of values ([1, 2, 5, 10, 20, 50, 100, 200,
1000] ms) that are indicative of periods in real workloads [vdBUCF17, KZH15]. The
reference WCET of the task is computed as the product of its period and utilization.
The WCETs at different cache slice availabilities are then computed using the WCET
Profile.

The periods are chosen from a fixed set of values which are mostly harmonic. This
allows us to bound the maximum length of the hyperperiod. Similarly, we ensure
that all tasksets contain no more than 100 jobs per hyperperiod. This is done in
order to avoid comparing jobsets that contain 10 jobs with jobsets containing 1000
jobs.

The evaluations are run by assuming a system with K = 2 cores. Each core has a
private, non-shared, 4 KiB instruction cache. The system also contains a 1 KiB data
cache that is shared among all the cores. Only the data cache is partitioned, and it
can be partitioned into 8 slices of 128 bytes each. However, for the purpose of these
evaluations, we consider the system to contain only 4 slices of 256 bytes each.

The cache sizes were so chosen to ensure that over 80% of the tasks the instructions
fit entirely into the instruction cache and that at least 50% of the tasks do not fit
within the provided data cache [Hah19].

All the evaluations presented here were executed on a machine with an Intel Xeon
E3-1220 CPU, running at 3.10 Ghz, with 32 GiB of DDR3 RAM. Each execution of
AART was bound to a single core to prevent task migrations. The evaluations were
also bounded to a maximum execution time of 1 second, after which the jobset was
classified as feasible, infeasible or timeout.

7.1 Effectiveness of Different Strategies

In this section, we will discuss the effectiveness of the different strategies for evaluating
the cost function, dynamically expanding the graph and for pruning the state space
through dominations.
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For this evaluation, AART was used to schedule each of the 36,000 generated jobsets.
In each of the graphs presented next, the X-Axis represents the total utilization
of the jobset, while the Y-Axis represents the number of jobsets which timed out.
Hence, lower curves indicate a better performance of the algorithm.

Only the curves for tasksets with 3, 5, and 8 tasks are shown here. The full evaluation
results for all taskset sizes from 2 to 10 are available in Appendix A.

7.1.1 Dynamic Graph Expansion

In Section 4.6 we discussed the need for dynamically expanding the graph during the
execution of the algorithm. Two different methods were introduced for such dynamic
expansion: 1. Fully Exhaustive Matcher (FEM), and 2. Chronological Matcher (CM).

The Chronological Matcher improved upon the Fully Exhaustive Matcher by reducing
the number of non-optimal and redundant schedules that are generated. As a result,
we expect that with the Chronological Matcher, more branches of the tree can be
explored in the same amount of time. This should lead to fewer timeouts as the
entire graph can be searched in a shorter span of time. However, as the problems get
more difficult, and the graphs larger, the effects of the Chronological Matcher are
diminished. These effects can all be seen in Figure 7.1. In the figure we can see that
the improvements are more stark in the n = 3 case compared to any others. Since
the Chronological Matcher never performs worse than the Fully Exhaustive Matcher
and has no drawbacks, we recommend always using it.

One interesting thing to note in Figure 7.1 is that the number of timeouts decrease
with increasing utilization. That is, as the scheduling problem gets harder to solve,
our technique keeps showing better performance. This is explained in Section 7.2.2
where we discuss the effect of utilization on the overall performance.

7.1.2 Cost Evaluation Functions

Section 2.3.1 introduced the idea of a cost evaluation function in the A* algorithm
and some desired features and properties of such functions. Later, in Section 4.5 we
present two different functions for computing the heuristic cost of a partial schedule.
Both of these functions are based on the idea that uniprocessor P-EDF is an optimal
scheduling algorithm. We claimed that using the Stepped Heuristic as a heuristic
function is better since it is less optimistic about the execution times of the jobs.
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Figure 7.1: Performance of Dynamic Graph Expansion Strategies

Accounting for the period of time when a core is definitely busy and cannot be used
for scheduling a new job should yield more realistic guesses for the finishing times
of the jobs. Figure 7.2 shows a comparison between the two heuristic functions
proposed in this thesis.

As is expected, using the Stepped Heuristic lends a significant boost to the overall
performance. This effect only grows larger as the scheduling problem becomes more
difficult. At lower utilization values, the state space of the graph remains too large
to process within the timeout of 1 second.

The Stepped Heuristic is indeed a more expensive function to evaluate. However,
this expense is offset by the time it saves through guiding the search more accurately
towards the optimal schedule. Hence we recommend always using the Stepped
Heuristic due to the increased performance it provides across the board.
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Figure 7.2: Comparison of Heuristic Functions

7.1.3 Domination Searching

Isomorphic schedules, discussed in Section 5.1, are very useful in reducing the search
space, but they are most effective only for the first scheduling decision. This is also
noted by Kwok and Ahmed [KA05] in their work which introduced the concept. The
reason is plainly that the rigid requirements of isomorphic schedules are usually never
met again during the later stages.

On the other hand, dominated schedules can be detected throughout the process of
finding the optimal schedule. Checking for dominated states however is an expensive
operation; in our analysis, we found that ∼ 95% of the execution time is spent
in looking for dominated states. Yet, we conjecture that the cost of searching for
dominated states is offset by the time saved in not exploring those branches of the
state space.

Figure 7.3 shows a comparison between the two different strategies proposed in
Section 5.2 and the case when not pruning dominated states.
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Figure 7.3: Comparison of Domination Checking Strategies

In Figure 7.3 we see the List-Based Domination Checker is not very effective. With
a taskset with just 3 jobs, it performs about the same as if we performed no pruning
of dominated states at all. The Depth Domination Checker performs better up to
5 tasks in the taskset. However, as can be seen in Appendix A, is also eventually
yields worse performance than not pruning dominated states at all.

This occurs due to the fact that our implementations of domination checkers have a
O(n2) complexity. Thus, as the problem size grows larger, the cost of checking for
domination often grows faster than the costs of exploring the pruned branches of the
tree.

The large improvement when n = 3 shows there is there is a lot of potential in
improving the performance of the state-space search with a better domination checker
algorithm.

Searching for dominated schedules is expected to be more effective when the total
taskset utilization is lower. This is because, with lower utilizations, there are a lot
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more opportunities for rearranging the jobs while looking for the optimal schedule.
More such opportunities lead to more cases which are decidedly worse than another.

7.2 Performance Evaluation

We now discuss the effects of different parameters in our system model on the overall
performance of the proposed algorithm. The same set of jobsets as generated in the
previous section will be used for the evaluations here. The Chronological Matcher is
used for dynamically expanding the graph, the Stepped Heuristic is used to compute
the Cost Function and the Depth Domination Checker is used to find dominated
schedules for pruning. Once again, the performance metric is considered to be the
number of jobsets that did not finish within a 1-second timeout.

7.2.1 Number of Tasks

The time taken to find the optimal schedule is expected to be directly proportional
to the number of jobs in the jobset. However, that is not the only quality of the
input that affects the performance of the proposed algorithm.

As each task in a taskset can have only one job executing at any given time, the
number of tasks should also affect the performance. The greater the number of tasks
in the taskset, the more jobs are potentially available for scheduling at any instant
of time, and hence a larger scheduling tree is generated. We expect that increasing
the number of tasks should lead to a more time consuming search and hence more
timeouts.

In Figure 7.4 we see the number of timeouts mapped against the size of the taskset at
fixed total utilization values. Appendix B shows the same figure with the evaluation
at all total utilization points.

As can be seen in the figure, for different values of the total utilization of the taskset,
the effect of the number of tasks is the same. With an increasing number of tasks,
the problem gets exponentially more difficult to solve resulting in more timeouts.
This is exactly as we expect it. It is also interesting to see that the number of
timeouts reduce with increasing total utilization. This is discussed in more detail in
Section 7.2.2.
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7.2.2 Utilization

The total utilization of a taskset is bound to have an impact on the time it takes to
search for the optimal schedule.

Figure 7.5 shows the effect of total utilization on the number of timeouts caused for 3
different taskset sizes. At first thought, one would intuitively expect that the number
of timeouts increases with increasing utilization. As the total utilization increases,
it increases the competition for the CPU time; this makes it a harder scheduling
problem. However, for the purposes of finding the optimal solution this is not the
case.

With a higher total utilization, there are fewer branches in the scheduling tree. Most
potential re-arrangements of jobs lead to a deadline miss. In fact as the utilization
approaches the number of available cores, the problem of finding the optimal schedule
devolves into the problem of checking for feasibility of jobsets.
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7.2.3 Number of slices

Prior evaluations have considered a 1 KiB data cache split into 4 equal slices of 256
bytes each. In this section, we consider the effect of doubling the granularity of the
cache slices from 4 slices to 8 slices. This makes each slice represent 128 bytes of the
shared data cache.

With a finer cache slice granularity, we expect more jobsets to be schedulable in
the system. However, with more slices, the scheduler also has more options of slice
allocations that it must consider. This leads to a big growth in the size of the
scheduling tree. As a result, with our one second timeout, we expect more jobs to be
marked as timed-out and a few more jobs to be marked as feasible.

Figure 7.6 shows the effect of doubling the number of cache slices by reducing the
granularity on each size. At three different values of the total taskset utilization,
we see the same effect; fewer jobsets can be classified as feasible or infeasible. For
cases with n = 2, we see a general increase in the number of feasible jobsets. In the
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Figure 7.6: Effect of Cache Slices on Performance

other cases, the increased costs of evaluation lead to fewer scheduling trees being
completely explored.

7.3 Schedulability

In Section 7.2.3, we saw that there exists potential for improving the number of
feasible jobsets by decreasing the size of each cache slice. In this section, we discuss
the case where the cache is statically partitioned per-core into equal slices. That is,
each of the K cores always has exactly one slice of cache available, representing 1

K

of the cache, and no repartitioning is allowed. We ran AART on the same jobsets as
earlier to see how it performs with static, per-core partitioning of the cache.

Reducing the number of possible cache slice allocations to a unit value significantly
trims down the size of the scheduling tree. Thus, we expect more jobsets to be
classified as either schedulable or infeasible since the more scheduling trees can now
be traversed within the 1s timeout. Figure 7.7 shows the case for n = 3, where static
per-core partitioning seems to lead to a lot more feasible schedules.

The increase in schedulability compared to dynamic partitioning is explained by the
fact that dynamic partitioning is a much more expensive algorithm. This can be
seen in the fact that increasing the timeouts to one minute, brings the number of
feasible schedules closer to that for static partitioning. With even longer analysis
times, dynamically partitioned caches will eventually lead to more feasible schedules.

Figure 7.8 shows an overview of the results between static and dynamic partitioning
at three different total utilization values. It can be clearly seen there that the
reduction in feasible jobsets occurs due to the high volume of timeouts incurred
during the analysis of dynamically partitioned caches.
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7.4 Non-Optimal Scheduling

Chapter 6 introduced the idea of using a scaling factor to speed up the process of
finding a schedule at the cost of optimality. Scaling factors work by eliminating
potential schedules with finishing times that are too close to their deadline. This
may lead to pruning the optimal schedule since one of its jobs misses the deadline
during the computation of the heuristic.

We expect that scaling factors would display the largest benefits for tasksets with a
low total utilization. As the utilization of the taskset increases, there is a greater
chance that the only feasible schedules have finishing times close to their deadline
and are hence deemed infeasible during the heuristic cost computation.

This can be seen in Figure 7.9, which shows the effects of using three different scaling
factors: 0.5, 0.8 and 0.95. We can see that even high scaling factors of 0.95 result in
more jobsets being classified as feasible. The guarantee with a scaling factor of 0.95 is
that the resulting schedule will be no worse than the optimal schedule on a machine
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Figure 7.8: Schedulability Overview with Static Partitioning

running at 95% of the speed. At lower utilizations, it is always advantageous to use
a scaling factor if the optimal schedule is not a hard requirement.

Figure 7.9 also shows that the significantly fewer jobsets cannot be classified within
the 1s timeout. The sharp drops in number of timeouts in the graphs in Figure 7.9b
is because around the k × s.f. utilization, the jobsets become completely infeasible.
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Chapter 8

Conclusions and Future Work

Safety-critical hard real-time systems are often deployed in harsh conditions and are
constrained in both size and power. They are also often over-provisioned to account
for the worst-case scenarios. This makes it essential that we extract every last bit of
efficiency from such systems.

Pre-computing an efficient schedule for each of their tasks is low-hanging fruit that
can be leveraged in order to make more efficient use of the available hardware
resources. Section 3.3 lays out an example that shows how existing solutions to the
problem of cache interference in multi-core systems are not optimal. We show that
dynamically partitioning the cache on a per-job basis provides more flexibility than
static, per-core partitioning, and that this flexibility can be used to schedule tasks
more efficiently on existing hardware. Allowing the cache to be repartitioned at any
instant in time rather than only at context switches would be even more flexible.
However, we do not consider such cases due to the inherent difficulty it poses in
estimating the remaining WCET after the cache has been repartitioned.

In this thesis we present a novel method, based on the A* graph search algorithm to
solve the NP-Hard problem of optimal cache partitioning and task to core assignment
for multi-core schedules. Chapter 2 and Chapter 3 lay the groundwork for the rest of
the thesis. They explain the ideas behind all the concepts such as cache partitioning,
A* algorithm, etc. that are crucial to understanding the rest of the work. Chapter 3
also introduces the motivating example for this thesis.

Later, in Chapter 4 we discussed in-depth the modifications to the A* algorithm
required for adapting it to the problem of real-time scheduling. Several techniques
for computing the cost function and expanding the graph dynamically were also
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presented. Since the complete scheduling tree remains very large, several methods
for pruning non-optimal branches were then presented in Chapter 5.

An extensive evaluation of the algorithm was also conducted comparing the effects
of each of the methodologies presented in this thesis. We find that it is always
beneficial to use the Chronological Matcher as a graph expansion technique and the
Stepped Heuristic for evaluating the cost function. Among the state-space pruning
approaches, the List-Based Domination Checker shows potential but tends to lead to
worse performance in most cases. The Depth Domination Checker simply delays the
issue, but eventually also leads to a worse performance when compared against not
pruning at all. However, the domination checkers do provide a space-time trade-off
since using the domination checking techniques leads to lower peak memory usage
when compared to no using such techniques.

Chapter 6 also introduces one method for efficiently computing a feasible schedule
with a guarantee that the schedule will perform no worse than the optimal schedule
on a slower processor. Such methods also allow us to trade-off optimality for faster
results. The corresponding evaluation of this technique in Section 7.4 shows that
even scaling the processor speed to 0.95x often leads to a 10% or more reductions in
the number of timeouts encountered while improving the number of feasible jobsets
by ∼ 10%.

8.1 Future Work

While these results are promising, they also betray a fatal flaw in the current approach.
Searching the entire state space for an optimal schedule is expensive and requires a
lot of time and power to compute. There are a few ideas we have to improve on the
methods presented in this thesis.

Performance of State-Space Pruning Approaches

In particular, we see that the domination checking techniques consume 95% of the
cycles at runtime. For larger jobset sizes, they also lead to a degradation in the
overall performance. However, they do show that there exists potential for improving
the performance through more efficient pruning approaches.
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We believe that a better choice of a data structure for storing the internal state will
help in improving its performance. Data structures such that R-Trees and KD-Trees
seem very promising for this approach.

Early Identification of Feasible Schedules

Often, it may be beneficial to identify a feasible schedule quickly before trying
to search for the optimal schedule. We showed one method that can be used for
identifying feasible schedules in Chapter 6.

Other techniques such as using two separate heuristic evaluation functions, one
admissible and another non-admissible may be an interesting idea that leads to early
detection of feasible schedules. Such a method can then fall-back to searching for
the optimal schedule once feasibility has been established.

Different Heuristic Algorithms

We presented two different heuristic cost evaluation functions based on the intuition
that Preemptible-EDF is an optimal scheduling algorithm on single-core machines.
One issue with the presented functions is that they are relatively expensive to
compute. The heuristic cost functions need to be very cheap since they are evaluated
once for every node in the scheduling tree. Hence, finding another, more efficient
heuristic function is also an important topic for future work in this area.
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Appendix A

Effectiveness of Strategies

Dynamic Graph Expansion
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Heuristic Functions
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Domination Checkers
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Appendix B

Effect of Taskset Parameters
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Figure B.1: Effect of Taskset Size on Performance
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