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Abstract
Loop vectorization is a classic technique to exploit SIMD
instructions in a productive way. In multi-dimensional
vectorization, multiple loops of a loop nest are vector-
ized at once. This exposes opportunities for data reuse,
register tiling and more efficient memory accesses.

In this work, we present TensorRV, a multi-dimensional
vectorization framework for LLVM IR. TensorRV is a
generalization of the Region Vectorizer, a general pur-
pose outer-loop and whole-function vectorizer, to the
multi-dimensional setting.

We evaluate TensorRV on a set of stencil codes and
matrix transpose. We find that stencil codes benefit from
the reduction of load instructions with a speedup of
×1.45 on NEC SX-Aurora TSUBASA. Multi-loop vector-
ized matrix transpose leverages efficient SIMD shuffle
instructions on AVX512, for which we report a speedup
of ×3.27.
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1 Introduction
Outer-loop vectorization is a standard technique in op-
timizing compilers to exploit SIMD hardware in a pro-
ductive way. Basically every modern compiler includes
some kind of loop vectorizer, let it be LLVM [11], the
Region Vectorizer [14] or GCC. These vectorizers are
one-dimensional in the sense that when applied to a
loop nest, they will pick one of the loops and vectorize
it, leaving the others un-vectorized.

However, some codes benefit from considering multi-
ple loops at once in the vectorization process. We refer to
the vectorization in multiple loops as tensorization since
a tensor is nothing more than the multi-dimensional
generalization of a vector.
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1 for (j = 1; j < rows - 1; j += 1)

2 for (i = 1; i < cols - 1; i += 256) {

3 a = load_v256(A(j-1, i ));

4 b = load_v256(A(j , i-1));

5 c = load_v256(A(j , i ));

6 d = load_v256(A(j , i+1));

7 e = load_v256(A(j+1, i ));

8

9 store_v256(B(j,i), .2 * (a+b+c+d+e)); }

. . . .

256

(a) 5-point Jacobi vectorized in the i loop (width 256).

1 for (j = 1; j < rows - 1; j += 2)

2 for (i = 1; i < cols - 1; i += 256) {

3 a0 = load_v256(A(j-1,i ));

4 a1 = load_v256(A(j ,i ));

5 b0 = load_v256(A(j ,i-1));

6 b1 = load_v256(A(j+1,i-1));

7 c0 = a1; // reuse

8 c1 = load_v256(A(j+1,i ));

9 d0 = load_v256(A(j , i+1));

10 d1 = load_v256(A(j+1, i+1));

11 e0 = c1; // reuse

12 e1 = load_v256(A(j+2, i ));

13

14 b0 = .2 * (a0+b0+c0+d0+e0);

15 b1 = .2 * (a1+b1+c1+d1+e1);

16 store_v256(B(j ,i), b0);

17 store_v256(B(j+1,i), b1); }

. . .
. . .

256

(b) Jacobi tensorized in both j (width 2) and i (width 256)
resulting in 20% less vector loads.

1 for (j = 0; j < rows; j += 4)

2 for (i = 0; i < cols; i += 4) {

3 // fetch contiguous chunks of A

4 a0 = load_v4(A(j , i);

5 ..

6 a3 = load_v4(A(j+3, i);

7

8 // in-register transpose

9 b0 = shuffle(a0[0], a1[0], a2[0], a3[0])

10 ..

11 b3 = shuffle(a0[3], a1[3], a2[3], a3[3])

12

13 // store contiguous chunks to B

14 store_v4(B(i, j), b0)

15 ..

16 store_v4(B(i, j+3), b3) }

a0
a1
a2
a3

b0 b1 b2 b3

shuffle

(c) Matrix transpose tensorized in both loops by 4 × 4. Loads
are contiguous in i. Stores are contiguous in j.

Figure 1. Optimizations enabled by loop nest tensoriza-
tion.

We provide two motivating examples to demonstrate
the benefits of tensorization, shown in Figure 1, a 5-
point Jacobi stencil and matrix transpose. The tensorized
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versions in Figure 1b and Figure 1c were automatically
generated from scalar code with our tensorizer proto-
type.

The 5-point Jacobi example of Figure 1b shows how
tensorization naturally results in vector register tiling
and vector load coalescing. The loop-vectorized Jacobi
kernel in Figure 1a performs five vector loads to com-
pute one result. Contrast this with the tensorized ver-
sion shown in Figure 1b where the stencil is tensorized
in both the i-loop by 256 and the j-loop by 2 at once.
We see two effects of tensorizing this kernel: First, since
the native vector length of the target is 256, the tensor
values of 2 × 256 elements are tiled into two vector reg-
isters. Second, our memory access chunking scheme
implements tensor loads using fast contiguous vector
loads. The memory loads of the tensorized code overlap,
which is why c0 and e0 are equivalent to already loaded
values. In effect, the tensorized kernel performs eight
loads to compute two results on average where the loop
vectorized requires ten loads to achieve the same.

However, there is more to tensorization than regis-
ter tiling: By considering an entire loop nest, we can
emit fast contiguous memory accesses even if the mem-
ory instructions of a kernel are contiguous in different
iteration variables. We demonstrate this for matrix trans-
position, that is the transformation B(i, j) = A(j, i).
In the tensorized matrix transpose, shown in Figure 1c,
four contiguous loads and four contiguous stores are
used along with shuffles to efficiently transpose 16 ma-
trix elements in one go. This leads to a speedup of ×3.27
over the loop vectorized version on a AVX512 platform.
When vectorized in only one loop, there is only one
contiguous access and the other would be a slow scatter
or gather instruction.

In this paper, we present a multi-dimensional vec-
torization framework for LLVM that performs these
transformations automatically based on scalar LLVM
IR. This paper is structured as follows: Section 2 places
our approach in the context of related work. Section 3
presents our loop-nest analysis framework, including
the multi-dimensional tensor shape analysis and our
memory access analysis. Section 4 describes how we
generate efficient SIMD code and memory accesses from
the analysis results. Section 5 presents our evaluation
results on AVX512 and NEC SX-Aurora TSUBASA. We
finally conclude in Section 6.

1.1 Contributions
This paper makes the following contributions:

• We present the tensor shape analysis, a divergence
analysis for multi-dimensional vectorization. Ten-
sor shapes generalize the vector shapes used in

outer-loop vectorization to multi-dimensional loop
nests.

• We demonstrate how to efficiently generate vector
code for tensorized loop nests through brush pro-
jections and memory chunking. Memory chunk-
ing partitions tensorized memory accesses into
fast contiguous vector accesses.

• We implemented our approach in TensorRV, a fork
of the Region Vectorizer [14] for LLVM IR. We
evaluate TensorRV on a set of common stencil
codes and a matrix transposition kernel. The tar-
get SIMD ISAs for our experiments are AVX512
(512bit vector length) and NEC SX-Aurora TSUB-
ASA (16384bit vector length). We observe speedups
of ×1.45 on SX-Aurora and ×3.27 on AVX512. The
performance counters on SX-Aurora reveal that
tensorization reduces the amount of loaded vector
elements by up to 21.4% compared to loop vector-
ization.

2 Related Work
The idea of multi-dimensional loop vectorization can be
traced back to Allen and Kennedy’s work on the Parallel
Fortran Compiler [1]. As a source to source translator,
their framework would analyze loop nests for data de-
pendencies and vectorize independent inner loops to
generate multi-dimensional Fortran 8x code.

Since most modern systems have single dimensional
memory, even contiguous accesses in higher dimensions
lead to strided memory accesses that require gather
and scatter instructions. This was addressed in Vec-
tor Folding [21] by performing data layout transforma-
tions as a preprocessing step before multi-dimensional
vectorization. Data layout transformations have also
been used [8] to reduce shuffle operations induced by
unaligned memory accesses. In our approach, we use
shuffles with contiguous loads to generate operand vec-
tors [3, 6].

For loop nests with short trip counts, single dimen-
sional vectorization leads to under utilization of avail-
able SIMD lanes. Rodrigues et al. [18] showed that multi-
dimensional vectorization enables efficient vector reg-
ister utilization in such cases. However, their compiler
requires a high level specification of the tensor opera-
tion algorithm and needs contiguous memory accesses
without gaps. Our framework uses scalar code as input
and can handle non constant strides. There is limited
support for multi-dimensional vectorization in the ISPC
programming language [15] through the foreach_tiled
statement. However, lacking a multi-dimensional anal-
ysis, ISPC will use scatter/gather to vectorize every
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memory access that is not fully uniform in that mode.

Our approach is orthogonal to spatio-temporal tiling
approaches [5, 13] in the sense that the generated tiles
may still be processed by multi-dimensional vector code.

Optimization of tensor operations on SIMD hardware
is an active area of research and various manual [12] and
automatic [18, 20] vectorization techniques have been
developed to improve throughput. Such operations of-
ten involve memory accesses in multiple dimensions
and can benefit from vector register tiling [2, 4, 17] en-
abled by multi-dimensional vectorization.

The tensor shape analysis is a multi-dimensional gen-
eralization of divergence analysis [10, 19]. The strides in
the tensor shapes are comparable to affine constraints in
some, one-dimensional, divergence analysis lattices [7,
19].

3 Tensorization of Loop Nests
Tensorization is the generalization of outer-loop vector-
ization to multiple dimensions. In one-dimensional vec-
torization, the vectorization factor specifies how many
loop iterations are packages into one vector. In tensoriza-
tion, the tensor brush defines one vectorization factor per
surrounding loop. If the loop nest has d loops then the
tensor brush is formally defined as

B = (m0 × · · · × md−1)

Where mi ∈ N is the size of the brush in the direction
of the i-th dimension. Each dimension corresponds to
a loop level of the loop nest. The outer-most loop is
always at dimension 0 increasing with each nested loop.

Similar to how lanes identify the elements of a vector
in loop vectorization, we will use Coordinates to refer to
the multi-dimensional elements of a given brush. For
example, the vector (1, 2) is a valid brush coordinate of
B = 4 × 4.

Given a loop nest and a tensor brush B, our frame-
work performs tensorization in three stages: First, we
run the tensor shape analysis to determine the tensor
shapes of all instructions in the loop nest. Second, we
group the memory accesses that will occur in the vec-
torized loop body. Third, we use the tensor shapes and
memory access groupings to generate vector code with
optimized memory accesses.

3.1 Tensor Shape Analysis
The tensor shape analysis determines whether and how
the instructions in the loop nest depend on the iteration
variables of the loops that surround them. The analysis
assigns to every instruction a Tensor Shape that captures
the nature of this dependence.

1 for (i = 0; i < m; ++i) // dim 0

2 for (j = 0; j < n; ++j) // dim 1

3 for (k = 0; k < w; ++k) // dim 2

4 ..S..

(a) A 3D loop nest with placeholder statement S.
..S.. Tensor shape TS
i (1, 0, 0)
j (0, 1, 0)
k (0, 0, 1)
12 * i - 6 * j (12,−6, 0)
2*A(i) + 10 * j (⊤, 10, 0)
B(i,j) + 5 * k (⊤,⊤, 5)
C(i) * B(k) (⊤, 0,⊤)
C(B(j)) (0,⊤, 0)

(b) Upper section: initial tensor shapes, Lower section: tensor
shapes inferred by the tensor shape analysis.

Figure 2. Above: a 3D loop nest with placeholder state-
ment S. Below: examples for S and their resulting tensor
shapes.

The tensor shape describes per surrounding loop how
the value of the instruction changes from one loop it-
eration to the next. This information is recorded sep-
arately for each dimension, similar to how the set of
partial derivatives constitutes the complete derivative
of a function. For each dimension of the loop nest sepa-
rately, tensor shapes hold a vector shape defined as:

T1D = Z ∪ {⊤}

The set of d-dimensional tensor shapes, T d, is then
the composition of d one-dimensional vector shapes:

T d = (T1D)d

We will use the notation (s0, s1, s2) ∈ T 3 to denote to
the elements of a 3D tensor shape. Each si ∈ T1D is the
dimension shape of its dimension i.

If si ∈ T1D is an integer, then si is the constant loop
increment for the annotated instruction for the loop at
dimension i. In particular if si = 0 then the annotated
instruction is invariant, that is uniform, in loop. If si ∈
T1D is ⊤, then the instruction is varying in dimension
i but the nature of the variation is not reflected in the
tensor shape. For example, if i is used in an array load
such as A[..] then the loaded value is always varying
in i because the contents of the array are in general
unknown.

Figure 2a shows a three-dimension loop nest and the
tensor shapes of its induction variables are listed in the
upper half of Figure 2b. The induction variables are
invariant in all other dimensions than their own. For
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example, the induction variable j has a stride of 0, that
is it is uniform, in all dimensions but dimension 1.

The tensor shape analysis propagates these initial
shapes to all instructions in the loop nests. We show
some examples for fill-ins for the placeholder S of Fig-
ure 2a in the lower half of Figure 2b.

If the instruction computes an affine combination of
iteration variables, the tensor shape reflects these as
strides. The tensor shape analysis assumes that there
are no loop-carried dependencies between the instruc-
tions of the loop nest. Therefore, the tensor shapes of
memory accesses only depends on the tensor shape of
the address computation. The relation between values
loaded from different addresses is, however, varying.

3.2 Memory access grouping
If memory accesses are naively widened, there is often
an overlap in the accessed elements among different
instructions. Memory access grouping is mapping out
this overlap with the end of generating more efficient
vector memory accesses in the code generation phase.

An access group is defined by the equivalence rela-

tion M∼ on memory instruction plus coordinate pairs. If

(L, c) M∼ (L′, c′) then the value loaded by L at tensor coor-
dinate c will be the same as the one loaded by L’ at coor-

dinate c′. For example, it holds that A(i-1, j), (2, 0) M∼A(i,j), (1, 0).
Memory access grouping is concerned with construct-

ing these access groups for all memory accesses in the
loop nest. Since the tensor brush has finite extent and
there are only finitely many memory instruction in the
kernel, we can explicitly construct each access group by
enumeration. The implementation builds on LLVM’s
Scalar Evolution analysis to compute the offsets between
pointers [16].

Figure 3a shows the memory access grouping of a
5-points Jacobi stencil. Assume that the loop nest will
be vectorized for a 4 × 4 tensor brush. Figure 3b shows
the resulting access group for the loads in Line 3 to
Line 7. We use a color/symbol coding scheme in the
Figure to visualize each load instruction. To the right,
in Figure 3b, we show the accessed elements of A. Each
cell in Figure 3b is an array subscript to A. The symbols
in the cells indicate which positions of the array are
accessed by which load instructions.

As an example consider the cell marked ’+’, which
refers to the array element A(j,i). The cell contains the
instruction symbols of Line 3, Line 4 and Line 5. We can
read off the access group that Coordinate (1, 0) of the
load in Line 3 refers to the same pointer as Coordinate
(0, 1) of the load in Line 4.

For our prototype, we assume that there are no con-
flicts between loads and stores, e.g. that the elements

1 for (j = 1.. rows - 1)

2 for (i = 1.. cols - 1) {

3 a = A(j-1, i );

4 b = A(j , i-1);

5 c = A(j , i );

6 d = A(j , i+1);

7 e = A(j+1, i );

8

9 B(j,i) =

10 .2 * (a+b+c+d+e);

11 }

(a) 5-point Jacobi kernel

+

i

j

(b) Load access group for A
given a 4 × 4 brush. Elements
in i direction are contiguous,
the distance in j direction is m,
indicated by a gap.

fetches by a loads would become invalid due to an over-
writing store. This is a typical pattern for stencil codes,
which fetch elements from an input array and store the
accumulated sum into an output array.

4 Vector Code Generation
This section describes the generation of vector instruc-
tion for a tensorized loop nest starting from scalar code
and the analysis data that has been gathered up to this
stage. The analysis data are tensor shapes (Section 3.1)
and memory access groups (Section 3.2).

The loop trip counts are trivially transformed by scal-
ing them by the brush sizes. We will concentrate on
the formation of vector instructions for two SIMD ISAs:
AVX512 (x86) and VE (NEC SX-Aurora).

These two ISAs share the property that they do not
actually have tensor registers but one-dimension vector
registers. To this end, Section 4.1 describes how tensors
can be represented unambiguously in vector registers.
Section 4.2 explains the basic code generation algorithm
and Section 4.3 covers how we efficiently vectorize ten-
sor memory accesses.

4.1 Brush projections
So far, we have used the abstract concept of tensors and
coordinates to reason about the behavior of instructions
in tensorized loop nests. However, the actual target
ISAs have one-dimensional vector registers. In order to
generate code, we have to define a way to store the ele-
ments of the conceptual tensors in these concrete vector
registers. There is ambiguity in this decision similar to
how a matrix can be represented in column-major or
row-major layout. To this end, we introduce the concept
of brush projections. A brush projection (PB) defines a
unique mapping from the multi-dimensional coordinate
space of the vector brush B to vector lanes.



WPMVP’19, February 16–17, 2019, Washington, DC, USA
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4

5
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P(2,1,0)

0
1

2
3

4

6

7

0
1

2

(a)

P(0,1,2) = (0,0,0) (1,0,0) (0,1,0) (1,1,0) (0,0,1) (1,0,1) (0,1,1) (1,1,1)

P(1,0,2) = (0,0,0) (0,1,0) (1,0,0) (1,1,0) (0,0,1) (0,1,1) (1,0,1) (1,1,1)

P(2,1,0) = (0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1)

(b)

Figure 4. Vector lane mapping according to brush pro-
jections.

A brush projection is defined by the projection vec-
tor, a vector of dimension numbers (i0, . . . id−1). The
projection vector specifies a cardinality of the dimen-
sions. The brush coordinates are then enumerated ac-
cording to this order similar to numbers in positional
notation. Equation (1) defines the projection from coor-
dinates (c0, .., cd−1) to vector lanes, given a brush B =
(m0 × .. × md−1) and a projection vector (i0, .., id−1).

P(i,i1,..,id′ )
(c0, .., cd−1) ={

ci + miP(i1,..,id′ )
(c0, .., cd−1) if d′ > 1

ci otw

} (1)

We show three brush projections of a 2 × 2 × 2 brush
in Figure 4.

4.2 Generic Vector Code Generation
The generic vector code generation loop visits every
instruction in reverse post order, classifies it by the fol-
lowing cases and transforms it accordingly. We assume
that all instructions except memory accesses are free
of side effects. We deal with memory access separately
(Section 4.3). If the instruction is side-effect free (e.g.
arithmetic), there are two cases to be considered: all-
strided and one-varying.

All-strided The first case applies when the tensor shape
is strided (or uniform) in all dimensions with brush size
greater than 1. In this case, we emit a scalar instruction
that computes the result of the instruction at the zero co-
ordinate (0, .., 0). Since the operation is side-effect free,
there is no need to replicate it for all coordinates, we
only have to provide the computed result for all brush

coordinates. Finally, we can compute the results at all
other coordinates whenever needed simply by adding
an appropriate multiple of the strides.

One-varying If the tensor shape of an operation is ⊤
in at least one dimension, the scalar data type will be
widened to a vector data type. The length of the vector
is the product of all dimension sizes of the brush B. For
example, if the brush is 4 × 2 × 4 and the data type of
the operations is double, the widened vector instruction
will operate on the data type <32 x double>. If any of
the operands of the operation fell in the all-strided case
they will now be instantiated into the lanes of a full
vector according to the brush projection, P .

Vector register tiling We leverage LLVM’s legalization
phase to effectively implement vector register tiling.
This occurs when the number of coordinates in the
brush is greater than the vector register length. In that
situation, LLVM will split the generated vector instruc-
tion into parts, each with the native vector length. For
example, if B = 2 × 256 and the element type is double,
our code generation phase will initially emit a 512-
element vector instruction in LLVM IR. However, the
vector register length for double on NEC SX-Aurora is
256 and so LLVM will replace the instruction by two
vector instructions with 256 elements.

4.3 Memory Access Chunking
Memory chunking is the process of partitioning the ac-
cessed elements into contiguous parts, called chunks.
Each chunk is then loaded or stored with a fast contigu-
ous memory instruction.

On the top right of Figure 5, we show a single mem-
ory access in a loop nest of depth two. Consider that
this loop nest is tensorized with a brush of 4 × 4. Using
the generic one-varying strategy, the load would be vec-
torized with a slow gather instruction. However, scatter
and gather instruction are the least effective means of
accessing memory on AVX512 and SX-Aurora. It is ad-
visable to use contiguous memory accesses whenever
possible.

We employ the memory grouper analysis presented
in Section 3.2 to divide the accessed memory locations
into contiguous chunks. This results in the contiguous
loads a0 to a3 shown below. This is an AVX2 example
(256bit SIMD registers) and thus each consecutive vec-
tor load can transfer four contiguous element from the
double array.

Finally, the lanes need to be shuffled into the vector
according to the brush projection. We do the inverse,
shuffling followed by consecutive stores, to vectorize
the tensor store.
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2 6 10 14

3 7 11 15
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j

shuffle

a0

a1

a2

a3

+

1 // scalar loop nest

2 for (i=0; i<k; ++i) // dim 0

3 for (j=0; j<m; ++j) { // dim 1

4 x = A(j, i);

5 ...

6 }

1 // tensorized loop nest

2 for (i=0; i<k; i += 4) // dim 0

3 for (j=0; j<m; j += 4){// dim 1

4 // chunked load

5 a0 = vload_4(A(j, i));

6 a1 = vload_4(A(j+1, i));

7 a2 = vload_4(A(j+2, i));

8 a3 = vload_4(A(j+3, i));

9

10 // shuffling

11 x = shufflevector [

12 a0[0], a1[0], a2[0], a3[0],

13 a0[1], a1[1], a2[1], a3[1],

14 a0[2], a1[2], a2[2], a3[2],

15 a0[3], a1[3], a2[3], a3[3],

16 ];

17 ...

18 }

Figure 5. Chunking a tensor load into contiguous mem-
ory accesses for B = 4 × 4. Left: the load A(i, j) is
chunked into contiguous loads a0 to a1. Below, the
loaded chunks are shuffled according to the brush pro-
jection PB = (1, 0). Numbers in the cells refer to the
lane number. Right: the scalar loop nest on top. Below,
the tensorized version with chunked loads and shuffles.

5 Evaluation
We implemented our tensorizer prototype, coined Ten-
sorRV, as a fork of the Region Vectorizer [14] for LLVM [11].
We use the recent LLVM-VE backend [9] to generate
code for NEC SX-Aurora.

Platforms We report single-thread results on the fol-
lowing platforms:

• VE A single NEC Aurora TSUBASA Vector Engine
10B model, with 1.4GHz clock frequency.

• VH Intel(R) Xeon(R) Gold 6126 CPU (Vector Host).

Compiler configuration
• NCC Version 1.6.0 of the official C/C++ compiler

for SX-Aurora (VE only).
• ND LLVM+TensorRV with a multi-dimensional

brush (VE and VH).
• 1D LLVM+TensorRV with a single-dimensional

brush. This is equivalent to vectorization with RV
(VE and VH).

5.1 Benchmarks
We evaluate our technique on four stencil codes and
matrix transpose. We report runtime measurements

in Figure 6a on a collection of stencil codes and ma-
trix transposition. The benchmarks are written in C and
are compiled with Clang to LLVM IR.

Stencils Unless otherwise specified, the brushes are
2 × 256 on the VE and 4 × 8 on the VH. The brush sizes
were chosen empirically.

• jacobi 5-point Jacobi stencil (cross shaped pat-
tern).

• jacobi9 9-point Jacobi stencil (cross shaped pat-
tern).

• seidel accesses all 9 elements within a distance of
1. We used a 4 × 8 brush on the VH.

• sobel Two 5-point stencil applications in a single
kernel, one for each derivative.

For the tensorized versions (nd), the dimension of
largest extent is chosen as the first element of the projec-
tion vector. In the single-dimensional versions (1d), the
inner-most loop dimension is kept and all others are set
to one.

We apply the stencils to a 1024 × 1024 center part of
an array of double elements. The arrays are linear in
memory, that is A(j,i) translates to A[j * m + i]. We
use the restrict-qualifier on all data arrays to indicate
to NCC that the arrays do not overlap and the kernel
can be safely vectorized.

Matrix Transpose Regarding memory re-use, the ma-
trix transpose kernel is the opposite of the stencil codes.
In the matrix transposition kernel, every array element
is accessed exactly once.

We chose a 2 × 256 brush on the VE and a 4 × 4 brush
on the VH. The single-dimensional version vectorizes
the inner loop by a width of eight.

5.1.1 VE: NEC SX-Aurora
The memory subsystem of NEC SX-Aurora consists of
a 16MB memory-side Last Level Cache (LLC). Unlike
for AVX512, there is no L1 cache on the Vector Process-
ing Units. We therefore expect runtime improvements
with tensorization whenever our memory load re-use
scheme eliminates redundant loads. The runtime results
in Figure 6a along with performance counter readings
in Figure 6b confirm this hypothesis.

Figure 6b shows the change in performance counters
of the tensorized codes relative to the NCC-compiled
codes. We used inline assembly to read the performance
counter registers and flushed the pipeline before and af-
ter each reading. When RV is used in loop vectorization
mode, the performance counters and also the observed
runtimes do not differ much from NCC. However, ten-
sorization lead to a reduction in loaded vector elements
(VLEC) and memory traffic (VLPC) for the stencil codes.



WPMVP’19, February 16–17, 2019, Washington, DC, USA

jacobi9 jacobi seidel sobel transpose

1

2

3

4

5

6

7

S
p
ee
d
u
p
o
v
er

V
H

1
D

VE-Tensor VE-1D VE-NCC VH-Tensor VH-1D

(a) Running time results.

name VX VECC VLPC VLEC
jacobi-1d 0.0 -0.1 0.0 0.0
jacobi-rv -2.3 -4.0 -12.9 -10.0
jacobi9-1d 0.0 -0.0 0.0 0.0
jacobi9-rv -3.9 -6.3 -17.0 -14.3
seidel-1d 0.0 -0.1 0.0 0.0
seidel-rv -5.9 -9.4 -25.5 -21.4
sobel-1d 1.5 -0.4 0.0 0.0
sobel-rv -2.2 -4.6 -16.4 -12.9
transpose-1d 36.4 -0.0 0.0 0.0
transpose-rv 26.4 0.1 0.0 0.0

(b) Performance counters compared to NCC version (%).

This is due to the memory re-use incurred by our mem-
ory chunking scheme. Additionally, the counters for
vector execution clocks (VECC) and executed vector
instruction (VX) decrease by about 4%.

Since there is no re-use in the matrix transposition, we
also see no improvement in the performance counters
and in fact tensorization does not help here.

5.1.2 VH: AVX512
The host system features a multi-tier cache hierarchy. In
particular, each core of the host CPU has a 32KB L1 data
cache. The data arrays in our stencil experiments have
a row length of 8208 Bytes. Therefore, when the loop-
vectorized stencils compute a result for position (j,i),
the input data at position (j-1,i) is still L1-resident.
Since L1 cache is fast, our contiguous load re-use scheme
does not translate to speedups for the comparably small
stencils we are considering. The 9-point Jacobi stencil
which has the largest load re-use of the stencil collection
sees a speedup of about 20.5%. This indicates that larger
stencils than considered here might benefit more from
the re-use optimization still.

Matrix transpose does not benefit from the vector
load chunking. However, we see a ×3.27 speed up over
loop vectorization in this case with a 4 × 4 brush. The
tensorized transpose uses four vector load and four
vector stores to process 16 (i,j)-positions at once. The
accesses operate on eight different data rows (four from
each input and output array). The actual transposition
is performed with fast shuffle instructions.

In contrast, the loop vectorized version has a single
contiguous load and resorts to a slow scatter instruction
to write back the results. The loop vectorized version
only computes eight results but needs to touch eight
array rows as well.

6 Conclusion
Classic loop vectorization provides a productive means
to utilize SIMD instructions without resorting to libraries
or intrinsic functions. In this work, we propose loop
nest tensorization a technique that lifts outer-loop vec-
torization to the multi-dimensional setting of tensor
operations.

We also present techniques to generate efficient SIMD
code from tensorized loop nest. SIMD architectures ben-
efit from loop nest tensorization due to less memory
accesses and vector register tiling.

We implemented our techniques in TensorRV, a pro-
totype tensorizer based on the Region Vectorizer for
LLVM IR. We evaluate TensorRV on a set of stencil
codes and a matrix transposition kernel on AVX512
and NEC SX-Aurora TSUBASA. When the overlap of
accessed elements is high, as is the case in stencil codes,
tensorization leads to less memory accesses. We report
speedups of up to ×1.45 on NEC SX-Aurora for ten-
sorized stencils. Matrix transposition still benefits from
loop nest tensorization due to loop tiling and fast shuf-
fles on AVX512, for which we report a ×3.27 speedup.

We present TensorRV as a research platform for loop
nest tensorization and leave brush size heuristics and
optimizations such as data layout transformations to
future work.
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