
Design and Analysis of SIC: A Provably
Timing-Predictable Pipelined Processor Core

Sebastian Hahn and Jan Reineke
Saarland University

Saarland Informatics Campus
Saarbrücken, Germany

{sebastian.hahn, reineke}@cs.uni-saarland.de

Abstract—We introduce the strictly in-order core (SIC), a
timing-predictable pipelined processor core. SIC is provably
timing compositional and free of timing anomalies. This enables
precise and efficient worst-case execution time (WCET) and
multi-core timing analysis.

SIC’s key underlying property is the monotonicity of its
transition relation w.r.t. a natural partial order on its microarchi-
tectural states. This monotonicity is achieved by carefully elimi-
nating some of the dependencies between consecutive instructions
from a standard in-order pipeline design.

SIC preserves most of the benefits of pipelining: it is only
about 6-7% slower than a conventional pipelined processor. Its
timing predictability enables orders-of-magnitude faster WCET
and multi-core timing analysis than conventional designs.

I. INTRODUCTION

One of the main challenges for timing analysis is the
dependence of the execution time on the state of the underlying
hardware platform. Even simple single-core processors feature
stateful performance-enhancing mechanisms such as pipelin-
ing and caches. In the presence of such stateful mechanisms
an individual instruction’s execution time may vary widely
depending on the state of the hardware when the instruction is
executed. For example, a cache miss usually takes significantly
longer than a cache hit.

Simply assuming the worst-case latency of instructions
throughout a program’s execution would result in a dramatic
overestimation of its worst-case execution time (WCET). To
achieve accurate results, WCET analysis thus needs to pre-
cisely take into account in which hardware states a program’s
instructions are executed. State-of-the-art static WCET analy-
sis tools [1] explore a program’s possible executions on a given
hardware platform by a combination of explicit and implicit
techniques. It is desirable to employ implicit techniques,
such as abstractions [2], to efficiently explore large sets of
states. While precise and efficient abstractions are known
for caches [3], the efficient implicit analysis of pipelining is
impeded by the presence of timing anomalies [4], [5]. Due
to timing anomalies it is not safe for WCET analysis to only
explore “local worst-case” successors of pipeline states; nor
is it possible to devise efficient abstractions in which sets of
concrete pipeline states are represented by individual abstract
pipeline states.

Timing analysis for applications deployed on multi-core
processors is even more challenging. Multi-core processors

share resources such as buses, caches, or memory channels
among multiple cores. As a consequence, the execution time
of a task depends on the interference on shared resources that
it experiences due to co-running tasks on other cores.

As in single-core WCET analysis, assuming the worst-case
latency upon every shared-resource access is not a viable
option as it would result in highly pessimistic execution time
bounds. The greatest analysis precision would be achieved by
fully-integrated timing analyses [6]–[8]: such analyses simulta-
neously analyze the tasks running on different cores of a multi
core, precisely capturing all possible interleavings of resource
accesses from different cores. Unfortunately, this approach
appears to be practically infeasible for realistic systems due
to the astronomical number of system states to explore. The
most promising approach to multi-core timing analysis to date
is compositional timing analysis [9]–[18], which can be seen
as a natural extension of the classical two-step approach to
timing analysis: low-level analysis, corresponding to classical
WCET analysis, computes the “resource demand” of each task
for each shared resource. Given such task characterizations,
schedulability analysis then determines, whether each task
can be guaranteed to meet its deadlines, accounting for the
interference it may experience on each of the shared resources.
Compositional timing analysis relies on the assumption that
the response time of a task may be decomposed into contribu-
tions from different resources, which can each be efficiently
analyzed separately.

We have shown in previous work that, unfortunately, even
simple in-order pipelined cores feature timing anomalies and
do not admit compositional timing analysis [19].

Based on preliminary ideas presented in [20], in this paper,
we introduce the strictly in-order core (SIC), a pipelined
processor core that is provably free of timing anomalies and
that admits compositional timing analysis.

The starting point of this work has been the observation
that the presence of timing anomalies in conventional in-
order pipelines can be traced back to the non-monotonicity of
their timing behavior. This non-monotonicity is due to depen-
dencies between consecutive instructions, where progress of
one instruction may be detrimental to the progress of another
instruction. The key property of SIC is the monotonicity of
its timing behavior, which is enforced by carefully eliminating
some of the dependencies between instructions in the pipeline.



The experimental evaluation demonstrates that SIC achieves
timing predictability without significantly sacrificing average-
case performance: SIC is about 6-7% slower than a conven-
tional pipelined core across a large set of benchmarks. On the
other hand, due to its timing predictability, WCET analysis
for SIC is about 4x faster, and low-level analysis suitable
for multi-core timing analysis is about 30x faster than for a
conventional design.

We also compare SIC experimentally with the
PTARM [21], an instance of a precision-timed (PRET)
machine [22], which exhibits similar predictability properties.
In terms of single-thread performance SIC is preferable to
the PTARM: a single thread is about 2x faster on a SIC
core than in a PTARM hardware thread. This is because due
to thread interleaving, individual threads do not profit from
pipelining on the PTARM. On the other hand, considering all
available hardware threads, the overall instruction throughput
of the PTARM is about twice as high as SIC’s.

Outline: We introduce the necessary background con-
cerning in-order pipelines and timing analysis in Section II.
In Section III we discuss how monotonic timing behavior is
related to timing anomalies and timing compositionality. Then,
in Section IV we formally define SIC and prove its timing
predictability. After discussing the related work in Section V,
we present SIC’s experimental evaluation in Section VI. We
conclude the paper with a discussion of potential future work
in Section VII.

II. BACKGROUND

A. In-order Pipelined Core

During its execution an instruction passes through multiple
phases, such as fetching the instruction from memory, fetching
required operands from registers, and performing an arithmetic
computation or a data memory access. Each of these phases
needs only a subset of the processor’s datapath to execute.
To increase instruction throughput, pipelining overlaps the
execution of multiple instructions by performing different
phases of consecutive instructions in parallel. A traditional
textbook-style pipeline [23] consists of five stages as depicted
in Figure 1 and executes instructions in-(program)-order, i.e.
each stage encounters the instructions in the order specified in
the program.

Data and control dependencies among instructions can cause
hazards that prevent the pipeline from being perfectly filled.
Data hazards, cases in which an instruction requires a value
computed by a preceding instruction, can be reduced by
forwarding results from intermediate pipeline stages to their
use. The effect of control hazards, i.e. the next instruction
to fetch depends on an unknown branch outcome, can be
mitigated by branch prediction and speculative instruction
fetches to keep the pipeline filled. If a prediction turns out
to be wrong, the speculatively fetched instructions have to be
removed from the pipeline. For details, we refer to [23].

As shown in Figure 1, pipelined cores are typically con-
nected to a memory hierarchy with a common main memory
accessed via separate instruction and data caches. Accesses to

Fetch
Decode
Execute
Memory

Write-back

I-Cache

D-Cache

Memory

C
or

e

Fig. 1. Overview of system with an in-order pipelined core.

the memory are arbitrated in a greedy first-come first-serve
manner. If both caches want to access the main memory at
the same time, priority is commonly given to the data cache.

Unlike load instructions, store instructions do not produce
results that have to be written to a register. Consequently, a
store instruction can leave the pipeline once the store memory
access has started. The pipeline can thus advance to the subse-
quent instructions while the memory hierarchy asynchronously
completes the store by writing to main memory.

Modern processors feature multiple cores that share a com-
mon memory. Each core is connected to a shared interconnect
to access the memory—potentially through private caches.
Due to these shared resources, independent programs that run
on different cores can interfere and thus impact each other’s
execution time.

B. Timing Analysis

Low-level analysis is the first step in the timing verification
process. It computes characteristics of the behavior of a single
task when executed in isolation, e.g. the task’s worst-case
execution time (WCET) or its worst-case number of accesses
to the bus. These characteristics depend not only on the inputs
to the program but also on the microarchitectural state (e.g.
pipeline and cache state) of the underlying hardware platform.

To achieve soundness, low-level analysis has to take all
possible inputs and hardware states into account. The de facto
standard approach to this problem is to construct a graph
in which the system’s reachable states are represented by
nodes and where edges correspond to state transitions. This
graph captures all possible executions of the program at the
granularity of individual processor cycles. Given this graph,
the program’s WCET, or similarly its worst-case number
of bus accesses, can then be calculated by implicit path
enumeration [24], which is typically encoded as an integer
linear program (ILP).

As the space of concrete system states is too large to explic-
itly explore, abstractions [2] are employed. Common abstrac-
tions are value abstraction, e.g. intervals [2] to compactly rep-
resent the possible values of registers; and cache abstraction,
e.g. must- and may-caches [25] that over-/underapproximate
the cache contents to predict cache hits and misses.

While such abstractions are essential for efficient analysis,
they introduce uncertainty: e.g. the must-cache analysis is not
always able to determine whether or not a memory access
results in a cache hit. If the processor’s state transition depends
on such uncertain information, the abstract analysis state is
split, following all cases permitted by the abstraction. As an
example, if it is uncertain whether an access hits the cache,
both possibilities—cache hit and cache miss—are explored. As



c

cb cw

c′b c′w

local
best case

local
worst case

x cycles x cycles

w

v

c

cb cw

c′b c′w

local
best case

local
worst case

x cycles x cycles

w

w
monotonicity

Fig. 2. Timing anomaly on the left. Anomaly Freedom on the right. The
dashed arrow describe an arbitrary but fixed number of cycle transitions.

a consequence, abstractions generally result in nondeterminism
in the analysis that explores the reachable system states.

The per-task characteristics computed by low-level analysis
are inputs to the next step in timing verification: schedulability
analysis. Schedulability analyses determine whether all tasks
meet their respective deadline under a given scheduling policy.
To this end, they account for any interference due to the
execution of other tasks, e.g. due to preemptions or due to
shared-resource competition on a multi core.

III. ANOMALY FREEDOM AND COMPOSITIONALITY

A. Timing Anomalies

As described in the Section II-B, abstractions induce nonde-
terminism in the low-level timing analysis. A timing anomaly
occurs when the locally better case of a nondeterministic split,
e.g. a cache hit instead of a cache miss, results in the global
worst case—namely a longer overall execution time [4]. Due
to timing anomalies, low-level (WCET) analysis has to explore
all alternatives upon a nondeterministic choice, which makes
the analysis expensive.

Consider the left part of Figure 2 for an illustration of
timing-anomalous behavior. After the split, the program ex-
ecution has made more “progress” in the local best case state
cb than in the local worst case state cw, e.g. in case of a cache
hit, the corresponding memory access is finished in cb, while it
is still ongoing in cw. However, after a certain number of cycle
transitions the situation reverses: the program’s progress in c′b
falls behind c′w and finally leads to a longer execution time.
We conclude that the presence of anomalies requires the cycle
behavior of the underlying hardware to be non-monotonic w.r.t.
the progress order v, which orders pipeline states according
to their progress in executing a program. The progress order
v is defined in more detail in Section IV.

Timing anomalies are known to be present in complex
systems with out-of-order execution or speculation [4]. In [20],
we have shown that even simple in-order pipelines feature
timing anomalies. Indeed, conventional in-order pipelines as
described in Section II-A behave non-monotonically. As an
example, a memory instruction i in the memory stage can be
delayed by a subsequent instruction k if the instruction fetch
of k has already started when i reaches its memory stage. In
this case, more progress of k leads to less progress of i in the
future.

Fetch mul
ready

Access ldr
ready

Mem str Fetch mul Mem ldr

Exec mulC
as

e
1:

C
as

e
2:

time

Mem str Mem ldr Fetch mul

Exec mulprolonged

Program:
str ...
...
ldr r1, [r2]
mul r3, r4, r5

Fig. 3. Indirect effect upon uncertainty of the length of store access str,
e.g. due to shared-bus blocking [19].

Using the contraposition, a monotonic cycle behavior is
sufficient to guarantee the absence of timing anomalies. This
idea is illustrated in the right part of Figure 2.

Anomaly freedom enables significantly more efficient low-
level analysis, because it is then sound to only follow the local
worst case successors in case of nondeterminism.

In Section IV, we present an in-order pipeline design called
SIC whose cycle behavior is provably monotonic w.r.t. the
progress order v.

B. Timing Compositionality

Most approaches to schedulability analysis, in particular in
the context of multi-core systems, assume timing composi-
tionality. Compositionality as formally defined in [26] allows
to compose the individual characteristics of tasks to a sound
response time bound. The composition relies on penalties that
quantify the impact of an interfering event, e.g. an access
blocking the shared bus, on the response time. A sound
composition has to not only account for the direct effect of
an interfering event, e.g. the time in which the bus has been
blocked, but also for potential indirect effects, i.e. an additional
prolongation caused by a change in the microarchitectural state
as a consequence of the interfering event.

In [19], we have shown that even simple systems with
conventional in-order pipelined cores exhibit indirect effects.
We provide an example in Figure 3. The indirect effect is trig-
gered by uncertainty about concurrent bus accesses resulting in
different latencies of the store instruction. Due to the greedy
scheduling of main-memory accesses, a prolongation of the
str instruction causes a different access order of the later data
load and the instruction fetch on the common bus to the main
memory. The access order arising in the prolonged case does
not suit the execution of remainder of the program (i.e. the
mul instruction) as the multiplication cannot be executed in
parallel to the data load anymore. A more detailed explanation
can be found in [19].

It is an open question how to calculate a bound on potential
indirect effects for a given arbitrary microarchitecture.

However, assume we have a microarchitecture that behaves
monotonically w.r.t. to the progress of a program’s execution.
Furthermore, assume that following the local worst case,
p cycles after the split, the program’s execution is guaranteed
to have progressed at least as far as it would have progressed
in the state reached immediately after following the local best



c

cb cw

c′w

local
best case

local
worst case

p cyclesv

Fig. 4. General proof technique for timing compositionality with penalty p.

case. Then, due to monotonicity of the cycle behavior, we can
conclude that a penalty of p cycles is an upper bound on the
effect of a single occurrence of the local worst case. Figure 4
illustrates this reasoning. As we will show in Section IV the
monotonicity of SIC enables such a formal reasoning on the
possible indirect effects.

Timing compositionality enables an efficient and sound sep-
aration of concerns into low-level analysis and schedulability
analysis. The low-level analysis can follow the local best cases
only, e.g. the absence of a preemption or shared bus blocking.
Schedulability analysis then accounts for the maximal number
of local worst cases that can occur, e.g. additional cache misses
due to preemptions, weighted by the appropriate penalty p.

IV. SIC: A TIMING-PREDICTABLE PIPELINED CORE

In this section, we present and discuss SIC, a prov-
ably timing-predictable pipelined processor core. By timing-
predictable, we mean that the core is provably free of anoma-
lies and that it enables compositional timing analysis. As
motivated in Section III, monotonicity w.r.t. to the program’s
execution progress is SIC’s key underlying property.

A. Intuitive Design Decisions

Branch prediction and consequently speculative fetching
and execution have been known to exhibit timing anoma-
lies [5]. In our design, we conservatively refrain from any
branch prediction and speculative actions.

More recently in [20], we identified the reordering of
accesses on the memory bus that is caused by the greedy
first-come first-serve arbiter, as the reason behind timing
anomalies in simple in-order pipelines. Just as every pipeline
stage encounters all instructions in program order, the bus
arbiter should ensure that all bus accesses are performed in
program order. In other words, all accesses (instruction fetch
and data access) of an instruction are performed before any
access of a subsequent instruction. To enforce this ordering,
the pipeline controller of SIC delays memory accesses caused
by instruction cache misses as long as preceding instructions
might still access the data memory. This strict access ordering
inspires the name of our design: the strictly in-order pipelined
core (SIC).

B. Cycle Behavior

To be able to formally prove properties of SIC, we formally
define its set of states as well as its cycle behavior, i.e. how a
state evolves during a processor clock cycle.

The concrete execution of a program with a given input
generates a sequence of machine instructions that are pro-
cessed within the processor. In the following, we consider an
arbitrary, but fixed sequence i0i1i2 . . . of machine instructions.
We denote the set of machine instructions in this sequence
by I = {i0, i1, i2, . . .}. Machine instructions are totally
ordered by their position within the sequence, i.e. in < im iff
n < m. In the following, we use i,j, and k as metavariables
for machine instructions within I.

We define the state of the strictly in-order pipeline by
mapping each instruction to its progress within the pipeline.
The set of possible pipeline states is given by the subset

C ⊆ I → P,

such that no two instructions occupy the same pipeline stage
(except pre and post) and only one instruction accesses the
main memory at a time.

The progress of an individual instruction is determined by
the pipeline stage it resides in and the number of cycles
remaining to complete the current stage. The set of possible
progress is thus defined as

P := S × N0

where S := {pre, IF , ID ,EX ,MEM ,ST ,WB , post} de-
notes the set of pipeline stages. The set S features artificial
stages to model that an instruction has not yet entered (pre)
or has already left (post) the pipeline. Just before leaving the
pipeline, store instructions reach the ST stage in which the
corresponding store is performed in memory, asynchronously
to the rest of the pipeline. The other stages correspond to the
classic five pipeline stages.

We formally define the concrete cycle behavior of the
strictly in-order pipeline by the function cycle : C → C
specified in Figure 5 relating a state to its successor state.
In order to focus on the control behavior of the pipeline itself,
we use external functions to model data-dependent effects,
as well as the memory hierarchy including main memory
and caches. The predicate ichit(i) (dchit(i)) holds iff the
instruction fetch (data access) of instruction i results in a cache
hit; exlat(i) returns the execution latency of instruction i;
memlatf (i) (memlatd(i)) returns the memory latency that the
fetch (potential data access) of instruction i experiences. The
auxiliary functions opc(i), ops(i), and target(i) provide the
type of instruction (opcode), the source operand registers, and
the target register of instruction i.

The changes compared to a conventional in-order pipeline
are highlighted in Figure 5. As long as a conditional branch—
whose outcome is determined in the execute stage—is pending
in the upper part of the pipeline, no new instructions are
issued into the pipeline. Furthermore, as long as a data-
memory-accessing instruction is pending in the pipeline, no
accesses caused by an instruction cache miss are started. Note,
however, that as long as instruction fetches hit the cache, the
enforcement of a strict access order has no impact on the
pipeline’s behavior.



c
′
:= λi ∈ I.

{
(stage′(i), latency(i)) : ready(i) ∧ willbefree(stage′(i))
(stage(i), cnt′(i)) : otherwise

cnt′(i) :=

{
cnt(i)− 1 : cnt(i) > 0

0 : cnt(i) = 0

stage′(i) :=



post : stage(i) ∈ {ST ,WB} ∨ (stage(i) = ID ∧ opc(i) = nop)

WB : stage(i) = MEM ∧ opc(i) 6= store

ST : stage(i) = MEM ∧ opc(i) = store

MEM : stage(i) = EX

EX : stage(i) = ID ∧ opc(i) 6= nop

ID : stage(i) = IF

IF : stage(i) = pre

ready(i) := (stage(i) = MEM ∧ opc(i) = store)

∨ (cnt(i) = 0

∧ (stage(i) = EX ⇒ opc(i) 6∈ {load, store} ∨ (dchit(i) ∨ ¬stpending(i))
∧ (stage(i) = ID ⇒ ¬ophaz(i))

∧ (stage(i) = pre ⇒ ¬brpending(i) ∧ next(i) ∧ (ichit(i) ∨ ¬mempending(i) )))

willbefree(s) := s = post

∨ (¬∃i.stage(i) = s)

∨ (∃i.stage(i) = s ∧ ready(i) ∧ willbefree(stage′(i)))

latency(i) :=



memlatf (i) : stage′(i) = IF ∧ ¬ichit(i)
memlatd (i) : stage′(i) = MEM ∧ ¬dchit(i)
cnt(i)− 1 : stage′(i) = ST

exlat(i) : stage′(i) = EX

0 : otherwise

next(i) := stage(i) = pre ∧ ∀j < i.stage(j) 6= pre

brpending(i) := ∃j < i.opc(j) = cond.branch ∧ c(j) @P (EX , 0)

mempending(i) := ∃j < i.opc(j) = load ∧ c(j) @P (MEM , 0)

∨ stpending(i)

stpending(i) := ∃j < i.opc(j) = store ∧ c(j) @P (ST , 0)

ophaz(i) := ∃o ∈ ops(i).∃j < i.c(j) @P (MEM , 0)

∧ opc(j) = load ∧ o ∈ target(j)

Fig. 5. Definition of the cycle behavior of the strictly in-order pipelined core. Differences to in-order pipeline are highlighted.

C. Progress and Monotonicity

As discussed in Section III, the key ingredient to provable
timing predictability is a partial order on pipeline states such
that the cycle behavior is monotonic. Here, we formalize the
notions of progress and monotonicity. We define a partial
order on pipeline states based on the notion of progress of
instructions’ execution within the pipeline.

First, we define the order @S on pipeline stages, where later
pipeline stages represent more progress:

pre @S IF @S ID @S EX @S MEM
WB

ST
post@S

@S

@
S

@S

Within the same pipeline stage, fewer remaining cycles in-
dicate more progress. Consequently, we define the order on
progress (s, n), (s′, n′) ∈ P as follows:

(s, n) vP (s′, n′) :⇔ s @S s′ ∨ (s = s′ ∧ n ≥ n′).

Finally, pipeline state c′ has at least the progress of pipeline
state c if each instruction has the same or more progress in c′:

c v c′ :⇔ ∀i ∈ I.c(i) vP c′(i).

Our goal is to show that the cycle behavior is monotonic in
the partial order v on pipeline states defined above. To this
end, we introduce the following lemma, which captures a key
property of SIC that ensures monotonicity:

Lemma IV.1 (Progress Dependence). For the SIC cycle
behavior, the progress of an instruction i depends solely on
the progress of previous instructions j, j < i, and thus never
on the progress of subsequent instructions k, k > i:

∀c, c′ ∈ C : [∀i : (∀j ≤ i : c(j) = c′(j))

⇒ cycle(c)(i) = cycle(c′)(i)].

In a conventional in-order pipeline, Lemma IV.1 does not
hold. There, the progress of a memory instruction i in the
memory stage depends on the progress of the fetch of a
subsequent instruction k, k > i: if the fetch of k has already

started a memory access, i has to delay its memory access until
the fetch completes. SIC eliminates such dependencies by
enforcing all instruction and data memory accesses in program
order.

Every sensible core design, and in particular SIC, fulfills
the following lemma, as otherwise the core might livelock:

Lemma IV.2 (Positive Progress). The SIC cycle behavior ap-
plied to a configuration c ∈ C yields a successor configuration
with more progress than c:

∀c ∈ C : c @ cycle(c),

where c @ c′ ⇔ c v c′ ∧ c′ 6v c.

Note that by definition of the progress order vP , even if
no instruction advances to the next pipeline stage, a decrease
in the number of cycles that an instructions has to remain in
its current pipeline stage—e.g. to account for a cache miss or
shared bus blocking—is considered as progress.

The two previous lemmas are important ingredients in the
proof of the monotonicity of the cycle behavior:

Theorem IV.3 (Monotonicity). The SIC cycle behavior is
monotonic:

∀c, d ∈ C : c v d⇒ cycle(c) v cycle(d).

The strictly in-order pipeline behaves monotonically be-
cause the execution of an instruction is never delayed by
other instructions making more progress. Unlike in SIC
(Lemma IV.1), in a conventional in-order pipeline, a load
instruction might for example get delayed by a subsequent
instruction reaching the fetch stage earlier.

The formal proofs of the above statements involve lengthy
case distinctions of the cycle behavior but do not offer any
additional insights. Thus we only make them available in the
appendix as supplementary material.

Ultimately, we are interested in the worst-case execution
time of a program p starting from pipeline state c. The
execution of a program finishes if its last instruction i leaves
the pipeline, i.e. reaches post, during the next cycle transition.



c c(1) c(2) c(l) c(l+1)

c′ c′(1) c′(2) c′(l) c′(l+1)

v v v v v

Fig. 6. Illustration of Theorem IV.4. The squares denote states where
instruction i finished execution.

We define the finishing time f(c, i) of instruction i starting
from pipeline state c recursively as

f(c, i) :=

{
0 : c(i) = (post , 0)

1 + f(cycle(c), i) : otherwise

We conclude this section by showing that a pipeline state c
with at least the progress of another state c′, i.e, c w c′, finishes
program execution no later than c′. Thus, to cover the worst-
case timing behavior it is sufficient to only consider state c′

during WCET analysis.

Theorem IV.4. Let i ∈ I be an arbitrary machine instruction.
Furthermore, let c, c′ ∈ C be such that c w c′. Then

f(c, i) ≤ f(c′, i).

Proof. Consider the sequence of pipeline configurations
c(0)c(1) . . . such that c(0) = c and c(n) = cycle(c(n−1)). Due
to Lemma IV.2, there exists an l such that c(l) is the first state
with c(l)(i) = (post , 0), i.e. f(c, i) = l.
We prove the above claim by induction on l. The base case
l = 0 is trivial, as by definition, any finishing time is non-
negative.

In the induction step, we use monotonicity (Theorem IV.3)
to derive that cycle(c) w cycle(c′). Using the induction
hypothesis for cycle(c) and cycle(c′), we conclude:

f(c, i)
Def. of f
= 1 + f(cycle(c), i)
I.H.
≤ 1 + f(cycle(c′), i)

Def. of f
= f(c′, i).

D. Anomaly Freedom and Compositionality Proofs

Here, we carry out the proofs of anomaly freedom and
timing compositionality following the proof strategies devel-
oped in Section III. These proofs depend on the kind of
nondeterminism that might cause an anomaly or an indirect
effect. In particular, we will show that cache uncertainty will
not lead to anomalies, which allows for an efficient low-
level timing analysis that follows only the cache-miss case
upon a split. Furthermore, we will prove sound penalties for
cache misses and prolongations of the memory accesses. This
allows the schedulability analysis to account for cache misses
induced by preemption [18], [27] as well as for shared bus
blocking [18] in a sound and compositional manner.

Formally, we model uncertainty by different valuations
of the external functions ichit , dchit , memlatf (i), and

memlatd(i). In the proofs, we consider without loss of gen-
erality valuations that differ in only one point, e.g. whether a
particular instruction hits or misses the cache. For valuations
that differ in multiple points, the respective argument can be
applied inductively in a backward manner starting from the
uncertain information used last.

Theorem IV.5 (Anomaly freedom w.r.t. cache uncertainty).
Let two valuations of dchit (or ichit) be given that differ for
an arbitrary instruction i ∈ I. The valuation that predicts a
cache miss, i.e. the local worst case, will lead to a finishing
time at least as high as the valuation that predicts a cache
hit, i.e. the local best case.

Proof. Let c be the state that splits upon the cache uncertainty
of instruction i, leading to the hit-case successor state cb
and miss-case successor cw. Without loss of generality, we
consider a data cache miss. We need to prove that cb w cw
which proves the overall claim by Theorem IV.4. Due to
Lemma IV.1, the progress of instructions j, j < i, does not
depend on this uncertainty and thus even cb(j) = cw(j). For i,
we know cb(i) = (MEM , 0) wP cw(i) as cw(i) is either
(MEM ,memlatd(i)) or (EX , 0) depending on stpending(i).
For instruction k, k > i, cb(k) wP cw(k) follows from the
fact that ready(k) holds under a data cache hit if ready(k)
holds under a data cache miss. Thus, if k progressed in cw it
has progressed in cb as well.

Theorem IV.6 (Compositionality w.r.t. latency prolongation).
Let two valuations of memlatd (or memlatf ) be given that
differ by p cycles for an arbitrary instruction i ∈ I, e.g. due
to shared bus blocking. The valuation that predicts a longer
latency leads to a finishing time at most p cycles higher than
the valuation that predicts the shorter latency.

Proof. Without loss of generality, we consider the latency
memlatd of data accesses. Let c be the state that splits
upon the latency uncertainty of instruction i, leading to the
fast-case successor state cb and slow-case successor cw. As
the latency value does not directly influence the progress of
instructions other than i, cb and cw have identical progress for
all instructions but i. By definition of cycle , after p cycles,
c′w reaches the same progress for i as cb. According to
Lemma IV.2, instructions in c′w exhibit at least the progress
as in cw. Consequently, c′w w cb and the claim follows by
Theorem IV.4.

Theorem IV.6 characterizes the impact of prolonging a
memory access by p cycles, e.g. due to shared bus blocking. It
does not provide means to bound the actual amount of shared
bus blocking, which is an orthogonal problem. As an example,
Altmeyer et al. [18], [28] bound the amount of shared bus
contention for a variety of bus protocols.

Theorem IV.7 (Compositionality w.r.t. cache uncertainty). Let
two valuations of dchit (or ichit) be given that differ for an
arbitrary instruction i ∈ I. The valuation that predicts a cache
miss will lead to a finishing time at most p cycles higher than
the valuation that predicts a cache hit. For the data cache with



write-through policy, p is twice the memory latency. For the
instruction cache, p is five times the memory latency.

Proof. Let c be the state that splits upon the cache uncertainty
of instruction i, leading to the hit-case successor state cb and
miss-case successor cw. First, we consider a data cache miss.
As long as stpending(i), i is stalled in the execute stage in the
states following cw. Let ml denote the memory latency. After
at most ml cycles, the store finishes and ¬stpending(i). Now,
the memory access caused by the data cache miss can start.
After ml additional cycles, i reaches progress (MEM , 0) in
state c′w—the same as cb(i). It remains to show that c′w w cb.
By Lemma IV.1, instructions j, j < i, are not affected by this
uncertainty and thus progressed further in c′w than in cb. By the
definition of ready and willbefree, it follows that instructions k,
k > i, that progressed in cb could also progress at latest during
the cycle transition leading to c′w. Consequently, c′w w cb and
the claim follows by Theorem IV.4.

For the instruction cache miss, i is stalled in the pre stage as
long as mempending(i). In the worst case, a store is pending
in ST and three load instructions occupy the stages IF , ID ,
EX . It takes four times the memory latency to execute these
such that ¬mempending(i) and the instruction cache miss can
be served. The remainder of the proof is analogous to the data
cache case.

Similarly to Theorem IV.6, Theorem IV.7 characterizes
the impact of an additional cache miss, e.g. due to multi-
core cache contention, on the execution time. It does not
provide means to bound the amount of actual cache contention.
The sound approximation of the external functions ichit and
dchit , possibly under multi-core contention, is an orthogonal
problem.

Furthermore, Theorem IV.7 provides cache miss penalties in
case of a write-through data cache. For write-back caches, the
penalties have to be increased respectively in order to account
for the number of potentially required write backs.

V. RELATED WORK ON TIMING-PREDICTABLE
MICROARCHITECTURES

Design for timing predictability has been an active research
topic since at least 2003, when a Dagstuhl Perspectives Work-
shop on “Design of Systems with Predictable Behavior” was
organized [29]. The outcome of this workshop was summa-
rized in a paper by Thiele and Wilhelm [30]. One important
insight from [30] is that there are two orthogonal ways to
improve timing predictability:

1) “Reducing the sensitivity to interference from non-
available information,” and

2) “to match implementation concepts with analysis tech-
niques to improve analyzability.”

While SIC may also slightly reduce the sensitivity of exe-
cution times to interference from non-available information
compared with a conventional in-order pipeline, we view the
strictly in-order pipeline primarily as an instance of the second
kind: Due to the absence of timing anomalies and the ability

to carry out compositional timing analysis, a program’s worst-
case timing may be analyzed efficiently even if the program’s
execution time may vary widely.

Berg et al. [31] discussed several “principles of a
predictable processor”, partly based on insights from prior
work by Engblom and Jonsson [32]. In particular, they
suggest to construct a pipeline with no hardware interlocks
between instructions, which means that the compiler needs
to ensure that instruction dependencies are respected. They
argue that such a pipeline will not exhibit “long timing
effects” (LTEs) [32] of length greater than 3, provided that no
data cache is employed. On the other hand, they realize that
introducing a data cache immediately results in a pipeline
exhibiting infinite LTEs, a property related to the presence
of timing anomalies. The strictly in-order pipeline design
presented in this paper is one way of resolving this issue.

A number of European projects, including PREDATOR [33],
MERASA [34], PARMERASA [35], and T-CREST [36]
have tackled the challenge of designing timing-predictability
multi-core architectures and are discussed below:

Wilhelm et al. [33] introduce the notion of “fully timing-
compositional architectures” as microarchitectures which do
not feature timing anomalies. They conjecture but do not
provide a formal proof that the ARM7, which stalls all
components of the pipeline upon a “timing accident”, is indeed
fully timing-compositional.

Ungerer et al. [34] propose the MERASA multicore ar-
chitecture, which features a multi-threaded core, comprising
one hard real-time thread (HRT) and a number of non-HRT
threads. The HRT is temporally isolated from the non-HRT
threads, so that it can be analyzed like a single-threaded
core. The HRT is equipped with local instruction (D-ISP)
and data scratchpad (DSP) memories. The D-ISP loads the
complete code of an activated function dynamically on call
and return. It is conceivable, but has not been proven, that
this construction eliminates timing anomalies, as there can be
no direct interference between instruction and data memory
accesses. The PARMERASA project [35] focused on multi-
core execution of parallelized hard real-time applications. To
our knowledge it did not introduce new processor core designs.

As part of the T-CREST project, Schoeberl et al. [36]
propose the time-predictable PATMOS processor. PATMOS is
statically scheduled, which means that the compiler needs
to ensure that instruction dependencies are respected. Simi-
larly to MERASA, the Patmos processor contains a method
cache [37], a cache that stores whole functions, which are
loaded upon calls and returns. Similarly to MERASA, it is
conceivable, but has not been proven, that this construction
eliminates timing anomalies.

De Dinechin et al. [38] describe the KALRAY MPPA®-256,
a many-core processor suitable for time-critical computing. Its
cores are claimed to be “fully timing-compositional” [33]. We
note that due to the presence of a store buffer the cores likely
feature timing anomalies as discussed in our prior work [19].

Lee and Edwards [22] make the case for precision-timed
(PRET) machines, processors that exhibit predictable and



repeatable timing and “whose temporal behavior is as easily
controlled as their logical function.” Liu et al. [21] present
the Precision-Timed ARM (PTARM), a PRET machine that
employs a thread-interleaved pipeline with an exposed mem-
ory hierarchy. By interleaving four hardware threads in a
standard five-stage in-order pipeline, the PTARM eliminates
all pipeline hazards. It uses a scratchpad memory instead of
caches as a fast local memory, and a DRAM controller [39]
with repeatable timing. As a consequence of the PTARM’s
design, each instruction has a fixed latency that is indepen-
dent of its execution context. This greatly simplifies WCET
analysis, and can be seen as an instance of the first of the
two orthogonal ways to improve timing predictability. Further-
more, by eliminating pipeline hazards, its overall instruction
throughput is higher than the instruction throughput achieved
by a conventional pipelined processor. On the other hand,
each of its hardware thread is slower than a conventional
pipelined processor as it does not profit from pipelining. By
construction, the PTARM does not exhibit timing anomalies
and it naturally admits compositional timing analysis, even
if its thread-interleaved pipeline is connected to a regular
memory hierarchy. We evaluate its performance relative to SIC
in the experimental evaluation.

Zimmer et al. [40] introduce FlexPRET, a more flexible
multi-threaded architecture, in which each hardware thread can
be configured to use between one and all of the processor’s
pipeline stages. Thus, depending on its configuration, from the
perspective of a single hardware thread, FlexPRET looks like a
regular in-order pipelined processor, like a hardware thread in
the PTARM, or like something in between the two. Hardware
threads configured to use several pipeline stages may exhibit
the same timing anomalies as a regular pipelined processor.

VI. EXPERIMENTAL EVALUATION

In this section, we want to shed light on the performance
degradation of SIC compared with a conventional in-order
pipeline and on the gain in analysis efficiency due to its timing
predictability. Besides the in-order pipeline, we also conduct a
comparison of SIC with the PTARM [21] implementation of a
PRET machine, as it exhibits similar predictability properties.

We evaluate SIC in terms of actual performance as well
as in terms of timing bounds. To this end, we have imple-
mented a conventional in-order pipelined core as described
in Section II-A, the proposed strictly in-order pipelined core,
and a PTARM-like core in the hardware description language
Verilog to target an FPGA. Our PTARM-like core implements
the behavior of a single thread in the original PTARM core
proposed in [21]. All three core designs support the same
subset of the ARM instruction set architecture. To obtain
timing (WCET) bounds and to assess the timing analysis
efficiency, we implemented the timing model of all three core
designs in our low-level timing analysis tool LLVMTA as also
used in [19]. In order to focus the comparison just on the core
design, for the experiments, we assume all cores to be con-
nected to the same memory hierarchy with separate instruction
and data caches and a common background memory.

TABLE I
COMPARISON OF FPGA-RELATED CHARACTERISTICS.

Design Max. Frequency Logical Elements

in-order 60 MHz 5037
strictly in-order 60 MHz 5046 (+0.2%)
PTARM-like 65 MHz (+8.3%) 4294 (-14.8%)

We present results for different cache sizes and memory
latencies. By memory latency, we denote the time between
the start of the access until the last word of the cache line
has been put into the cache. All caches are direct-mapped
with a cache line size of four 32-bit words. The data cache
employs the write-through policy to handle stores. Taking
the memory footprint of our benchmarks into account, we
evaluate caches with 64, 256, and 1024 cache sets, amounting
to cache sizes of 1 KiB, 4 KiB, and 16 KiB. We consider three
different memory latencies: 4, 12, and 100 clock cycles. The
latency of 12 cycles corresponds to a realistic value for actual
main memory (Micron MT46V16M16 [41] Automotive DDR
SDRAM run at 100MHz). We consider a latency of four and
100 cycles to analyze the effects of a very fast and a very slow
memory. Due to a memory bus width of 32 bits, four cycles is
the minimum memory latency to transfer a whole cache line.

As benchmarks, we use the TACLeBench suite [42]. If not
stated otherwise, the benchmarks have been compiled using
CLANG with optimization level -O2.

A. FPGA Resources

We have synthesized the three core variants using In-
tel Quartus Prime Lite targeting an Altera Cyclone IV E
(EP4CE115) FPGA on a Terasic DE2-115 development board.
We have configured the synthesis tool to optimize for high
clock frequency. The FPGA-related characteristics of the dif-
ferent designs are depicted in Table I. The logical element
count only covers the processor core module and excludes the
logic needed to implement the memory hierarchy. A logical
element of the Altera FPGA contains a one-bit flip-flop and
a lookup table to implement a 4-to-1 boolean function. Each
core designs uses 8 DSP slices to implement multiplication.
No core design makes use of the FPGA’s block RAM.

The additional logic needed to enforce the strict access
ordering on the bus has a negligible effect on the clock
frequency and the number of required logical elements as can
be seen in Table I. This shows that a strictly in-order pipelined
core can be implemented with low overhead.

The PTARM-like core improves upon the conventional
pipelined core w.r.t. the maximal clock frequency as well as
the number of required logical elements. Due to the nature of
the thread-interleaved pipeline of the PTARM, a single thread
cannot encounter hazards—neither control nor data hazards.
This obviates the need for result forwarding and interlocking
of pipeline stages which in turn leads to shorter circuit paths
(higher clock frequency). However, we have only implemented
a single thread of the PTARM. Extending our prototype to
support three additional threads will increase the number of
logical elements by at least 1536 to implement the three



ml 4
, n
s 6

4

ml 4
, n
s 2

56

ml 4
, n
s 1

02
4

ml 1
2,
ns

64

ml 1
2,
ns

25
6

ml 1
2,
ns

10
24

ml 1
00
, n
s 6

4

ml 1
00
, n
s 2

56

ml 1
00
, n
s 1

02
4

0

0.5

1

1.5

1
.1
1

1
.1

1
.1

1
.0
6

1
.0
6

1
.0
7

1 1 1
.0
11
.1
1

1
.1
1

1
.1
1

1
.0
5

1
.0
5

1
.0
5

1
.0
1

1
.0
2

1
.0
2

pe
rf

or
m

an
ce

de
gr

ad
at

io
n

of
SI

C
ve

rs
us

in
-o

rd
er

FPGA simulation static analysis

Fig. 7. Performance degradation of SIC compared to a conventional in-order
pipeline. Geometric mean over all benchmarks. Results shown for different
memory latencies (ml) and cache sizes (ns = number of cache sets).

additional register files (each with sixteen 32-bit registers).
This amounts to at least 5830 logical elements for a full-
fledged PTARM core.

B. Actual and Guaranteed Performance

Here, we compare the actual and the guaranteed perfor-
mance of the strictly in-order pipelined core (SIC)—first
against the conventional in-order pipelined core, and then
against a single thread of the PTARM core.

1) SIC versus in-order: Here, we want to assess the impact
of the modifications towards SIC on the performance of
programs. For each program we determine its execution time
in cycles by executing it on both core designs using the FPGA.
Each program is run on a fixed input and an empty initial
hardware state, i.e. empty cache and empty pipeline. Then we
calculate the geometric mean of the ratios of the clock cycles
needed—across all benchmarks. We repeated the experiments
using our static timing analyzer to compute WCET bounds
of programs run on both core design respectively. Figure 7
depicts the geometric means for different memory latencies
and cache sizes.

The performance degradation induced by SIC is around
6-7% for the realistic memory latency. With increasing
memory latencies the performance degradation induced by
SIC decreases. This is expected because with increasing
memory latencies, the time spent waiting for memory more
and more dominates the total execution time. We observe
that the cache size has almost no impact on the performance
penalty induced by SIC.

2) SIC versus PTARM: Due to the noticeable difference
in maximal clock frequency between SIC and PTARM, we
consider the ratio of real execution time instead of number of
clock cycles. According to Table I, the PTARM-like core can
clock around 8% faster. As the memory latency in nanoseconds
is constant, the memory latency in clock cycles is consequently
8% higher for the PTARM-like core compared to SIC. Due
to the nature of the thread-interleaved PTARM core, a single
thread can use the memory stage only in every fourth cycle. As
a consequence, an access experiences a memory latency that
is a multiple of four cycles—even though the actual memory
latency might not be a multiple of four. The memory latency
of 12 cycles@fSIC thus corresponds to 13 cycles@fPTARM and

an experienced latency of 16 cycles@fPTARM (rounded to the
next multiple of four). Due to the significant gap between the
actual and the experienced memory latency, we additionally
consider a latency of 11 cycles@fSIC, which corresponds to
an experienced latency of 12 cycles@fPTARM.

In a PTARM-like core, four threads share the local fast
memory in a spatial manner. To account for this, we compare
SIC to PTARM with a quarter of the cache size. As reference,
we also provide the numbers for an equally-sized cache.

We depict the results of the FPGA simulation in Figure 8
and the results of the LLVMTA static analysis in Figure 9.
They y-axis corresponds to the slowdown a program experi-
ences when executed on a single PTARM thread relative to
SIC. We provide the geometric mean across all benchmarks.
The first (second) bar compares SIC to PTARM using caches
with quarter (equal) size.

The third bar per block depicts the results for the bench-
marks compiled without optimizations. Those have a signifi-
cantly larger share of memory instructions on the total number
of instructions (50% instead of 28% for optimized programs).
Therefore, the influence of the memory hierarchy’s behavior
is higher which leads to smaller ratios.

A full-fledged PTARM core implementation with four
threads requires more chip resources than SIC. The fourth
bar of each block shows the ratio of the performance PTARM
versus SIC relative to the implementation cost, i.e. the number
of logical elements used in the FPGA.

As before, we observe that the performance differences
caused by the different core designs vanish with higher
memory latency and increasing influence of the memory
performance. The greater the cache size, the smaller the effect
of the reduced cache size of PTARM compared to SIC.

The lower ratios in static analysis compared to the FPGA
simulation are explained by the imperfection of the cache
analysis. Not every access that hits the cache during the actual
execution is guaranteed to hit the cache by the static analysis.
Thus, the static analysis considers more cache misses, i.e. more
main memory accesses, which increases the influence of the
memory performance.

For realistic memory latencies, the single-thread perfor-
mance of the SIC core is roughly twice the single-thread
performance of the PTARM core. However, the PTARM
core can execute four threads in parallel. Thus, the total
instruction throughput of SIC is about half the throughput of
the PTARM. Note, however, that this analysis is potentially
optimistic w.r.t. the PTARM, as it assumes that each of its four
threads would experience the same worst-case main-memory
latency as the single SIC thread it competes with.

Comparing the performance of SIC versus PTARM, which
can be seen as the performance of an unpipelined processor,
with the performance degradation of SIC versus a conven-
tional in-order pipeline, we conclude that SIC preserves most
of the performance benefits of pipelining.



ml 4
, n
s 6

4

ml 4
, n
s 2

56

ml 4
, n
s 1

02
4

ml 1
1,
ns

64

ml 1
1,
ns

25
6

ml 1
1,
ns

10
24

ml 1
2,
ns

64

ml 1
2,
ns

25
6

ml 1
2,
ns

10
24

ml 1
00
, n
s 6

4

ml 1
00
, n
s 2

56

ml 1
00
, n
s 1

02
4

0

1

2

3

2.
25 2
.4
2

2.
3
8

2.
1 2.
2
6

2.
14 2.
27 2.
39

2
.1
9

1
.5
4

1.
5
1

1
.2
6

2.
03 2.
2
5

2.
3
3

1.
7
4 1.
9
5

2
.0
4

1
.8
2

1.
9
9

2
.0
7

1
.0
6

1.
0
9

1
.1

2.
1
5

2.
3
5

2
.4
1

1
.7
9

1.
9
1

1
.9 1
.9
8

2.
0
5

1
.9
9

1.
2
8

1.
2
3

1.
1
3

2
.6 2.

8

2
.7
4

2
.4
2

2.
62

2
.4
7

2
.6
3

2.
7
6

2.
5
3

1.
78

1.
7
5

1.
45

si
ng

le
th

re
ad

of
P

TA
R

M
ve

rs
us

SI
C

quarter-sized cache equally-sized cache non-optimized programs including FPGA cost

Fig. 8. Results obtained by simulation on the FPGA. Different memory latencies and cache sizes. The memory latencies are given in cycles@fSIC .

ml 4
, n
s 6

4

ml 4
, n
s 2

56

ml 4
, n
s 1

02
4

ml 1
1,
ns

64

ml 1
1,
ns

25
6

ml 1
1,
ns

10
24

ml 1
2,
ns

64

ml 1
2,
ns

25
6

ml 1
2,
ns

10
24

ml 1
00
, n
s 6

4

ml 1
00
, n
s 2

56

ml 1
00
, n
s 1

02
4

0

1

2

3

1.
84 1
.9
2

1.
91

1.
51

1.
5
7

1.
53 1.
6
6

1.
7
1

1
.6
5

1
.1
4

1.
1
5

1
.0
8

1.
79 1.
86

1.
8
9

1.
43

1.
4
8

1
.4
9

1
.5
5

1.
59

1
.6

1
.0
4

1.
0
5

1
.0
5

1.
8

1.
81

1
.8
5

1
.4
8

1.
42

1
.4
4 1
.6
7

1.
58

1
.5
9

1.
18

1.
0
9

1.
0
9

2
.1
2

2.
2
1

2
.2
1

1
.7
5

1.
81

1
.7
6

1
.9
2

1.
98

1.
9

1.
32

1.
3
3

1.
25

si
ng

le
th

re
ad

of
P

TA
R

M
ve

rs
us

SI
C

quarter-sized cache equally-sized cache non-optimized programs including FPGA cost

Fig. 9. Results obtained by static analysis using LLVMTA. Different memory latencies and cache sizes. The memory latencies are given in cycles@fSIC .

C. Analysis Performance
The anomaly freedom of SIC enables the low-level timing

analysis to soundly follow the local worst case only. In a multi-
core setting, the compositionality of SIC enables the low-
level analysis to assume the absence of interference on shared
resources, such as a shared bus. The subsequent schedulability
analysis may use the penalties calculated in Section IV-D to
soundly account for shared-resource interference.

In contrast, the analysis of the conventional in-order pipeline
has to follow all alternatives upon uncertainty. In a multi-
core setting, timing analysis has to additionally account for
potential indirect effects caused by shared resource inter-
ference. The only feasible approach currently known is the
computation of a compositional base bound [19]. There, the
low-level analysis explores the impact of potential interference
on the microarchitectural states and thus captures the worst-
case execution time including any potential indirect effects. In
the following experiments, we consider a bus with round-robin
event-driven arbitration as the only shared resource.

For each benchmark we obtain the analysis runtime of the
following four analyses: 1) the PTARM analysis, 2) the anal-
ysis for the conventional in-order core, 3) the compositional
base bound analysis for the conventional in-order core, and 4)
the analysis for SIC. To assess the analysis speedup afforded
by SIC, we determine the ratios of the first three analysis
runtimes to the analysis runtime for SIC. Figure 10 depicts
the geometric mean of these ratios across all benchmarks for
the three different memory configurations. To assess the per-
benchmark runtimes, Figure 11 depicts scatter plots for the

ml 4
, n
s 6

4

ml 4
, n
s 2

56

ml 4
, n
s 1

02
4

ml 1
2,
ns

64

ml 1
2,
ns

25
6

ml 1
2,
ns

10
24

ml 1
00
, n
s 6

4

ml 1
00
, n
s 2

56

ml 1
00
, n
s 1

02
4

100

101

102

103

1
.1 1.
2

1.
2

1.
0

1.
0

1
.1

7
.9
·1
0
−
1

8.
2
·1
0
−
1

9
·1
0
−
1

1
.8 2.
0

2.
1 3.
5

3.
9

4.
2

3
1
.1

4
0
.7

4
4.
9

9.
7

10
.4

10
.7 25

.1

31
.3

3
5
.6

1
45

.2

2
2
0
.2

1
8
9
.5

sl
ow

do
w

n
in

an
al

ys
is

ru
nt

im
e

re
la

tiv
e

to
S

IC

PTARM in-order (single core)
in-order (using compositional base bound)

Fig. 10. Static analysis performance (runtime)

memory configuration ml 12, ns 256.
As expected, we observe significant differences in the analy-

sis runtimes of SIC and the conventional in-order pipeline. For
the realistic memory latency, following all alternatives upon
uncertainty causes the analysis to slowdown by a factor of
roughly 4. If indirect effects due to shared-bus interference
are taken into account in addition, the slowdown amounts to
a factor of roughly 30.

The scatter plots show that the slowdown of individual
benchmarks is generally close to the geometric mean. The
regression indicates a slight trend that bigger benchmarks tend
to profit more from SIC than smaller ones.

Furthermore, in Figure 10, we observe that the analysis-
runtime ratios increase with higher memory latencies, i.e.
following all alternatives becomes more expensive.

The analysis runtimes of SIC and PTARM are very similar.



10−2 10−1 100 101 102 103
10−2

10−1

100

101

102

103

analysis runtime in-order [sec]

an
al

ys
is

ru
nt

im
e

SI
C

[s
ec
]

10−2 10−1 100 101 102 103
10−2

10−1

100

101

102

103

analysis runtime in-order [sec]

Fig. 11. Scatter plot of analysis runtime of SIC versus the in-order pipeline.
Single core on the left. Multi core using the compositional base bound
approach on the right. Memory with latency of 12 cycles and cache with
256 sets. Solid black line represents the regression curve.

In some cases, the PTARM analysis may take slightly longer,
as the execution time bounds are generally higher and thus
the analysis needs to explore more states. However, due to
its deterministic behavior, a slightly more efficient PTARM
analysis is conceivable that operates at the granularity of
instructions instead of individual processor cycles.

VII. CONCLUSIONS AND FUTURE WORK

We propose the use of the strictly in-order pipelined core
as a provably timing-predictable hardware design. Its anomaly
freedom enables more efficient low-level (WCET) analyses. Its
timing compositionality allows for an efficient and sound sep-
aration of concerns into low-level analysis and schedulability
analysis.

To the best of our knowledge, we present the first formal
proofs of timing predictability for a non-trivial pipelined
processor core.

The key innovation is to establish a cycle behavior that is
monotonic w.r.t. the progress of instructions within the core.
To this end, we refrain from speculation and we ensure that
all bus accesses are performed strictly in program order.

We have quantified the performance degradation showing
that most of the performance benefits of pipelining are pre-
served. Due to SIC’s minimal implementation overhead, it is
conceivable to equip future processors with a monotonic mode.
The mode could be dynamically turned on and off to guarantee
timing predictability only when required.

The principle of monotonic timing behavior is more gen-
eral. In future work, we plan to examine how to employ
performance-enhancing hardware features without sacrificing
monotonicity and thus timing predictability. In particular, we
will consider restricted forms of speculation as well as more
dynamic instruction scheduling, i.e. restricted forms of out-of-
order execution.

VIII. APPENDIX

Here, we provide the proofs for the lemmas stated in the
main section that can all be proven by case distinction of the
cycle behavior relation.

In the process of proving monotonicity of the strictly in-
order pipeline, we use the following, rather technical lemma.

Lemma VIII.1 (Update enable). Let a, b be two configura-
tions. Furthermore, let i ∈ I be an instruction with equal
progress in a and b (a(i) = b(i)) and all previous instruction
j < i have progressed more in a than b (a(j) wP b(j)).
For any given valuation of the free variables in ready, if b
advances to the next pipeline stage, a advances as well:

b.ready(i)⇒ a.ready(i)

b.willbefree(b.stage′(i))⇒ a.willbefree(b.stage′(i))

Proof. ready
Let b.ready(i). There are two cases. In the first case,
b.stage(i) = MEM and opc(i) = store. As a(i) = b(i), it
follows that a.stage(i) = MEM and thus a.ready(i). In the
second case, we have b.cnt(i) = 0 and by a(i) = b(i) also
a.cnt(i) = 0. For all pipeline stages except pre, ID and EX
this is sufficient to conclude a.ready(i). We prove the claim
for EX , ID and pre each by contradiction.
• For stage EX , ¬a.ready(i) implies that i is a store

instruction or a load instruction that misses the data
cache, while a store is pending. If a.stpending(i), there
is a store instruction j < i with a(j) @P (ST , 0). By
assumption, we know that a(j) wP b(j). By transitivity,
b(j) @P (ST , 0) and thus b.stpending(i). It follows, that
¬b.ready(i) which is a contradiction.

• For stage ID , ¬a.ready(i) requires an operand hazard
ophaz (i). This means, there is a load instruction j < i
with a(j) @P (MEM , 0) that writes our operand. By
a(j) wP b(j), we conclude that b(j) @P (MEM , 0),
i.e. there is an operand hazard in b. This contradicts
b.ready(i).

• For stage pre, ¬a.ready(i) requires either brpending(i),
mempending(i)∧¬ichit(i), or ¬next(i). In all three cases
an argument analogous to ophaz applies. If there is a
branch j pending in a, j is also a pending branch in b
as a(j) wP b(j). If there is an older instruction j < i
to be fetched next, j is also in the pre stage in b and
is to be fetched next in b. If a memory operation j is
pending in a, j is also a pending memory operation in
b as a(j) wP b(j). Thus, if any of the three expressions
above evaluates to true for a, it also evaluates to true for
b resulting in ¬b.ready(i). This is a contradiction.

This concludes the proof for ready.
willbefree

Let s = b.stage′(i) and b.willbefree(s). If s = post ,
a.willbefree(s) follows by definition of willbefree. If s is
empty in b, i.e. no j < i is in s, s must also be empty in a
since a(j) wP b(j).

Otherwise a j < i is in s such that b.ready(j) and
b.willbefree(b.stage′(j)). Since a(j) wP b(j), either a(j) =
b(j) or a(j) AP b(j). In the latter case, j in a is already in
a stage further than s and consequently a.willbefree(s) since
stage s must be free in a. In the other case, a(j) = b(j),
we can inductively use this Lemma VIII.1 for j which is in
a later stage than i. We repeat this argument until we hit
either a free stage or stage post. By applying the induction



hypothesis, i.e. Lemma VIII.1 for j, we get a.ready(j) and
a.willbefree(b.stage′(j)). This results in a.willbefree(s).

Proof of Lemma IV.1.

Proof. The progress of an instruction depends on the progress
of other instructions exclusively via ready and willbefree. By
the proof of Lemma VIII.1, we know that ready and willbefree
solely depend on the progress of previous instructions.

Proof of Lemma IV.2.

Proof. First, we prove c v cycle(c) by case distinction of
cycle . We denote cycle(c) by c′ for short. Let an instruction
i ∈ I be given. If c′(i) is stalled, c′(i) = c(i) and thus
c(i) vP c′(i). If c′(i) reduces the number of remaining cycles,
c′(i) = (c.stage(i), c.cnt(i)−1) and thus c(i) @P c′(i). If c′(i)
advances to the next pipeline stage, c.stage(i) @S c′.stage(i)
and thus c(i) @P c′(i).

To prove the strictness of c @ c′, it is sufficient to show that
not every instruction is stalled in the pipeline. We will show
that the instruction farthest down the pipeline is not stalled.
Let instruction i be the farthest instruction, i.e. all instructions
j < i already left the pipeline. All stages below c.stage(i) are
empty, which results in willbefree(c.stage′(i)). If c.cnt(i) > 0,
i is not stalled as the number of remaining cycles is reduced.
If c.cnt(i) = 0, c.ready(i) and thus i would progress to the
next stage. Even if the current stage of i is EX , ID , or pre,
the readiness of i cannot be prevented from operand hazard or
pending branches/memory operations as the pipeline in front
of i is empty.

Proof of Theorem IV.3.

Proof. Let c, d be given such that c v d. We need to prove that
cycle(c) v cycle(d). We denote cycle(c) by c′ and cycle(d)
by d′ for short.

For every i ∈ I, we need to show that c′(i) vP d′(i).
We distinguish three possible cases of cycle applied to c:
(1) i is stalled, (2) i counts down its remaining cycles, or
(3) i advances to the next pipeline stage.

Pipeline stall
If instruction i is stalled in configuration c, we obtain c′(i) =
c(i). By assumption, we know c′(i) = c(i) vP d(i). By
Lemma IV.2, we conclude that c′(i) vP d′(i).

Remaining cycles countdown
If instruction i reduces its remaining cycles in c, we obtain
c.stage(i) = c′.stage(i) and c′.cnt(i) = c.cnt(i)− 1. If c(i) =
d(i), by definition of cycle we obtain c′(i) = d′(i). Otherwise,
c(i) @P d(i):
• If c.stage(i) @S d.stage(i), we conclude by Lemma IV.2

that c′.stage(i) @S d′.stage(i) and so c′(i) @P d′(i).
• Otherwise c.cnt(i) > d.cnt(i).

– If d.cnt(i) = 0, either i advances in the pipeline
resulting in c′.stage(i) @S d′.stage(i) or i is stalled
in d resulting in d′.cnt(i) = d.cnt(i) = 0 ≤
c.cnt(i)− 1 = c′.cnt(i).

– If d.cnt(i) 6= 0, by definition of cycle we conclude
c′.cnt(i) = c.cnt(i)− 1 < d.cnt(i)− 1 = d′.cnt(i).

Pipeline stage advance
We know that c(i) vP d(i), i.e. either c(i) = d(i) or
c(i) @P d(i). We consider the case c(i) = d(i) first. As we
are in the pipeline stage advance case, we know c.ready(i)
and c.willbefree(c.stage′(i)). By using Lemma VIII.1, we
get d.ready(i) and d.willbefree(c.stage′(i)). Consequently, we
know that i will also advance its pipeline stage in d which
results in c′.stage(i) = d′.stage(i). In the second case,
c(i) @P d(i), we know c.stage(i) @S d.stage(i) since we are
in the pipeline stage advance case. By definition of stage′,
i can at most move to the consecutive stage and thus either
c′.stage(i) @S d′.stage(i) or c′stage(i) = d′.stage(i).

To conclude c′(i) vP d′(i), it remains to be proven that
c′.cnt(i) ≥ d′.cnt(i) if c′.stage(i) = d′.stage(i). Immediately
after the pipeline advance, c′.cnt(i) is the latency determined
by latency(i) and thus d′.cnt(i) cannot be higher because the
number of remaining cycles is never increased during cycle .

REFERENCES

[1] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. B.
Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. P. Puschner, J. Staschulat, and P. Stenström, “The worst-case
execution-time problem - overview of methods and survey of tools,”
ACM Trans. Embedded Comput. Syst., vol. 7, no. 3, pp. 36:1–36:53,
2008.

[2] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in Conference Record of the Fourth ACM Symposium on
Principles of Programming Languages, Los Angeles, California, USA,
January 1977, 1977, pp. 238–252.

[3] M. Lv, N. Guan, J. Reineke, R. Wilhelm, and W. Yi, “A survey on
static cache analysis for real-time systems,” Leibniz Transactions on
Embedded Systems, vol. 3, no. 1, pp. 05–1–05:48, 2016.

[4] T. Lundqvist and P. Stenström, “Timing anomalies in dynamically
scheduled microprocessors,” in Proceedings of the 20th IEEE Real-Time
Systems Symposium, Phoenix, AZ, USA, December 1-3, 1999, 1999, pp.
12–21.

[5] J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, I. Polian, J. Eisinger,
and B. Becker, “A definition and classification of timing anomalies,”
in Proceedings of 6th International Workshop on Worst-Case Execution
Time (WCET) Analysis, July 2006.

[6] A. Gustavsson, A. Ermedahl, B. Lisper, and P. Pettersson, “Towards
WCET analysis of multicore architectures using UPPAAL,” in WCET,
B. Lisper, Ed., vol. 15, Dagstuhl, Germany, 2010, pp. 101–112.

[7] T. Kelter and P. Marwedel, “Parallelism analysis: Precise WCET values
for complex multi-core systems,” in Formal Techniques for Safety-
Critical Systems - Third International Workshop, 2014, pp. 142–158.

[8] T. Kelter, “WCET analysis and optimization for multi-core real-time
systems,” Ph.D. dissertation, TU Dortmund University, 2015.

[9] A. Schranzhofer, J.-J. Chen, and L. Thiele, “Timing analysis for TDMA
arbitration in resource sharing systems,” in Proceedings of the 2010
16th IEEE Real-Time and Embedded Technology and Applications
Symposium, April 2010, pp. 215–224.

[10] M. Lv, W. Yi, N. Guan, and G. Yu, “Combining abstract interpretation
with model checking for timing analysis of multicore software,” in
Proceedings of the 2010 31st IEEE Real-Time Systems Symposium, 2010,
pp. 339–349.

[11] R. Pellizzoni, A. Schranzhofer, J.-J. Chen, M. Caccamo, and L. Thiele,
“Worst case delay analysis for memory interference in multicore sys-
tems,” in Design, Automation Test in Europe Conference Exhibition
(DATE), 2010, March 2010, pp. 741–746.



[12] D. Dasari, B. Andersson, V. Nelis, S. Petters, A. Easwaran, and J. Lee,
“Response time analysis of COTS-based multicores considering the
contention on the shared memory bus,” in Trust, Security and Privacy
in Computing and Communications (TrustCom), 2011 IEEE 10th Inter-
national Conference on, 2011, pp. 1068–1075.

[13] S. Schliecker and R. Ernst, “Real-time performance analysis of multi-
processor systems with shared memory,” ACM Trans. Embed. Comput.
Syst., vol. 10, no. 2, pp. 22:1–22:27, January 2011.

[14] A. Schranzhofer, R. Pellizzoni, J.-J. Chen, L. Thiele, and M. Caccamo,
“Timing analysis for resource access interference on adaptive resource
arbiters,” in Proceedings of the 2011 17th IEEE Real-Time and Embed-
ded Technology and Applications Symposium, April 2011, pp. 213–222.

[15] G. Giannopoulou, K. Lampka, N. Stoimenov, and L. Thiele, “Timed
model checking with abstractions: Towards worst-case response time
analysis in resource-sharing manycore systems,” in EMSOFT. ACM,
2012, pp. 63–72.

[16] K. Lampka, G. Giannopoulou, R. Pellizzoni, Z. Wu, and N. Stoimenov,
“A formal approach to the WCRT analysis of multicore systems with
memory contention under phase-structured task sets,” Real-Time Sys-
tems, vol. 50, no. 5, pp. 736–773, 2014.

[17] W. Huang, J. Chen, and J. Reineke, “MIRROR: symmetric timing anal-
ysis for real-time tasks on multicore platforms with shared resources,”
in Proceedings of the 53rd Annual Design Automation Conference, DAC
2016, Austin, TX, USA, June 5-9, 2016. ACM, 2016, pp. 158:1–158:6.

[18] R. I. Davis, S. Altmeyer, L. S. Indrusiak, C. Maiza, V. Nelis, and
J. Reineke, “An extensible framework for multicore response time
analysis,” Real-Time Systems, vol. 54, no. 3, pp. 607–661, Jul 2018.

[19] S. Hahn, M. Jacobs, and J. Reineke, “Enabling compositionality for
multicore timing analysis,” in Proceedings of the 24th International
Conference on Real-Time Networks and Systems, RTNS 2016, Brest,
France, October 19-21, 2016, 2016, pp. 299–308.

[20] S. Hahn, J. Reineke, and R. Wilhelm, “Toward compact abstractions
for processor pipelines,” in Correct System Design - Symposium in
Honor of Ernst-Rüdiger Olderog on the Occasion of His 60th Birthday,
Oldenburg, Germany, September 8-9, 2015. Proceedings, 2015, pp. 205–
220.

[21] I. Liu, J. Reineke, D. Broman, M. Zimmer, and E. A. Lee, “A PRET
microarchitecture implementation with repeatable timing and competi-
tive performance,” in 30th International IEEE Conference on Computer
Design, ICCD 2012, Montreal, QC, Canada, September 30 - Oct. 3,
2012. IEEE Computer Society, 2012, pp. 87–93.

[22] S. A. Edwards and E. A. Lee, “The case for the precision timed (PRET)
machine,” in Proceedings of the 44th Design Automation Conference,
DAC 2007, San Diego, CA, USA, June 4-8, 2007. IEEE, 2007, pp.
264–265.

[23] J. L. Hennessy and D. A. Patterson, Computer Architecture - A Quan-
titative Approach (5. ed.). Morgan Kaufmann, 2012.

[24] Y. S. Li and S. Malik, “Performance analysis of embedded software
using implicit path enumeration,” in Proceedings of the ACM SIGPLAN
1995 Workshop on Languages, Compilers, & Tools for Real-Time
Systems (LCT-RTS 1995). La Jolla, California, June 21-22, 1995, 1995,
pp. 88–98.

[25] M. Alt, C. Ferdinand, F. Martin, and R. Wilhelm, “Cache behavior
prediction by abstract interpretation,” in Static Analysis, Third Interna-
tional Symposium, SAS’96, Aachen, Germany, September 24-26, 1996,
Proceedings, 1996, pp. 52–66.

[26] S. Hahn, J. Reineke, and R. Wilhelm, “Towards compositionality in
execution time analysis: definition and challenges,” SIGBED Review,
vol. 12, no. 1, pp. 28–36, 2015.

[27] S. Altmeyer, R. I. Davis, and C. Maiza, “Cache related pre-emption delay
aware response time analysis for fixed priority pre-emptive systems,” in
Proceedings of the 32nd IEEE Real-Time Systems Symposium, RTSS
2011, Vienna, Austria, November 29 - December 2, 2011, 2011, pp.
261–271.

[28] S. Altmeyer, R. I. Davis, L. S. Indrusiak, C. Maiza, V. Nélis, and
J. Reineke, “A generic and compositional framework for multicore
response time analysis,” in Proceedings of the 23rd International Con-
ference on Real Time Networks and Systems, RTNS 2015, Lille, France,
November 4-6, 2015, 2015, pp. 129–138.

[29] L. Thiele and R. Wilhelm, “03471 abstracts collection – design of sys-
tems with predictable behaviour,” in Perspectives Workshop: Design of
Systems with Predictable Behaviour, ser. Dagstuhl Seminar Proceedings,
L. Thiele and R. Wilhelm, Eds., no. 03471. Dagstuhl, Germany: Inter-

nationales Begegnungs- und Forschungszentrum für Informatik (IBFI),
Schloss Dagstuhl, Germany, 2004.

[30] ——, “Design for timing predictability,” Real-Time Systems, vol. 28, no.
2-3, pp. 157–177, 2004.

[31] C. Berg, J. Engblom, and R. Wilhelm, “Requirements for and design of a
processor with predictable timing,” in Perspectives Workshop: Design of
Systems with Predictable Behaviour, ser. Dagstuhl Seminar Proceedings,
L. Thiele and R. Wilhelm, Eds., no. 03471. Dagstuhl, Germany: Inter-
nationales Begegnungs- und Forschungszentrum für Informatik (IBFI),
Schloss Dagstuhl, Germany, 2004.

[32] J. Engblom and B. Jonsson, “Processor pipelines and their properties
for static WCET analysis,” in Embedded Software, Second International
Conference, EMSOFT 2002, Grenoble, France, October 7-9, 2002, Pro-
ceedings, ser. Lecture Notes in Computer Science, A. L. Sangiovanni-
Vincentelli and J. Sifakis, Eds., vol. 2491. Springer, 2002, pp. 334–348.

[33] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and
C. Ferdinand, “Memory hierarchies, pipelines, and buses for future
architectures in time-critical embedded systems,” IEEE Transactions on
CAD of Integrated Circuits and Systems, vol. 28, no. 7, pp. 966–978,
July 2009.

[34] T. Ungerer, F. J. Cazorla, P. Sainrat, G. Bernat, Z. Petrov, C. Rochange,
E. Quiñones, M. Gerdes, M. Paolieri, J. Wolf, H. Cassé, S. Uhrig,
I. Guliashvili, M. Houston, F. Kluge, S. Metzlaff, and J. Mische,
“Merasa: Multicore execution of hard real-time applications supporting
analyzability,” IEEE Micro, vol. 30, no. 5, pp. 66–75, 2010.

[35] T. Ungerer, C. Bradatsch, M. Frieb, F. Kluge, J. Mische, A. Stegmeier,
R. Jahr, M. Gerdes, P. G. Zaykov, L. Matusova, Z. J. J. Li, Z. Petrov,
B. Böddeker, S. Kehr, H. Regler, A. Hugl, C. Rochange, H. Ozaktas,
H. Cassé, A. Bonenfant, P. Sainrat, N. Lay, D. George, I. Broster,
E. Quiñones, M. Panic, J. Abella, C. Hernández, F. J. Cazorla, S. Uhrig,
M. Rohde, and A. Pyka, “Parallelizing industrial hard real-time applica-
tions for the parMERASA multicore,” ACM Trans. Embedded Comput.
Syst., vol. 15, no. 3, pp. 53:1–53:27, 2016.

[36] M. Schoeberl, S. Abbaspour, B. Akesson, N. C. Audsley, R. Capasso,
J. Garside, K. Goossens, S. Goossens, S. Hansen, R. Heckmann,
S. Hepp, B. Huber, A. Jordan, E. Kasapaki, J. Knoop, Y. Li, D. Prokesch,
W. Puffitsch, P. P. Puschner, A. Rocha, C. Silva, J. Sparsø, and A. Toc-
chi, “T-CREST: time-predictable multi-core architecture for embedded
systems,” Journal of Systems Architecture - Embedded Systems Design,
vol. 61, no. 9, pp. 449–471, 2015.

[37] P. Degasperi, S. Hepp, W. Puffitsch, and M. Schoeberl, “A method
cache for patmos,” in 17th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing,
ISORC 2014, Reno, NV, USA, June 10-12, 2014. IEEE Computer
Society, 2014, pp. 100–108.

[38] B. D. de Dinechin, D. van Amstel, M. Poulhiès, and G. Lager, “Time-
critical computing on a single-chip massively parallel processor,” in
DATE, 2014, pp. 1–6.

[39] J. Reineke, I. Liu, H. D. Patel, S. Kim, and E. A. Lee, “PRET
DRAM controller: bank privatization for predictability and temporal
isolation,” in Proceedings of the 9th International Conference on Hard-
ware/Software Codesign and System Synthesis, CODES+ISSS 2011, part
of ESWeek ’11 Seventh Embedded Systems Week, Taipei, Taiwan, 9-14
October, 2011, R. P. Dick and J. Madsen, Eds. ACM, 2011, pp. 99–108.

[40] M. Zimmer, D. Broman, C. Shaver, and E. A. Lee, “FlexPRET: A
processor platform for mixed-criticality systems,” in 20th IEEE Real-
Time and Embedded Technology and Applications Symposium, RTAS
2014, Berlin, Germany, April 15-17, 2014. IEEE Computer Society,
2014, pp. 101–110.

[41] Micron Technology, Inc., Automotive DDR SDRAM MT46V32M8,
MT46V16M16, Available at https://www.micron.com/∼/media/
documents/products/data-sheet/dram/mobile-dram/low-power-dram/
lpddr/256mb x8x16 at ddr t66a.pdf.

[42] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch, C. Rochange,
M. Schoeberl, R. B. Sorensen, P. Wägemann, and S. Wegener,
“TACLeBench: A benchmark collection to support worst-case execution
time research,” in 16th International Workshop on Worst-Case Execution
Time Analysis, WCET 2016, July 5, 2016, Toulouse, France, 2016, pp.
2:1–2:10.

https://www.micron.com/~/media/documents/products/data-sheet/dram/mobile-dram/low-power-dram/lpddr/256mb_x8x16_at_ddr_t66a.pdf
https://www.micron.com/~/media/documents/products/data-sheet/dram/mobile-dram/low-power-dram/lpddr/256mb_x8x16_at_ddr_t66a.pdf
https://www.micron.com/~/media/documents/products/data-sheet/dram/mobile-dram/low-power-dram/lpddr/256mb_x8x16_at_ddr_t66a.pdf

	Introduction
	Background
	In-order Pipelined Core
	Timing Analysis

	Anomaly Freedom and Compositionality
	Timing Anomalies
	Timing Compositionality

	SIC: A Timing-Predictable Pipelined Core
	Intuitive Design Decisions
	Cycle Behavior
	Progress and Monotonicity
	Anomaly Freedom and Compositionality Proofs

	Related Work on Timing-Predictable Microarchitectures
	Experimental Evaluation
	FPGA Resources
	Actual and Guaranteed Performance
	SIC versus in-order
	SIC versus PTARM

	Analysis Performance

	Conclusions and Future Work
	Appendix
	References

