
Impact of Resource Sharing on Performance and
Performance Prediction: A Survey

Andreas Abel, Florian Benz, Johannes Doerfert, Barbara Dörr,
Sebastian Hahn, Florian Haupenthal, Michael Jacobs, Amir H. Moin,

Jan Reineke, Bernhard Schommer, Reinhard Wilhelm

Saarland University, Saarbrücken, Germany

Abstract Multi-core processors are increasingly considered as execution
platforms for embedded systems because of their good performance/energy
ratio. However, the interference on shared resources poses several prob-
lems. It may severely reduce the performance of tasks executed on the
cores, and it increases the complexity of timing analysis and/or decreases
the precision of its results. In this paper, we survey recent work on the
impact of shared buses, caches, and other resources on performance and
performance prediction.

1 Introduction

Multi-core processors are increasingly considered as execution platforms for em-
bedded systems since they offer a good energy-performance tradeoff and seem to
support transitions from federated to integrated system architectures in the au-
tomotive and avionics domains. Many applications implemented on such multi-
core platforms are safety- and some also time-critical. A critical issue is the
reduced predictability of such systems resulting from the interference of differ-
ent applications on shared resources. These interferences can be at least of two
kinds: Several applications may request a resource at the same time, but the
resource can only admit one access at a time. As a consequence, an arbitration
mechanism may delay the request of all but one application, thus slowing down
the other applications. This is the case of resources like buses, typically called
bandwidth resources. On the other hand, one application may also change the
state of a shared resource such that another application using that resource will
suffer from a slowdown. This is the case with shared caches, which fall into the
class of storage resources. Most of the treatments of the interferences on shared
resources found in the literature consider the detrimental effect of interferences.
In the case of shared caches, however, the interference of one application A1 on
another co-running application A2 could even speed up A2 if A1 would perform
the right cache prefetching for A2.

Interference on shared resources makes worst-case execution time (WCET)
analysis of applications more difficult since a task or a thread can no longer be
analyzed for its timing behavior in isolation. All potential interferences slowing
down (or speeding up) the task under analysis have to be considered. This leads



to a combinatorial explosion of the analysis complexity, as all possible interleav-
ings of different threads have to be analyzed. For that reason, currently, no sound
timing-analysis method for multi-core platforms with shared resources exists.

This survey considers several aspects of the execution of sets of tasks on
multi-core platform that have to do with the interference of the tasks on shared
resources. One question is how the actual performance of tasks is slowed down by
other co-running tasks. The other is how to compute bounds on the slow-down
in order to derive guarantees for the timing behavior. A major problem is the
increased complexity of this task compared to the single-task single-core case.

Caches are a particular case of storage resources. Several approaches exist
for the treatment of shared caches in attempts to derive timing guarantees.
Cache partitioning eliminates the interference between tasks. Static analysis of
non-partitioned shared caches attempts to safely bound the interference. The
definite comparison between these two approaches has yet to be done.

Buses are instances of bandwidth resources. Several protocols exist for the
arbitration of shared buses, which can be classified as either time-driven, event-
driven, or hybrid combinations of both. Static analysis can be used to determine
good slot assignments in time-driven protocols like TDMA, and it can be used
to determine bounds on the access delays in event-driven state-based protocols
like FCFS and round robin.

1.1 Ways to derive guarantees

In order to guarantee the timeliness of tasks in a hard real-time system, one
needs upper bounds on the execution times of the tasks.

As long as a task executes in isolation on a multi-core system (without co-
running tasks), existing techniques for timing estimation could be applied. In
case of parallel workloads (with co-running tasks), a sound approach for timing
analysis of multi-core systems has to take into account the interferences, as
described in detail in Sections 2 and 3.

Approaches to determine upper bounds on execution times of tasks on multi-
core processors can be classified into two groups:

– Approaches achieving performance isolation by hardware and/or software
techniques, e.g. by employing TDMA arbitration of busses. Performance iso-
lation implies timing composability and permits the use of standard single-
core timing analysis techniques with minor modifications. While this makes
timing analysis comparatively easy, the challenge in such approaches is to
make efficient use of shared resources by partitioning them appropriately for
the given workload.

– Approaches analyzing the mutual effects of co-running tasks on each other’s
execution time. Such approaches require new timing analysis techniques that
differ greatly from those employed in the single-core single-task case.

Different methods have been proposed or are pursued to derive guarantees
for the timeliness of sets of tasks in a parallel workload setting when performance



isolation is not given. First, there is the classification according to whether the
software is analyzed or executed.

– The static analysis of a whole set of concurrently executed applications may
deliver a sound and precise guarantee for the timing behavior. The problem
is the huge complexity of this approach.

– Measurement-based methods are in general not able to derive guarantees,
neither in the single-core nor in the multi-core case.

The particular contribution to the execution-time bounds of the interference on
shared resources can be dealt with in different ways:

– The Murphy approach assumes maximal interference on each access to a
shared resource [1]. This assumption can be easily integrated into existing
single-core timing analysis techniques. The Murphy approach will clearly
give sound, but the most pessimistic execution-time bounds.

– The slowdown factor approach attempts to explicitly quantify the worst-
case impact of the interferences in shared resources on the timing of a task
caused by co-running tasks. The obtained slowdown factor can then be used
to obtain an estimate on the execution times of a task in a parallel workload
from an estimate in the isolated case. Existing approaches aim at quan-
tifying the slowdown of a task in the worst case by measurement-based
techniques. These measurement-based approaches employ so-called resource-
stressing benchmarks, which are constructed for particular resources to pro-
duce the maximal slowdown on co-running tasks due to conflicts on this
resource. In Section 4, we will see that attempts in this direction may be
both unsound and overly pessimistic. Resource-stressing benchmarks are, in
general, independent of the application that is slowed down by co-running
these benchmarks. Therefore, one single resource-stressing benchmark can
hardly slow down the application in the worst way. The fact that resource-
stressing benchmarks might not be sound is demonstrated by an imaginary
application-specific worst companion (see Section 4).

– Finally, the static analysis of a whole set of concurrently executed applica-
tions may deliver a sound and precise guarantee for the timing behavior. The
problem is the huge complexity of this approach. To reduce analysis complex-
ity, existing static analysis approaches separate analysis into two phases: The
first phase determines a bound on the execution time of each task in isolation
and a characterization of its resource-access behavior. The second analysis
phase then uses this characterization to bound the impact of interference on
the execution times of all tasks. The sum of the two bounds for each task then
yields an estimate of the task’s worst-case execution time. Such approaches
are discussed in Section 2. For soundness, all of these approaches rely on tim-
ing compositional hardware architectures [2], which permit to account for the
cost of interference in such a compositional way. Unfortunately, many exist-
ing hardware architectures exhibit domino effects and timing anomalies and
are thus out of the scope of such an approach.



1.2 Terminology

We will need a few terms for this survey. The (individual) access delay is the
interval between the time of an individual access request and the time when
this request is granted. This can sometimes be determined by measurement.
The worst-case access delay is the access delay in a worst-case scenario. It is
typically derived from the arbitration protocol and some system parameters,
e.g. the number of concurrently executed tasks and the slot size in bus protocols.
The overall access delay is the sum of all the access delays encountered during a
task’s execution. An upper bound on the overall access delay is sometimes used
in combination with a WCET estimate to compute a worst-case response time
(WCRT) estimate.

2 Bandwidth Resources, in particular Shared Buses

In computer architectures, buses are used to transfer data between different
components of a computer. The components allowed to access a particular bus
are called the accessors of the bus. In order to reduce cost and complexity of the
overall system, often only one accessor is allowed to access the bus at a time. In
this case, the limited bandwidth of such a shared bus is shared solely along the
dimension of time. We only consider such buses in the following.

Several accessors may attempt to access the bus at the same time and thus
cause a bus conflict. Arbitration mechanisms resolve bus conflicts by only grant-
ing access to one accessor at a time. There are three main classes of resource
arbitration mechanisms. Time-driven arbitration uses a predefined bus schedule,
which assigns time slots of fixed size to particular accessors. This is commonly
referred to as TDMA (Time Division Multiple Access). Event-driven arbitra-
tion mechanisms decide at runtime, which accessor is granted resource access
next. These decisions usually depend on the access histories of all accessors.
Prominent examples are Round Robin or FCFS (First-Come-First-Serve) re-
source arbitrations. Hybrid arbitration mechanisms split their arbitration period
into segments of fixed length. Static segments use time-driven resource arbitra-
tion and dynamic segments use event-driven resource arbitration. A member of
this class is the FlexRay [3] bus protocol used in the automotive industry [4,5].

One can distinguish between synchronous and asynchronous bus accesses.
Requests for asynchronous access to a shared bus can be buffered until they
are finally granted by the arbiter. This way, the requesting application can im-
mediately continue its execution. Applications that only rely on asynchronous
resource accesses can achieve the same performance as in combination with a
dedicated bus provided sufficient buffer sizes, enough bandwidth, and sufficiently
delayed accesses to the results. In contrast, requests for synchronous access, e.g.
memory load requests, block the requesting application until they are granted
by the arbiter. The blocking of requests for synchronous bus accesses leads to
additional stalls of the requesting processing unit. Such bus interference effects
may decrease the performance of a processing unit compared to a dedicated bus
scenario on average as well as in the worst case.



In a multiprocessing environment, a processing unit may access a shared bus
explicitly or implicitly. Explicit accesses are performed by commands occurring
in the program, and can therefore be more easily analyzed than implicit accesses.
A first-level cache, private to a processing unit, for example, accesses a shared
memory bus for cache reloads. The cache-coherence protocol for private caches
also accesses the shared bus. Implicit accesses are harder to track by static
analysis than explicit accesses since they are subject to more uncertainty.

2.1 Analysis Approaches and Task Model

Naive bounds on the WCET and WCRT of tasks assume bus access requests to
always be granted immediately. They are obviously not sound in the presence
of bus interferences. A common approach is to first derive naive bounds on the
WCET and to account for possible interference effects in an additional analysis
step focussed on the bus interference.

Literature on worst-case timing analysis for systems with shared bus re-
sources and synchronous bus accesses is mainly concerned with this additional
analysis step. The common assumption is that adding the access delays to the
naive timing bounds will lead to sound WCET bounds. This can only be guar-
anteed for compositional timing models of hardware platforms [2].

To simplify the analysis of bus interference, all surveyed approaches adopt a
task model based on so-called superblocks. Each task is described as a sequence
of superblocks (see Figure 1). Upper bounds on the amount of computation
time (execi) and the number of resource accesses (µi) per superblock (si) serve
as input and are used as common abstraction of tasks [6]. The bounds on the
amount of computation time are assumed to be the result of a naive WCET
analysis ignoring completely the time needed to access the bus. For simplicity,
our figures assume that a bus access always takes one time unit to be served once
it is granted. In the presence of implicit bus accesses it can be a major challenge
to derive tight bounds on the number of resource accesses of a superblock. This
is an open research problem.

s0

exec0 = 4

µ0 = 2

s1

exec1 = 6

µ1 = 3

s2

exec2 = 3

µ2 = 3

Figure 1. A task consisting of three superblocks

The approaches in the literature differ in the class of resource arbitration
considered. While Pellizzoni et al. [7,8] are concerned with event-driven resource
arbitration mechanisms, Schranzhofer et al. [6] treat TDMA resource arbitration.
The determination of safe timing bounds in the presence of a shared bus and a
hybrid arbitration mechanisms is described in Schranzhofer et al. [9].



Time-driven Resource Arbitration An inherent property of time-driven
resource arbitration is that the overall access delay experienced by a task on
one processing unit is independent of the access requests issued by concurrent
accessors. Thus, current approaches for worst-case timing analysis of systems
with shared TDMA buses bound the overall access delay of a given task by
considering its bus accesses and their possible distributions across a known bus
schedule [6]. Optimization approaches try to find a pair of task assignment and
bus schedule leading to a low WCRT bound [10].

The overall access delay of the processor under consideration (PuC) is max-
imized when it is blocked as long as possible by the bus arbitration. The PuC
is blocked whenever it tries to access the bus in a time slot assigned to another
accessor. Furthermore, it is blocked in a time slot assigned to itself if its access
request is released too late to be completed in the current time slot.

The amount of overall blocking experienced by a superblock depends on how
its bus accesses and its computation time are distributed within the superblock.
Possible distributions are restricted by the given upper bounds on the number of
bus accesses and the computation time per superblock. Intuitively, a bus access
released early enough in a time slot assigned to the PuC does not lead to any
blocking of the PuC. In order to maximize the overall blocking, a distribution
of accesses and computation time in the superblock should avoid such access
releases as far as possible.

Algorithms to calculate a WCRT bound for a superblock run through a
sequence of points in time starting with the worst-case release time of the su-
perblock. For each point in time, they decide if a bus access or a certain amount
of computation time could lead to a globally maximized blocking. This decision
determines which point in time has to be considered next. Uncertainty in this de-
cision may lead to case splits. Termination is guaranteed as the maximal amount
of resource accesses and computation time of a superblock will be consumed at
some point in time. Such algorithms construct a distribution of bus accesses and
computation time leading to a tight bound on the WCRT. To avoid case dis-
tinction and thereby reduce the complexity of the problem, it is possible to use
coarse under- and overapproximations as intermediate result. This interval can
be further refined using a binary search that excludes candidates guaranteed to
be infeasible [6].

A superblock with its upper bounds on the computation time and the number
of bus accesses is an abstraction of a fragment of a task. Obviously, these upper
bounds may allow for different distributions of bus accesses and computation
time across the superblock than those found in the original task. As a conse-
quence, the worst-case distribution of accesses determined by an algorithm may
actually be infeasible. The amount of pessimism introduced by the superblock
abstraction remains to be evaluated.

In order to decrease the upper bounds on the WCRT of a task, it is bene-
ficial to split it up into superblocks in a way that each superblock either only
performs computations or only performs bus accesses. This is referred to as dedi-
cated access model [6]. A deterministic execution model for time-critical systems



introduced by Boniol et al. [11] distinguishes between execution and communica-
tion slices in a similar way. The reason for the observed improvement is that the
bounds on the WCRT of a superblock are the consequence of very unbeneficial
interleavings of its bus accesses and its computation time with respect to the
bus schedule’s time slots.

However, it is not clear at which granularity superblocks should be abstracted
from a task’s code. Furthermore, it remains unclear which restrictions a task’s
code has to fulfill in order to be abstracted to superblocks following the dedicated
access model. A simple possibility is to enforce a strict separation of computa-
tion and bus accesses by the programmer. This is, however, not possible in the
presence of implicit bus accesses, which are not visible to the programmer and
have to be detected by a consecutive static analysis.

Event-driven Resource Arbitration It is a common assumption in the lit-
erature that the latency of an individual resource access of the PuC can be
bounded. Either an arbitration protocol provides this property to all accessors,
or at least to the PuC. In the presence of event-driven resource arbitration, there
are two approaches to bound the effect of interference, discussed in more detail
below:

1. By taking into account the arbitration logic.
2. By taking into account the amount of competing resource accesses.

In both approaches, the common principle is to construct the worst-case sce-
nario, that is the scenario that maximizes the latency of a request based on the
knowledge about the interference.

Knowledge about the maximum number of bus accesses in a superblock of
the PuC allows to bound its overall access delay: For round-robin arbitration,
the worst-case scenario is that all other processing units are allowed to perform
one access before the PuC is allowed to do so [7]. In FCFS arbitration, an
interference bound has to additionally take into account the maximum number
of access requests that can be released at the same time by concurrent processing
units if this number is greater than one [8]. We call this delay bounding based
on the arbitration logic. Of course these bounds are only tight provided that the
concurrent processing units can really issue this number of bus requests while
the superblock is executed. This remark leads us to the second bounding factor
on the interference.

It is an inherent property of event-driven arbitration mechanisms, that a
processing unit can only be blocked if and when another processing unit is re-
questing bus access. Furthermore, many event-driven arbitration mechanisms
do not allow to interrupt and restart a bus access once it is granted. Provided
that these two properties hold, a superblock on the PuC cannot experience more
overall access delay than the time needed to perform all the accesses concurrent
accessors might release while the superblock is executed [7,8]. We refer to this
as delay bounding based on the amount of concurrently requested access time.

In order to bound the amount of concurrently requested access time for a
given superblock, all possible interleavings of its bus accesses with concurrent



access sequences have to be taken into account. As this may be computationally
infeasible in general, arrival curves [12,13] are introduced as an abstraction of the
concurrent access behavior. They bound the maximal amount of access time that
concurrent accessors might request in a time interval of given length. It is pos-
sible to obtain them from the superblock abstractions of the task on concurrent
processing units [8]. Let function R(t) describe the cumulative amount of ac-
cess time requested by a concurrent accessor until time t. An arrival curve α(∆)
bounds the amount of access time that can be requested in any time interval of
length ∆:

∀t1 : ∀t0 ≤ t1 : R(t1)−R(t0) ≤ α(t1 − t0)

The use of arrival curves for more than one concurrent accessor inherently
overapproximates the experienced blocking. A longer running superblock can po-
tentially suffer from more delay caused by a particular concurrent accessor than
a quickly executed superblock. Therefore, the involved fixed point iteration has
to pessimistically assume for each concurrent accessor that it can already profit
from the delay caused by all other concurrent accessors. Yet, this loss of precision
is bearable regarding the complexity of considering all possible interleavings of
bus access sequences of the concurrent accessors.

In addition, arrival curves also incorporate concurrent access sequences that
can possibly never be executed in parallel with a particular superblock. There-
fore, arrival curves may introduce additional pessimism with respect to the con-
current access request behavior if that behavior exhibits a heterogenous structure
along the dimension of time.

Hybrid Resource Arbitration For hybrid resource arbitration, it is more
challenging to find a distribution pattern of bus accesses and computation time
across the bus arbitration segments that leads to a globally worst response time.
When constructing worst-case scenarios, the static and dynamic segments need
to be taken into consideration jointly.

While it would be feasible to derive worst-case scenarios considering only
the static or only the dynamic segments with the methods described above, the
derived bounds would likely be very pessimistic.

To avoid high over-estimation, a dynamic programming approach presented
by Schranzhofer et al. [9] enumerates all possible distributions of accesses in
a superblock and interfering accesses of concurrent processing units across the
segments of the bus arbitration.

2.2 Summary of the State of the Art & Open Problems

It is possible to determine safe bounds on the WCRTs of tasks for systems with
synchronous accesses to a shared bus. Upper bounds on the naive WCETs and
the number of bus accesses for each superblock are assumed as input. Approaches
described in the literature treat different classes of bus-arbitration mechanisms.



Each of the approaches is backed by its own separate, rigorous formalism.
It would be beneficial to identify more generic approaches to reason about all
classes of arbitration mechanisms treated so far as well as possible future ones.

Furthermore, the current level of abstraction (superblock-based task model,
arrival curves) is quite high and possibly results in severe overestimation of the
actual interference. It would be valuable to examine the tradeoff between analysis
efficiency and precision by studying more precise task characterizations.

All presented approaches require the bounds on the amount of computation
time and the access times and delays to be compositional. Therefore most authors
assume a timing-compositional hardware platform [2]. Such a platform allows for
a precise description of its temporal behavior by a compositional timing model.
Future work should consider the treatment of hardware platforms that currently
only allow for a precise timing analysis in combination with models exhibiting
timing anomalies.

3 Storage Resources, in particular Shared Caches

Caches are used to bridge the large latency gap between modern processor
pipelines and main memory. They are small, low-latency on-chip memories that
buffer a subset of the contents of the main memory. Cache replacement logic
decides at runtime which memory blocks to store in the cache. Sequential pro-
grams running on single-core machines usually exhibit high spatial and temporal
locality and thus experience a high cache-hit ratio. As a consequence, the av-
erage memory access latency is close to that of the cache in such a scenario.
Precise and efficient static analysis of the behavior of a private cache is pos-
sible if the memory accesses of the application and the replacement logic are
predictable [14].

Current and upcoming multi-core processors feature private first- and some-
times second-level caches and shared higher-level caches. In theory, large shared
caches promise a more efficient use of expensive die area than an array of small
private caches of the same aggregate capacity: their capacity can be shared flex-
ibly according to the needs of the programs running on the connected cores. In
addition, if applications running on different cores share data, they can commu-
nicate more efficiently through the shared cache than through main memory.

Unfortunately, the behavior of current shared caches is hard to predict stat-
ically. The reason for their unpredictability is the interference between accesses
originating from different cores. As with buses, caches cannot serve multiple
memory accesses completely in parallel. Pipelining of accesses is possible, but
some “bandwidth interference” remains. However, the main challenge with shared
caches is that the state of the cache depends on the precise interleaving of ac-
cesses from multiple cores. Accesses from different cores are typically served
on a first-come first-served basis. Their interleaving thus depends on the rela-
tive execution speeds of the applications running on these cores, which—among
other things—depend on their cache performance, which in turn depends on
the cache state. This cyclic dependency between the interleaving of the accesses



and the cache state makes precise and efficient analysis hard or even impossible
in general. Additional complications—not detailed in this survey—arise from
coherence protocols, which need to be employed when applications running on
different cores share memory. Now, even if a shared-cache analysis taking into
account the interactions of multiple applications would exist, such an analysis
would have to have precise knowledge of all applications, their mapping, and
their scheduling. This would render independent and incremental certification
impossible.

Maybe unsurprisingly, it has been observed that uncontrolled sharing of
caches that does not take into account that cached memory blocks belong to
different cores or applications is also detrimental from an average-case perfor-
mance perspective. For example, an application with low temporal and spatial
locality that generates many first-level cache misses can acquire a large portion
of the shared cache without any benefit to system performance.

A common approach found in recent literature is to take into account the core
or application a cache block belongs to when deciding which block to replace.
Typically, the cache is conceptually partitioned among the cores, so that memory
blocks compete for cache space only with other memory blocks of the same core.
Within each partition a common replacement policy such as least-recently used
is applied. The partition sizes are chosen with different objectives in mind, such
as aggregate performance and fairness. In addition or even instead of varying
partition sizes, some approaches also adapt the schedule of applications with
these objectives in mind. Both decisions about scheduling and partition sizes
can happen either statically or dynamically and are taken based on a static or
dynamic characterization of the different core’s memory access behavior.

3.1 Cache Partitioning

In the following, we provide a non-exhaustive survey of the vast existing litera-
ture on

– methods to partition caches,
– approaches to determine good partition sizes, and
– methods to schedule tasks taking into account a shared cache.

How to Partition a Cache
There are various approaches to partition caches. They can be distinguished by

– the partitioning scheme: set-based [15,16] or way-based [17,18], and by
– their implementation: in software [15,16] or in hardware [19,17,18].

In set-based partitioning, each core is given exclusive access to a subset of
all cache sets. This can be realized both in hardware and in software. Hardware-
based solutions can realize set-based partitioning by adapting the mapping of
memory blocks to cache sets depending on the core that issued the memory ac-
cess. If virtual memory is employed and the shared cache is physically-indexed,
set-based partitioning can also be realized in software by page coloring [20]:



In page coloring, physical pages mapping to the same set of cache sets are as-
signed the same color. Then, the set of colors is partitioned among the different
processes. Virtual pages belonging to a particular process are only mapped to
physical pages of the colors assigned to that process.

In way-based partitioning, the cache is partitioned along the cache ways:
each core is given exclusive access to a subset of all cache ways. This can only
be realized in hardware, by accordingly adapting the cache replacement logic.

Both schemes have their advantages and drawbacks: In particular in low-
associativity caches, way-based partitioning only allows for a coarse-grained al-
location of the cache space. Set-based partitioning, in particular its hardware-
based variant, allows for a more fine-grained allocation of the cache space as
the number of ways usually exceeds a cache’s associativity. The main drawback
of set-based partitioning is that changing partition sizes is expensive. Changing
the coloring of pages or changing the mapping of memory blocks to cache sets
implies that the cached data needs to either be invalidated or moved to their
new locations in the cache. As a consequence, hardware-based solutions usu-
ally rely on way-based partitioning, in which changing partition sizes is cheap.
Software-based solutions are forced to rely on set-based partitioning.

How to Determine Sizes of Partitions The choice of partition sizes has a strong
effect on the performance of each corunning task, and thus the system perfor-
mance. Multiple metrics have been proposed to measure system performance,
the most common metric being throughput, i.e. the sum of the IPCs (instruc-
tions per cycle) of all corunning tasks. Other metrics combine performance with
fairness goals.

To arrive at a good partition in terms of a particular performance metric, the
effect of a partition size on each corunning task needs to be characterized in some
form. The following characterizations have been used to drive the partitioning
choice:

– Miss ratio curves [15] capture the miss ratio of a task in terms of the task’s
cache partition size. Unfortunately, miss ratios, i.e., ratios between cache
misses and memory accesses, are not directly correlated with execution times.
A high miss ratio does not imply that the task spends much time waiting for
memory accesses. Thus, minimizing miss ratios does not necessarily maxi-
mize system throughput. A related metric proposed by Tam et al. [21] are
stall-rate curves, which capture the share of overall execution time a task is
stalled for memory.

– Misses per 1000 instruction (MPKI) in terms of cache size [18]. This metric
is much more closely tied to the cache’s impact on execution times. Still, it
may not be perfectly correlated with the resulting performance in terms of
cycles per instruction.

– Cycles per instruction (CPI) in terms of cache size [18]. This would be the
ideal metric when optimizing throughput. However, in contrast to MPKI, it
is hard to determine efficiently.



The vast majority of the literature is concerned with general-purpose comput-
ing, in which the set of tasks changes dynamically and is not known in advance.
In this scenario, the characterization of the tasks needs to be performed at run-
time. Qureshi et al. [18] propose dynamic set sampling as an efficient and fairly
accurate mechanism to estimate the MPKI. The idea is to focus on a small sub-
set of all cache sets and to extrapolate from the observations in this subset to
the entire cache. On this small subset, the cache is augmented with additional
tags, which are used to dynamically evaluate the effect of providing more cache
ways to a particular task. With these additional tags, the hardware is able to
count the potential number of cache hits due to each additional cache way.

In a hard real-time context, the task set is known in advance, and a reasonable
characterization would be bounds on the WCET of each task in terms of its
partition size.

Given the characterization of each of the tasks, dynamic approaches then
predict from the past behavior of the tasks, which choice of partitioning is likely
to maximize the chosen performance metric in the future. Depending on the par-
titioning scheme, a reconfiguration overhead needs to be taken into account. This
may be particularly severe in case of software-based partitioning. Zhang et al. [15]
discuss tradeoffs in a page coloring approach.

Scheduling Approaches In addition to choosing good partition sizes for a given
workload, system performance may be improved by optimizing the schedule.
This has been considered for general-purpose tasks and his particularly relevant
in the hard real-time case, as all the necessary information is present at design
time.

Zhao et al. [22] present an approach to dynamic scheduling that is based on
their CacheScouts monitoring architecture. This architecture provides hardware
performance counters for shared caches that can detect how much cache space
individual tasks use, and how much sharing and contention there is between
individual tasks. The authors describe three dynamic scheduling heuristics that
utilize this architecture:

– Schedule a waiting task that has significant sharing with other already run-
ning tasks.

– Schedule a task that still has its working set left in the cache.
– Co-schedule tasks with a small and a large working set.

An approach to static scheduling in a hard real-time context is presented
by Guan et al. [23]. They extend the classical real-time scheduling problem by
associating with each task a required cache partition size. They propose an
associated scheduling algorithm, Cache-Aware Non-preemptive Fixed Priority
Scheduling, FPCA. FPCA schedules a job Ji, if

– Ji is the job of highest priority among all waiting jobs,
– there is at least one idle core, and
– enough cache partitions to execute Ji are available.



They propose a linear programming formulation that determines whether a given
task set is schedulable under FPCA. For higher efficiency, they also introduce a
more efficient heuristic schedulability test that may reject schedulable task sets.

3.2 Summary of the State of the Art & Open Problems

Much work has been done in general-purpose computing to optimize average-
case performance by cleverly partitioning shared caches. Much less has been
done in the context of hard real-time systems. However, in the case of cache
partitioning, hard real-time systems may in fact present a simpler problem: A
major remaining challenge is that no real-time scheduling policy taking into
account cache space demands is established. The work of Guan et al. [23] is a
step in this direction. However, it takes the required cache partition size of each
task as an input. Choosing partition sizes to optimize schedulability is an open
problem.

In this survey, we have focussed on shared caches. Other storage resources
that are increasingly shared in embedded systems are DRAMs and Flash mem-
ory. Recently, real-time memory controllers for SDRAM have been proposed that
provide bandwidth and latency guarantees to their clients [24,25,26]. These con-
trollers are based on a combination of predictable arbitration mechanisms, such
as TDMA, and DRAM-specific access patterns that eliminate the dependence
of latencies on the execution history.

4 Assessing the Impact of Resource Sharing on
Performance by Measurements

As described earlier in Section 1.1, one possibility to estimate the timing behavior
of tasks is by measurements. In this section, we discuss existing measurement-
based approaches that aim at quantifying the slowdown a task experiences when
different tasks are executed in parallel.

In a single-core setting, a measurement-based estimate is obtained by mul-
tiplying the longest observed execution time by a safety margin. However, it is
not possible to directly extend such measurement-based timing analyses from
the single-core to the multi-core setting.

First, consider timing analysis before tasks have been mapped to cores and
scheduled. Given a set of k tasks executing on a system with n cores (k > n),
there exist

(
k
n

)
possible workloads that could be executed in parallel. Hence,

without additional knowledge about the mapping and the schedule, it would be
necessary to measure the slowdown of a task in each possible workload in order
to determine its worst-case timing. This is very expensive by means of analysis
time, especially as all measurements have to be repeated in case the task set
changes. Therefore, it is desirable to determine workload-independent estimates
of the slowdown. In case of timing analysis after the mapping process, this is not
a problem.



Second, the choice of a proper safety margin becomes harder due to the
increased variance in execution times. The safety margin is needed to compensate
for the potential difference between the highest measured execution time and
the actual WCET. With increasing variance, the safety margin must thus be
increased as well. Thus the application of the safety margin might lead to a
strong overestimation of the WCET in case the highest measured execution
time is close to the actual WCET.

To obtain a workload-independent estimate of the slowdown, so-called re-
source-stressing benchmarks are employed as co-runners during the measure-
ments. A resource-stressing benchmark is a synthetic program that tries to max-
imize the load on a resource or a set of resources. The interference a resource-
stressing benchmark causes on a certain resource is meant to be an upper bound
to the interference any real co-runner could cause. Therefore the slowdown a
program experiences due to interferences on a certain resource when co-running
with a resource-stressing benchmark bounds the slowdown that could occur with
respect to this resource in any real workload.

Typically, resource-stressing benchmarks are independent of the application
under consideration, but specific to an architecture. They are independent of
the application so they can be reused for the analysis of different programs.
The architecture under consideration must be taken into account for properly
constructing e.g. a benchmark that maximally stresses the bandwidth to main
memory: it must be guaranteed that none of the loads performed by the bench-
mark can be served by any of the caches. Thus the offset between the addresses
has to be chosen in such a way that no cache line is accessed twice. For the
proper choice of this parameter, architectural information about the width of a
cache line is needed.

As an additional aspect, the obtained slowdowns can be used to estimate the
timing predictability of an architecture. A significant slowdown implies a possibly
high variance in the execution times of a task and thus disallows accurate timing
analysis. Hence, it is also a measure for the suitability of a multi-core architecture
for time-critical embedded systems.

In the context of hard real-time embedded systems, measurement-based ap-
proaches are inappropriate because they cannot derive safe, analytical guaran-
tees. This is because it cannot be guaranteed that the actual WCET is en-
countered during the measurements. Even the highest measured execution time
together with the safety margin is not necessarily an upper bound to the WCET.
However, no static analysis that soundly accounts for all interferences in a multi-
core architecture, has been proposed so far.

In Section 4.1, we present the existing approaches in more detail. In Sec-
tion 4.2, we discuss the shortcomings of the measurement-based approaches and
pose open questions.

4.1 Resource-Stressing Benchmarks

Radojković et al. [27], Nowotsch et al. [28] and Fernandez et al. [29] all employ
resource-stressing benchmarks in order to quantify the slowdown of tasks in



a multi-core architecture. In all three approaches, the respective benchmarks
are systematically constructed based on the characteristics of the resource to be
stressed. A benchmark that aims at stressing, e.g. parts of the memory hierarchy
should almost only involve memory operations and avoid local computations.

The approaches differ in the resources and architectures under consideration
as well as in the respective evaluation techniques.

Radojković et al. [27] propose benchmarks that stress a variety of possibly
shared resources, including functional units, the memory hierarchy, especially the
caches at different levels and the bandwidth to the main memory. Experiments
are carried out on three architectures with different shared resources in order
to show the varying timing predictability, depending on the degree of resource
sharing. One architecture offers hyperthreading, i.e. all resources including the
pipeline are shared. For the second architecture, only the bandwidth to the main
memory is shared between two cores whereas for the third architecture, the L2
cache is shared as well. In order to show the variance of the possible slowdown,
measurements are taken for three different scenarios. In the first scenario, only
resource-stressing benchmarks are executed concurrently to estimate the worst
possible slowdown independently of the application. In the other cases, the ap-
plication is either executed with another co-running application or with different
co-running resource-stressing benchmarks.

Unsurprisingly, the more resources are shared, the larger is the possible im-
pact of resource sharing on execution times. This makes techniques like hyper-
threading impractical for systems with hard real-time constraints. The measure-
ments for the different scenarios reveal that the slowdown due to co-running
resource-stressing benchmarks drastically exceeds the slowdown measured in
workloads only consisting of real applications. This implies that the workload-
independent slowdown determined with co-running resource-stressing bench-
marks yields a very imprecise upper bound to the slowdown in any real workload.
Therefore, the analysis result might be not very useful in practice.

Nowotsch et al. [28] present benchmarks that stress the memory hierarchy,
i.e. the bus to main memory and the caches. The slowdown is measured for
workloads exclusively consisting of resource-stressing benchmarks. Several sce-
narios are considered, testing the influence of different memory configurations
(static RAM vs. dynamic RAM) and cache coherency settings on the variance of
the observed slowdowns. The overhead due to static coherency (i.e. only checks
whether memory blocks in the local caches are coherent) is determined by en-
abling the coherency flag during measurements although there are no coherent
accesses. The overhead due to dynamic coherency (i.e. not only checks, but also
explicit memory operations enforcing coherency) is assessed by enabling the co-
herency flag during measurements in a setting where coherent accesses occur.
Measurements are carried out on the Freescale P4080 multi-core processor which
is used in avionics.

The outcomes show that the time for concurrent accesses to DDR-SDRAM
memory scales very badly with the number of concurrent cores, in contrast to
SRAM. Concerning the different cache coherency settings, the results show that



even without coherent accesses, static coherency induces an overhead in execu-
tion time that should be considered in timing analysis. The impact of dynamic
coherency strongly depends on the type of memory operation (read or write).
In case of read with concurrent read, dynamic coherency does not cause any
slowdown compared to static coherency. For write operations, the execution is
slowed down significantly in case of dynamic coherency, regardless of the concur-
rent operation. This can be explained by the fact that after a write operation,
coherency actions are required to keep the memory hierarchy consistent.

The benchmarks used by Fernandez et al. [29] focus on the memory hierarchy
of the system, including the caches at different levels as well as the memory
controller. In order to evaluate the influence of the underlying operating system
on the slowdown due to shared resources, the measurements are performed once
on Linux and once on the real-time operating system RTEMS. The overhead in
execution time is determined for two types of workloads: task sets exclusively
composed of resource-stressing benchmarks and task sets with one application
and one co-running resource-stressing benchmark.

The outcomes of the experiments with benchmarks that exclusively stress the
private L1 cache through store operations show that a considerable slowdown
is produced. This is due to the fact that the L1 cache is write-through, thus
store operations lead to bus traffic, L2 cache interference and memory controller
accesses. The number of store instructions within an application is identified to
be the dominant metric for slowdowns in this architecture. Employing write-back
caches reduces this overhead but introduces new overhead arising from cache
coherency protocols, as it has been described in [28]. The results produced for the
different operating systems show that they have a non-negligible influence as well.
For example, whereas the estimated miss rate is 11% for a certain application
in a Linux environment, the same application shows a miss-rate of near zero on
the RTEMS operating system. Similar to the outcomes of the other papers, the
application-independent slowdown measured in workloads with only resource-
stressing benchmarks exceeds the application-dependent one.

4.2 Summary of the State of the Art & Open Problems

The state of the art approaches provide measurement-based estimates on the
slowdown of a task due to interferences on shared resources caused by co-
running tasks. These estimates are then used to roughly classify components
of a multi-core architecture with respect to timing predictability. There are two
main concerns about the soundness of the measurement-based approaches em-
ploying resource-stressing benchmarks.

First, there is neither a proof nor a formal argument why a specific benchmark
puts maximal load on a resource. For the storage resources in particular, it is
very difficult to argue why their state is affected in the worst possible way. In
case of several possible co-runners, these arguments become even more difficult
because of the combined interferences.

Second, a resource-stressing benchmark is typically application-independent.
An application with memory-intensive as well as computation-intensive parts is



neither slowed down maximally by a cache-stressing nor by a functional-unit-
stressing co-runner. To account for this behavior, either a sound combination of
slowdowns obtained by different benchmarks or an application-specific bench-
mark is needed. Obtaining a sound combination of slowdowns, which we call
compositionality issue, is hard because resources are not independent of each
other. For example, a program that stresses the memory bus does also nec-
essarily stress the last-level-cache. But, a benchmark that stresses several re-
sources simultaneously cannot stress one particular resource in the worst possible
way at the same time. We call the application-specific benchmark that causes
the maximal slowdown worst companion. In general, the construction of this
worst companion might be infeasible due to limited control over the hardware
itself. Nevertheless, application-specific benchmarks might produce worse slow-
downs than application-independent benchmarks which disproves the soundness
of these measurement-based techniques.

Beyond the open questions concerning the soundness of the approaches, the
usefulness of the obtained slowdowns is questionable. While a resource-stressing
benchmark can cause slowdown factors of up to 20, in reality, applications are
co-located with other applications that typically cause much less interferences
on shared resources. Radojković et al. [27] demonstrate that the slowdown an
application experiences with co-running resource-stressing benchmarks is signif-
icantly higher compared to other co-running applications.

An orthogonal research problem is the construction of supporting bench-
marks that e.g. use cache prefetching to speed up the application. Analogously
to the worst companion, one could aim at the construction of a best companion.

5 Conclusions

This survey has given an overview of the impact of the interference on shared
resources on performance and performance estimation. Goals of the described
approaches were performance estimation or performance improvement. Mainly,
two types of resources were considered, bandwidth resources, e.g. buses, and
storage resources, e.g. caches.

Performance estimation methods for multi-core systems with shared buses
attempt to derive bounds on the overall access delays under different arbitration
protocols. All use cumulative abstractions such as the number of bus accesses
during bounded-length phases in tasks in a simplified task model. Different ar-
bitration protocols have different worst-case scenarios in which bounds on the
access delays are computed.

Static analysis of the cache behavior of shared caches is highly complex due to
the large number of potential interleavings to be considered. Cache partitioning
among the different tasks on different cores is used instead. Methods known
from the single-core case can then be used. Performance of statically shared
caches will suffer for systems with dynamically varying demands on memory.
Dynamic cache partitioning is the answer. Existing approaches consider shared



caches in isolation and ignore the effect cache reloads and write backs have on
the necessarily shared bus.

Several approaches attempt to construct resource-stressing benchmarks. Such
a benchmark for a specific resource is meant to cause the maximal slowdown on
a co-running application. In an interval of bounded length any resource can only
be stressed to a degree that is a function of the interval length. The presented
ways to design resource-stressing benchmarks do this in an intuitive, but ad-hoc
way. They are independent of any particular application. It seems clear that a
larger slowdown of a particular application can be achieved by an application-
specific worst companion, which better exploits the available time to exercise
stress on shared resources. Thus the existing resource-stressing benchmarks do
not exhibit upper bounds on the interference. On the other hand, they are overly
pessimistic: a co-running application will seldom exercise such a large stress on
a shared resource.

References

1. Ungerer, T., Cazorla, F., Sainrat, P., Bernat, G., Petrov, Z., Rochange, C.,
Quinones, E., Gerdes, M., Paolieri, M., Wolf, J., Casse, H., Uhrig, S., Guliashvili,
I., Houston, M., Kluge, F., Metzlaff, S., Mische, J.: Merasa: Multicore execution of
hard real-time applications supporting analyzability. IEEE Micro 30 (2010) 66–75

2. Wilhelm, R., Grund, D., Reineke, J., Schlickling, M., Pister, M., Ferdinand, C.:
Memory hierarchies, pipelines, and buses for future architectures in time-critical
embedded systems. IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems 28(7) (July 2009) 966–978

3. FlexRay Consortium: FlexRay. http://www.flexray.com/

4. BMW: BMW technology guide: Flex Ray. http://www.bmw.com/com/en/

insights/technology/technology_guide/articles/flex_ray.html

5. Robert Bosch GmbH: FlexRay communication controller IP. http://www.

bosch-semiconductors.de/en/ipmodules/flexray/flexray.asp

6. Schranzhofer, A., Chen, J.J., Thiele, L.: Timing analysis for TDMA arbitration in
resource sharing systems. In: Proceedings of the 2010 16th IEEE Real-Time and
Embedded Technology and Applications Symposium. RTAS ’10, Washington, DC,
USA, IEEE Computer Society (2010) 215–224

7. Pellizzoni, R., Caccamo, M.: Impact of peripheral-processor interference on WCET
analysis of real-time embedded systems. IEEE Transactions on Computers 59
(2010) 400–415

8. Pellizzoni, R., Schranzhofer, A., Chen, J.J., Caccamo, M., Thiele, L.: Worst case
delay analysis for memory interference in multicore systems. In: Proceedings of the
Conference on Design, Automation and Test in Europe. DATE ’10, 3001 Leuven,
Belgium, Belgium, European Design and Automation Association (2010) 741–746

9. Schranzhofer, A., Pellizzoni, R., Chen, J.J., Thiele, L., Caccamo, M.: Timing anal-
ysis for resource access interference on adaptive resource arbiters. In: Proceedings
of the 2011 17th IEEE Real-Time and Embedded Technology and Applications
Symposium. RTAS ’11, Washington, DC, USA, IEEE Computer Society (2011)
213–222

10. Rosen, J., Andrei, A., Eles, P., Peng, Z.: Bus access optimization for predictable
implementation of real-time applications on multiprocessor systems-on-chip. In:



Proceedings of the 28th IEEE International Real-Time Systems Symposium. RTSS
’07, Washington, DC, USA, IEEE Computer Society (2007) 49–60

11. Boniol, F., Cassé, H., Noulard, E., Pagetti, C.: Deterministic execution model on
COTS hardware. In: ARCS. (2012) 98–110

12. Cruz, R.L.: A calculus for network delay. IEEE Transactions on Information
Theory 37(1) (1991) 114–141

13. Wandeler, E., Thiele, L., Verhoef, M., Lieverse, P.: System architecture evaluation
using modular performance analysis: a case study. Int. J. Softw. Tools Technol.
Transf. 8(6) (October 2006) 649–667

14. Reineke, J., Grund, D., Berg, C., Wilhelm, R.: Timing predictability of cache
replacement policies. Real-Time Systems 37(2) (2007) 99–122

15. Zhang, X., Dwarkadas, S., Shen, K.: Towards practical page coloring-based multi-
core cache management. In: Proceedings of the 4th ACM European conference on
Computer systems. EuroSys ’09, New York, NY, USA, ACM (2009) 89–102

16. Suhendra, V., Mitra, T.: Exploring locking & partitioning for predictable shared
caches on multi-cores. In: Proceedings of the 45th annual Design Automation
Conference. DAC ’08, New York, NY, USA, ACM (2008) 300–303

17. Nesbit, K.J., Laudon, J., Smith, J.E.: Virtual private caches. SIGARCH Comput.
Archit. News 35(2) (June 2007) 57–68

18. Qureshi, M.K., Patt, Y.N.: Utility-based cache partitioning: A low-overhead, high-
performance, runtime mechanism to partition shared caches. In: IEEE/ACM Inter-
national Symposium on Microarchitecture. MICRO ’06, IEEE Computer Society
(2006) 423–432

19. Xie, Y., Loh, G.H.: PIPP: promotion/insertion pseudo-partitioning of multi-core
shared caches. In: Proceedings of the 36th annual international symposium on
Computer architecture. ISCA ’09, New York, NY, USA, ACM (2009) 174–183

20. Taylor, G., Davies, P., Farmwald, M.: The TLB slice – a low-cost high-speed
address translation mechanism. SIGARCH Comput. Archit. News 18(3a) (May
1990) 355–363

21. Tam, D., Azimi, R., Soares, L., Stumm, M.: Managing shared L2 caches on mul-
ticore systems in software. In: Workshop on the Interaction between Operating
Systems and Computer Architecture. (2007)

22. Zhao, L., Iyer, R., Illikkal, R., Moses, J., Makineni, S., Newell, D.: CacheScouts:
Fine-grain monitoring of shared caches in CMP platforms. In: Proceedings of
the 16th International Conference on Parallel Architecture and Compilation Tech-
niques. PACT ’07, Washington, DC, USA, IEEE Computer Society (2007) 339–352

23. Guan, N., Stigge, M., Yi, W., Yu, G.: Cache-aware scheduling and analysis for mul-
ticores. In: Proceedings of the seventh ACM international conference on Embedded
software. EMSOFT ’09, New York, NY, USA, ACM (2009) 245–254

24. Akesson, B., Goossens, K., Ringhofer, M.: Predator: a predictable SDRAM memory
controller. In: CODES+ISSS, ACM (2007) 251–256

25. Paolieri, M., Quiñones, E., Cazorla, F., Valero, M.: An analyzable memory con-
troller for hard real-time CMPs. IEEE Embedded Systems Letters 1(4) (2010)
86–90

26. Reineke, J., Liu, I., Patel, H.D., Kim, S., Lee, E.A.: PRET DRAM controller:
bank privatization for predictability and temporal isolation. In: Proceedings of the
seventh IEEE/ACM/IFIP international conference on Hardware/software codesign
and system synthesis. CODES+ISSS ’11, New York, NY, USA, ACM (2011) 99–
108



27. Radojković, P., Girbal, S., Grasset, A., Quiñones, E., Yehia, S., Cazorla, F.J.: On
the evaluation of the impact of shared resources in multithreaded COTS processors
in time-critical environments. ACM Trans. Archit. Code Optim. (2012)

28. Nowotsch, J., Paulitsch, M.: Leveraging multi-core computing architectures in
avionics. In: EDCC. (2012)

29. Fernandez, M., Gioiosa, R., Quiñones, E., Fossati, L., Zulianello, M., Cazorla, F.J.:
Assessing the suitability of the NGMP multi-core processor in the space domain.
In: EMSOFT. (2012)


