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Abstract

Programs in hard real-time systems have to satisfy non-functional constraints, such
as timing constraints, beyond their functional requirements. The static analysis
that derives bounds on the execution times has to take into account the components
of the underlying hardware platform, such as caches and pipelines, in order to
derive tight bounds on the execution times.
Static cache analysis classifies memory accesses as cache hits, cache misses or

unknown. State-of-the-art cache analyses cannot precisely model accesses whose
addresses are imprecisely determined: no hits can be predicted for those accesses
and they deteriorate analysis information excessively.
We present a relational cache analysis that can represent cache elements with

imprecisely determined addresses and uses relations between cache elements —
obtained by congruence analyses — in order to do precise updates and classifications.
This paves the way for cache analysis to profit from analyses other than value
analyses and enables the prediction of hits for new classes of accesses, e.g. those
with input-dependent addresses.
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1 Introduction

In hard real-time systems, the set of tasks that are supposed to run on a micropro-
cessor has to undergo a schedulability analysis. A task works correct if it computes
correct results and satisfies timing constraints. The schedulability analysis checks
statically whether a given set of tasks is schedulable in a way that each task always
satisfies its timing constraints. As input, the schedulability analysis needs the
running times of the given programs. The running time of a program can vary due
to different inputs and different initial hardware states. Thus, the schedulability
analysis has to account for all possible running times and especially the running
time in the worst case. Measured running times might dramatically differ from the
actual running time in the worst case. In this case, the schedulability analysis could
classify a set of tasks as schedulable although it is not. Computing the worst-case
execution time statically is not always possible, e.g. as the running time might
depend on inputs not known before runtime. Therefore, it is only safe to use upper
bounds on the execution times.

The analysis that computes an upper bound on the execution times of a program
is called Worst Case Execution Time (WCET) analysis. The analysis is divided in
several phases that are shown in Figure 1. We will give a short overview and then
focus on cache analysis.

The first phase reconstructs the control-flow graph (CFG) of the given program
binary. The CFG is used as the intermediate representation subsequent analyses
are performed on.

Value analysis computes over-approximations on the set of values a register or a
memory location can hold. An interval analysis can be used for this purpose.
Loop bound analysis tries to determine an upper bound on the number of

iterations of each loop. If the loop bound analysis fails to do so, the WCET analysis
requires additional information on the loop bounds. This information has then to
be provided by the user.
Control-flow analysis tries to detect infeasible paths through the program that

can later be excluded from the final WCET computation.
Micro-architectural analysis determines worst-case execution times of basic blocks.

Modern microprocessors have several components that speed up computation, e.g.
pipelines and caches. Although these components are important for acceptable
execution times, they complicate WCET analysis. Not taking the underlying
hardware platform into account would lead to very loose approximations of execution
times that are virtually useless for schedulability analysis.

Finally, global bound analysis determines the longest path through the program
with the help of the results of the micro-architectural analysis and the control-flow
analysis.
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Figure 1: Tool architecture for WCET analysis
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Cache analysis In the following, we focus on cache analysis, which is a crucial
part of the micro-architectural analysis. A cache is a small and fast memory that
aims at bridging the latency gap between the processor and main memory. The
cache therefor stores memory blocks, consisting of several adjacent memory words,
that are likely to be accessed in the near future. If a memory block is accessed that
resides in the cache, the access is called a cache hit, otherwise a cache miss. Ignoring
the influence of the cache on the execution time leads to high overestimations:
whereas a memory access can be serviced in one cycle in case of a cache hit, loading
a cache line from main memory in case of a cache miss takes up to several 100
cycles. Cache analysis tries to classify memory accesses that occur in the program
either as hit, miss or unknown. If the analysis classifies an access as hit (miss), the
memory access is guaranteed to hit (miss) the cache. Otherwise, the cache analysis
could neither guarantee that the access hits the cache nor that it misses the caches.

In cache analysis, there are several sources of uncertainty [15] (also see Figure 2)
that influence the precision of the analysis. Usually, one cannot make assumptions
on the initial cache contents as they depend on previously executed tasks. Different
initial cache contents can result in different execution times. When control flow
joins, one has to safely combine information that comes from different paths, which
typically leads to imprecision in cache analysis. Holding information from different
paths apart can yield preciser results but is inefficient.
In order to produce precise results, currently employed cache analyses depend

on precisely computed addresses: The cache analysis makes use of the previous
value analysis that has approximated the addresses of memory blocks that might
be accessed. However, it is not always possible to obtain the precise address that
is accessed, e.g. if the program involves input-dependent addresses. If a function
involves stack-relative accesses and is called several times during program execution,
the value analysis obtains imprecisely determined addresses as the stack-pointer
changes. Similarly, addresses of array accesses with loop-dependent indices can
only be determined imprecisely. In the latter cases, current approaches increase
context sensitivity to be able to compute precise addresses within each context.

Our Contributions We present a novel cache analysis, that alleviates the depen-
dency on address analysis. Basically, it does away with the popular misconception
that precise address information is necessary for cache analysis. To predict cache
hits for instance, it is sufficient to show that the currently accessed block coincides
with a cached one, possibly without knowing its actual address.

As our first contribution, we introduce the concept of symbolic names as abstract
cache elements. A symbolic name is a unique identifier for a static memory reference
and can thus be seen as a representative for all memory blocks that might be

3
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Figure 2: Sources of uncertainty in cache analysis

accessed by that reference. It abstracts from specific addresses and therefore allows
the modeling of cache elements whose addresses are imprecisely determined.

To retain information about a symbolic name in an abstract cache, we consider
relations between cache sets. We do not analyse cache sets independently anymore
but in combination: a cached symbolic name is guaranteed to be cached while it
might map to any cache set and the cache set it actually maps to is unknown.
To do precise updates and classifications, we use relations between symbolic

names. Therefore, we have a module called congruence analysis, that computes
relations between symbolic names, e.g. that the currently accessed symbolic name
coincides with the one accessed two instructions ago. This paves the way for cache
analysis to use information from analyses other than address analysis.

There is a wide range of application examples, e.g. programs that involve input-
dependent accesses, or stack-relative accesses with an imprecisely determined stack
pointer.
We implemented a prototype of the relational cache analysis using the inter-

mediate representation Firm. The first results obtained by this implementation
are promising. When analyzing stack-relative accesses without distinguishing call
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sites, the relational cache analysis can still classify up to 56% of the static memory
references as hits — or up to 83% of the hits that can be predicted by the analysis
with full context sensitivity. If increasing the context sensitivity is not feasible, e.g.
in deeply nested loops, the relational cache analysis can nevertheless find out a
reasonable amount of hits whereas the traditional cache analysis cannot predict
any hits. Up to 14% more hits can be predicted by the relational cache analysis
compared to the traditional one, if accesses with input-dependent addresses are
involved. These results are obtained by using simple congruence analyses like an
interval analysis or global value numbering — employing more powerful congruence
analyses will lead to an improvement on the relational cache analysis.

Structure of the Thesis

Section 2 presents foundations like program representation and abstract interpreta-
tion. Section 2.4 especially treats the cache analysis of Ferdinand et al. [7]. We are
particularly interested in how accesses to sets of memory blocks instead of only one
memory block are handled. This is necessary for accesses whose addresses cannot
be precisely computed.

In Section 3 we first motivate our work in more detail on the basis of an example.
We show how to improve the traditional cache analysis in the presence of accesses
with imprecisely determined addresses. We formally define the concept of symbolic
names and the congruence analysis that computes relations between symbolic
names. Subsequently, we present a relational cache analysis that makes use of
symbolic names and congruence analysis results. The underlying concrete semantics
is also defined and the analysis is proven correct with respect to this concrete
semantics. Furthermore, we revisit the motivating example to demonstrate the
results of our relational cache analysis.

In Section 4 we discuss work related to (data) cache analysis and compare these
approaches to our relational cache analysis.
Section 5 deals with the implementation details, i.e. we present the employed

congruence analyses and the framework we used as an intermediate program
representation. In Section 6 we identify classes of programs for which our analysis
is profitable and compare its results to the ones of the traditional cache analysis.
We conclude in Section 7 with a short summary and outlook on future work.
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2 Foundations

2 Foundations

2.1 Program Representation

Definition 2.1 (Rooted Graph). A rooted graph G is a triple (V,E, r), where V is
the vertex set and E ⊆ V ×V is the set of arcs. The distinguished root vertex r ∈ V
has no incoming edges, i.e. ∀v ∈ V : (v, r) 6∈ E.

Definition 2.2 (Path). Let G = (V,E, r) be a rooted graph and u, v, w ∈ V .
A path π from v to u is a non-empty sequence of vertices (v0, v1, . . . , vk) such
that v0 = u, vk = v, and ∀i ∈ {1, . . . , k} : (vi−1, vi) ∈ E. For short, we write
π = u −→∗ v.

Definition 2.3 (Program). Let A denote the set of variables and be r1, . . . , ri,
o1, . . . , oj ∈ A. An instruction is an assignment of the form (r1, . . . , ri) :=
ρ(o1, . . . , oj) with operation ρ, operands o1, . . . oj, and results r1, . . . , ri. A pro-
gram P is a control-flow graph (CFG), G = (V,E, r, I), where each vertex v ∈ V
has associated exactly one instruction, I(v). E models the potential control flow, r
represents the unique program entry point.

2.2 Abstract Interpretation

Many problems in static analyses are undecidable or the results of analyses are not
efficiently computable. In order to statically obtain information about a program
(in an efficient manner), one computes approximations. The theory of Abstract
Interpretation [4] formalises this idea of approximation and allows for the design
of semantics-based program analyses as well as for the proofs of their correctness.
Different types of program semantics and abstractions are presented in [3] as well
as their use for static program analysis.
Section 2.2.1 covers basic program semantics that occur throughout the thesis

such as trace semantics, collecting semantics and abstract semantics. In Section 2.2.2
we show how soundness of abstractions can be established.

2.2.1 Program semantics

A program semantics describes the meaning of a specific program. The set of
program semantics is a partially ordered set (P,v). The partial order models the
notion of precision. Let p1 and p2 be two program semantics. If p1 v p2, we say p1
is at least as precise as p2, i.e. p1 describes the meaning of the program at least as
precise as p2. We will present some kinds of semantics that occur similarly in this
thesis.
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2.2 Abstract Interpretation

Trace semantics Let Σ be a set of system states and IC ⊆ Σ the set of initial
system states. The underlying partially ordered set for the trace semantics is
(2(V×Σ)∗ ,⊆). Besides the sequence of system states during execution, we also
explicitly model the corresponding program point during execution, that can also
be part of Σ. Consider a transition relation ∼: (V × Σ)× (V × Σ) that models an
elementary step of the whole system. The trace semantics is defined in terms of a
fixpoint semantics.

Definition 2.4 (Trace Semantics). Let P be a program given by the CFG G =
(V,E, r, I). The trace semantics TraceP ∈ 2(V×Σ)∗ of P on the initial system
configurations IC is defined as the least fixpoint of the following equation.

TraceP ={(r, s) | s ∈ IC} ∪ {π ◦ x ◦ y | π ◦ x ∈ TraceP ∧ x ∼ y}

Sticky Collecting Semantics Let S be a set of possible descriptions of program
properties we are interested in and f : V → S → S the corresponding transformer
function. The underlying partially ordered set is (V → 2S,v). v is defined
component-wise:

s1 v s2 := ∀v ∈ V.s1(v) ⊆ s2(v)

The collecting transformer fcoll : V → 2S → 2S then looks like fcoll(v)(S) =
{f(v)(s) | s ∈ S}. The corresponding path effect JπKfcoll

is defined as

JπKfcoll
=

id : π = ε

fcoll(vn) ◦ J(v1, . . . , vn−1)Kfcoll
: π = (v1, . . . , vn)

Definition 2.5 (Sticky Collecting Semantics). Let P be a program given by the
CFG G = (V,E, r, I). The sticky collecting semantics CollP : V → 2S of P on the
set of initial state IS is

CollP := λv ∈ V.{JπKfcoll
IS | π : r →∗ v}

Abstract Semantics Let (A,vA) be a partially ordered set of abstract descrip-
tions of interesting program properties and fabs : V → A→ A the corresponding
abstract transformer. The underlying partially ordered set is (V → A,v) where
v is defined component-wise using vA. The corresponding path effect JπKfabs

is
again defined as

JπKfabs
=

id : π = ε

fabs(vn) ◦ J(v1, . . . , vn−1)Kfabs
: π = (v1, . . . , vn)

7



2 Foundations

Definition 2.6 (Sticky Abstract Semantics). Let P be a program given by the
CFG G = (V,E, r, I). The sticky abstract semantics AbsP : V → A of P on the
abstract initial state AI ⊆ A is

AbsP := λv ∈ V.
⊔
{JπKfabs

AI | π : r →∗ v}

2.2.2 Establishing soundness

We will provide some basic information on abstract interpretation and how we use
it to finally prove the correctness of our analysis. In the following, we consider a
concrete domain (DC ,6) as well as an abstract domain (DA,v).

Relating the abstract to the concrete domain We need to give meaning
to elements of our abstract domain. We therefor define a monotonic function
γ : DA → DC , the so called concretization function. γ(a) describes the concrete
element that is represented by the abstract element a.

The requirement that γ has to be monotonic is quite natural. If a1 ∈ DA is more
precise than a2 ∈ DA (a1 v a2), the concrete element γ(a1) should also be more
precise than the concrete element γ(a2) (γ(a1) 6 γ(a2)).

In abstract interpretation there is usually also an abstraction function α : DC →
DA that maps a concrete element to its abstract description. Since we will not
make further use of it, we will not go into detail about it. For further reading,
please refer to [4].

Definition 2.7 (Soundness). Let P be a program and ConcP ∈ DC the concrete
semantics of P and AbsP ∈ DA the abstract semantics of P . Furthermore let
γ : DA → DC be the concretization function. AbsP is a sound approximation of
ConcP if and only if

ConcP 6 γ(AbsP )

Establishing soundness between sticky semantics Let DC = V → C, DA =
V → A and 6C , vA the respective partial orders on C and A. The sticky semantics
are given by the domain (C,6C) and the transformer f \ : V → C → C, respectively
(A,vA) and f ] : V → A→ A. The partial order can be extended by

c1 6 c2 = ∀v ∈ V.c1(v) 6C c2(v)
a1 v a2 = ∀v ∈ V.a1(v) vA a2(v)

8



2.3 Caches

The concretization function γ between DA and DC can be defined program point-
wise by the concretization function γAC between A and C.

γ(dA) = λv ∈ V.γAC(dA(v))

Besides the monotonicity of the concretization function, it is also natural to demand
monotonicity for the concrete and the abstract transformer. Inputs that are more
precise than others should lead to outputs that are also more precise than others.
For soundness, it is sufficient to show that the abstract transformer f ] approximates
the concrete one f \. This leads us to the definition of local consistency.

Definition 2.8 (Local consistency). Let a ∈ A. The abstract transformer f ] is
called locally consistent with respect to the concrete transformer f \ if and only if

∀v ∈ V.f \(v)(γAC(a)) 6C γAC(f ](v)(a))

Finally, we come to the main theorem that establishes soundness.

Theorem 2.9 (Soundness). Let P be an arbitrary program. If f ] is locally consis-
tent with respect to f \ and the abstract initial state I] approximates the concrete
initial state I\, the sticky abstract semantics AbsP (described by (A,vA) and f ])
is a sound approximation of the sticky concrete semantics ConcP (described by
(C,6C) and f \).

∀a ∈ A ∀v ∈ V.f \(v)(γAC(a)) 6C γAC(f ](v)(a)) ∧ I\ 6C γAC(I])
⇒ ConcP 6 γ(AbsP )

2.3 Caches

Modern computer architectures feature processors with few fast registers and large
but slow memory. To minimise the overall latency of memory accesses, small and
fast memories — so called caches — are employed. Even several levels of caches can
be employed, e.g. a small and fast cache at the first level and a larger but slower
one at the second level. A general memory hierarchy is shown in Figure 3. Since
caches have a major impact on the system performance and thus the execution time
of a program on the given hardware, they have to be taken into account during the
micro-architectural analysis.

Why do they work? Although caches are smaller compared to the main memory,
they perform well in practice due to the principle of locality. Temporal locality
means that a memory word that has just been accessed is very likely to be accessed

9



2 Foundations

Register∼ 1 cycle < 1 KB

L1 Cache∼ 3 cycles ∼ 32 KB

L2 Cache∼ 15 cycles ∼ 2 MB

Main memory∼ 200 cycles ∼ 4 GB

Hard disk∼ 10, 000, 000 cycles ∼ 1 TB

Latency Size

Figure 3: Memory hierarchy in modern computer architectures

in the near future, e.g. instruction fetches for a loop. Spatial locality means that a
memory word whose adjacent word has just been accessed is also very likely to be
accessed in the near future, e.g. instruction fetches for straight-line code.
The cache now tries to exploit locality. First, it stores memory words that are

accessed in order to provide them very fast if they are accessed again. Second, if
a word from memory is loaded into the cache, some adjacent memory words are
also loaded into the cache within one operation in the hope that they are accessed
afterwards.

How do they work? In the following we refer to Figure 4.
The memory is partitioned in equally sized memory blocks that exactly fit into a

cache line. Adjacent memory words form such a memory block. The number of
words per block depends on the size of the memory block and thus the size of the
cache line. The cache is organised in cache lines.

During a memory access, the cache controller has to look up whether the requested
memory block resides in the cache. In case the memory block does, it is called a
cache hit — otherwise a cache miss. In order to do fast look-ups, a memory block
can only be stored in a small number of cache lines that are grouped in so-called
cache sets of size k. The cache is then called k-way associative.
The cache set to which a memory block maps is determined by the index bits

of the address. The offset bits of the address are used to extract the requested
memory word from the memory block. The remaining bits form the tag of the
address. The tag is used to test whether the requested memory block matches a
memory block in the cache set.

10



2.4 Traditional Cache Analysis
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Figure 4: Scheme of a k-way associative cache

In case a cache miss occurs, the memory block has to be loaded from the main
memory and to be stored in the cache. As not all memory blocks fit into the
cache at the same time, another memory block has to be evicted. The policy that
determines which memory block to evict is called replacement policy. We will focus
on the LRU — the least recently used — replacement policy that has turned out
to be the best in terms of predictability [16]. The LRU policy always replaces the
memory block that has not been accessed for the longest time.

2.4 Traditional Cache Analysis

In the following, we assume a k-way associative LRU cache with n cache sets. In
this section, we describe the abstract cache domain for the must analysis first
presented in [7]. Of particular interest are the classification and update formulas
which handle cache accesses with imprecisely determined addresses. The analysis
is based on the following observation.

Observation 2.10. A memory block b in cache set i that has just been accessed is
evicted after accesses to k other, distinct blocks that map to cache set i. It does
not matter whether these accesses are hits or misses.

11



2 Foundations

There is a notion of age of a memory block. The age of a memory block b denotes
the number of accesses to pairwise different memory blocks, mapping to the same
cache set as b, since the last access to b. We can reformulate the above observation
as follows. A memory block b resides in the cache as long as its age is less than the
associativity of the cache.
Since we do not always know the exact age of a memory block statically, we

bound the age; once from above and once from below. The analysis that tracks
upper (lower) bounds on ages of memory blocks is called must (may) analysis. If
the must analysis can guarantee that a memory block has a maximal age less than
k and this block is accessed, the access will result in a cache hit. An access to a
memory block will result in a cache miss if the may analysis guarantees that its age
is at least k. In the following we will focus on the must analysis presented in [7].

Lattice Let B denote the set of all memory blocks and Bi the set of all memory
blocks mapping to cache set i. Furthermore, let AB≤ denote the set of bounds on
the age an element in a k-way associative LRU cache can have. It is defined as

AB≤ := {0, . . . , k − 1,∞}

We now define our basic lattice.

S≤,i
Fer := Bi → AB≤

C≤Fer :=
n−1∏
i=0
S≤,i

Fer

S≤,i
Fer is the space of all functions that bound the age of all memory blocks mapping to

cache set i from above. C≤Fer is the Cartesian product of n-times S≤Fer , the n cache sets
are treated independently of each other. In the following let ab = (ab0, . . . , abn−1)
and ab′ = (ab′0, . . . , ab′n−1) ∈ C≤Fer . We give the partial order and join operation.

ab vc ab
′ ⇔ ∀0 ≤ i < n.abi vs ab

′
i

abi vs ab
′
i ⇔ ∀b ∈ Bi.abi(b) ≤ ab′i(b)

ab tc ab
′ =

(
ab0 ts ab

′
0, . . . , abn−1 ts ab

′
n−1

)
abi ts ab

′
i = λb ∈ Bi.max(abi(b), ab′i(b))
> = (λb ∈ B0.∞, . . . , λb ∈ Bn−1.∞)

For a given memory block b, abcs(b)(b) bounds the age of b from above, i.e. b has at
most this age. The function cs : B → {0, . . . , n− 1} computes the cache set the

12



2.4 Traditional Cache Analysis

>

H M

⊥

Classification Meaning
H cache hit
M cache miss
> unclassified
⊥ undefined

Figure 5: Hasse diagram of the classification lattice Cl.

given memory block maps to. Thus, it extracts the index bits from the address of
the given memory block and is formally defined as

cs(b) = addr(b)/linesize mod nsets

As long as the age bound of a block is less than k, the block is guaranteed to be in
the cache. An age bound ∞ means that the block may be in the cache but is not
guaranteed to be.

Update First, we define the abstract transformer, also called update function, for
cache sets U≤s,Fer : S≤,i

Fer × Bi → S≤,i
Fer . For a given abstract cache set and a memory

block, it returns an abstract cache set that results from the access to that block.

U≤s,Fer(abi, a) := λb ∈ Bi.


0 : b = a

abi(b) : b 6= a ∧ abi(a) ≤ abi(b)
abi(b) + 1 : b 6= a ∧ abi(a) > abi(b) < k − 1
∞ : b 6= a ∧ abi(a) > abi(b) ≥ k − 1

Finally, we define the update function for whole caches U≤c,Fer : C≤Fer × 2B → C≤Fer .
For a given abstract cache and a set of possibly accessed memory blocks, it returns
an abstract cache that results from an arbitrary access to one of the given memory
blocks.

U≤c,Fer([ab0, . . . , abn−1] , B) :=
⊔

b∈B

[
ab0, . . . , U

≤
s,Fer(abcs(b), b), . . . , abn−1

]

Classification The classification function derives for an access to a set of memory
blocks and an abstract cache whether the access always results in a hit, miss or
whether nothing can be said about this access. The classification domain Cl is
given by the Hasse diagram in Figure 5.
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2 Foundations

Again, we first define the classification function for abstract must cache sets
Class≤s,Fer : S≤,i

Fer × Bi → Cl.

Class≤s,Fer(abi, a) :=


H : abi(a) <∞
M : a /∈ B := {b ∈ Bi | abi(b) <∞} ∧ |B| = k

> : otherwise

Finally, we define the classification function for whole abstract must caches
Class≤c,Fer : C≤Fer × 2B → Cl.

Class≤c,Fer([ab0, . . . , abn−1] , B) :=
⊔

b∈B

Class≤s,Fer(abcs(b), b)

14



3 Relational Cache Analysis

First, we give an overview on the structure of this part of the thesis. In Section 3.1
we examine the behaviour of Ferdinand’s must cache analysis in the presence of
accesses with imprecisely determined addresses and point out what can be improved.
We also outline further key motivations for us to work on the relational cache
analysis. An overview on the overall framework — the congruence analysis, the
relational cache analysis and the interaction between them — is given in Section 3.2.
In Section 3.3.1 we define cache trace semantics. All analysis domains that are
subsequently presented can be related to this cache trace semantics. Section 3.3
formalises the notion of congruence analysis. We specify what the congruence
analysis is supposed to do and relate it to the underlying (cache) trace semantics.
A collecting name-instrumented cache semantics that is our underlying concrete
semantics is explained in Section 3.4.1. Section 3.4.2 describes an approach to
the relational cache analysis. An example is examined in Section 3.5. Finally,
Section 3.6 outlines some open questions on how to further improve the precision
of the relational cache analysis as well as the congruence analysis.

3.1 Motivation

Ferdinand’s Cache Analysis — An example We apply Ferdinand’s must cache
analysis to an example program with memory accesses to addresses that are
imprecisely determined, e.g. input-dependent or stack-relative accesses.
Consider the example program in Figure 6. Generating its control-flow graph

and annotating the results of Ferdinand’s must cache analysis yields Figure 7.
The generated control-flow graph is represented on the left hand side. Next to
each instruction, the abstract cache state after the execution of the respective

int pending = 1;

void swap (int *a) {
if (pending) {

int tmp = *a;
*a = *(a + 1);
*(a + 1) = tmp;

}
pending = 0;

}

Setting:

• write-allocate LRU cache

• 4-way associative

• 2 cache sets

• stack pointer unknown

Figure 6: Example program
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3 Relational Cache Analysis

instruction is shown. The variable pending is located at address 0x601018. Its
address is statically known as it is a global variable in a statically linked binary.
The addresses of all other accesses are completely unknown because they are either
input dependent or stack relative with an unknown stack pointer.
We make several interesting observations that reveal room for improvement.

Observation 3.1 (No representation). For memory accesses with imprecisely
determined addresses, the memory block which is accessed during runtime is not
known at analysis time. Cache analyses that employ memory blocks as abstract
cache elements are unable to model such accesses precisely and thus cannot predict
hits for these.

{0xb0}
U≤c,Fer(·, {0xe0, 0xf0})
−−−−−−−−−−−−−−−−−→

{0xb0} Class≤c,Fer(·, {0xe0, 0xf0})?
−−−−−−−−−−−−−−−−−−−−−→

Observation 3.2 (Excessive aging). In an LRU must cache, memory accesses
with imprecisely determined addresses age cached elements overly pessimistically.
m accesses to the same but unknown memory block age cached elements by m.

{0xb0}
U≤c,Fer(·, {0xe0, 0xf0})
−−−−−−−−−−−−−−−−−→

. . . U≤c,Fer(·, {0xe0, 0xf0})
−−−−−−−−−−−−−−−−−→ {0xb0}

m

︸ ︷︷ ︸
m times

The need by current cache analyses for exactly determined addresses for precise
cache predictions motivates this work as we want to overcome this requirement.
This enables us, e.g., to predict hits for accesses whose addresses depend on the
possibly unknown input. The example program is revisited in Figure 12 on page 30
and we demonstrate the effectiveness of our relational cache analysis in the presence
of accesses with imprecise address information with the help of this example.

Reducing context sensitivity Analysing stack-relative accesses using, e.g., the
method of Kim et al. [11] requires to distinguish all call sites to obtain precise stack
pointer values within each context. This results in a huge number of different call
strings and many analysis contexts, namely one for each possible value the stack
pointer can have.
Consider the example program in Figure 8. Analysing function comp using

state-of-the-art cache analyses requires to distinguish four call strings — namely
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3.1 Motivation

read pending

a ← read sp+8

read a

read a+4

write a

write a+4

write pending

{0x601018}

{0x601018}

{0x601018}

{0x601018}

{0x601018}

Figure 7: Analysis results using the LRU must cache analysis by Ferdinand. The
generated control-flow graph of the analysed program is shown on the
left hand side. Next to an instruction, the abstract must cache state after
the execution of this instruction is represented.

17



3 Relational Cache Analysis

int main() {
... = A();
...
... = B();
...
... = comp();

}

int B() {
... = comp();

}

int A() {
... = comp();
...
... = B();

}

int comp() {
...

}

comp

A B

main

Figure 8: Program and call graph demonstrating the need for highly context-
sensitive traditional cache analysis.

main.comp, main.A.comp, main.A.B.comp and main.B.comp — in order to predict
stack-relative accesses in comp. Instead of running the analysis in four contexts
with different stack pointers, we only need one run of our relational cache analysis.

Similarly to the previous example, analysing array accesses within a loop often
requires to unroll the loop (completely). The store operation in Figure 9 always
results in a write hit since the preceding load operation just accessed the same
array element. Since the index, and thus the accessed address, is changing from
iteration to iteration, obtaining precise address information for the traditional
cache analysis requires loop unrolling. The relational cache analysis classifies the
store operation as hit — without unrolling the loop.
Decreasing such forms of context sensitivity without losing too much precision

in (data) cache analysis is also a motivation for our work as it can potentially
speed up the overall analysis. Detailed results for these kinds of programs are also
discussed in Section 6.1.
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3.2 Overview

for (int i = 0; i < 50; ++i) {
... = a[i]
a[i] = ...

}

Figure 9: Another example necessitating context sensitivity for the traditional
cache analysis: Array accesses within a loop.

3.2 Overview

Our relational cache analysis is based on the same observation as Ferdinand’s
cache analysis (Observation 2.10 on page 11). He interprets the observation in the
following way. If one statically knows the exact memory blocks that are accessed
during program execution, one can easily test whether memory blocks are different
or the same. Thus, an analysis can track the k memory blocks that were accessed
most recently in order to predict cache hits or cache misses. We will interpret the
observation in a more general way. Actually, it is not necessary to know the precise
address of a memory block that is accessed. According to the observation, it is
already sufficient to know whether blocks that are accessed coincide or differ.

Symbolic names First, we introduce the concept of a symbolic name.
Definition 3.3 (Symbolic name). A symbolic name is a unique identifier for a
static memory reference. Hence, it can also be seen as a representative for all
memory blocks that might be accessed by this memory reference. The set of
symbolic names is denoted by N.
What makes an element of a set a symbolic name is that it is associated to a

static memory reference. Each such static memory reference is associated with
a uniquely determined element from this set. Thus two different static memory
references also have different symbolic names. This is necessary for our analysis to
work properly. If two different static memory references, accessing different memory
blocks, would have the same symbolic name, one could not distinguish between
them and one might classify accesses as hits (same symbolic name) although we
access different memory blocks.

In theory, we can use N = L, where L denotes the set of program locations with
associated instructions. We thereby assume that one instruction corresponds to
one static memory reference and accesses exactly one memory block per execution.
In practice, we have to extend our notion of symbolic names because there are
instructions that might trigger more than one memory access. This is postponed
to Section 5.
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3 Relational Cache Analysis

>

ss ssdb db

sb ssdb ds

⊥

Relation Meaning
ss same cache set
ds different cache set
sb same block
db different block
ssdb ss and db
ssdb ds or sb

Figure 10: Hasse diagram of the lattice of relations.

A symbolic name potentially represents several memory accesses and each memory
access itself can be seen as having the corresponding symbolic name attached.
Symbolic names are now used as our new abstract cache elements. We thereby
solve the problems arising from Observation 3.1 as accesses with imprecisely
determined addresses can now be explicitly modeled in our abstract cache.

Relating symbolic names Although we are now able to model accesses with
imprecisely computed addresses, we still face the question how to check whether
symbolic names denote coinciding memory blocks or differing ones. This is im-
portant for classifying accesses and to update abstract cache states. As we are
no longer interested in the addresses of memory accesses, we consider relations
between symbolic names. The lattice of relations, R, is shown and described in
Figure 10. The purpose of each relation is further discussed in Section 3.3.3 and
Section 3.4.2. We use relations, e.g., to

• classify hits: the relation between the currently accessed symbolic name s
and another symbolic name t that is still in the cache, is sb

• do precise updates: accessing a symbolic name s does not age a symbolic
name t if the relation between them is ds.

Framework Figure 11 shows the relational cache analysis framework. On the left,
we have the modular congruence analysis with a clearly defined interface: given
two symbolic names, it returns the relation between the two. Due to abstraction
of the underlying analyses, it is not possible to always get the precise relation
between two symbolic names, i.e. sb, ss db or ds, but it is guaranteed to give a
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Relations between symbolic names Relations between cache sets

GVN
DBM

Interval
Analysis

Octagon
Analysis
VSA [1]
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ck

Congruence
Analysis

Relational Cache Analysis

{s5,s4}
{s2}

(s1, s2)?

(same set
, same

block)!

classify s1

Hit

Figure 11: Interaction between congruence analysis and cache analysis

safe approximation, e.g. ss. The congruence analysis is modular because one could
plug arbitrary analyses into it without changing the interface or the relational
cache analysis. The left box also shows some examples of useful analyses that
can compute relations between memory accesses. They are further discussed in
Section 5.
On the right, we have the relational cache analysis. It uses symbolic names

instead of concrete memory blocks and relations between symbolic names instead
of comparing addresses of the concrete memory blocks. Note that it does not treat
the cache sets independently like the traditional cache analysis does. Intuitively,
as we do not distinguish cache sets, there is one abstract relational cache and no
notion of abstract cache set. If a symbolic name s resides in the relational cache,
this means that the memory block it represents could potentially map to any cache
set and it is guaranteed to reside in the concrete cache, no matter which cache set
it actually maps to.

Now, we take a closer look at the interaction between the relational cache analysis
and the congruence analysis. Assume we want to classify the symbolic name s1, so
we ask the relational cache analysis to classify s1. The relational cache analysis
asks the congruence analysis for relations between s1 and each of the symbolic
names that reside in the abstract cache. For the symbolic names s1 and s2, the
congruence analysis can guarantee that s1 will access the same memory block as s2
did before. The relational cache analysis can now predict a hit for the access to s1
because it will access the same memory block as s2 did before and this memory
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3 Relational Cache Analysis

block has at most age one and thus is still in the cache.
Note that the information flow in the framework is unidirectional: the relational

cache analysis depends on the results of the congruence analysis, but not the other
way around. Therefore, the congruence analysis can be performed in isolation. As
the relational cache analysis depends on the congruence analysis, we parametrise
the abstract cache domain with the results of the congruence analysis.

3.3 Formalizing Congruence Analysis

Intuitively, the congruence analysis is supposed to give safe approximations on
the relations between symbolic names. A relation r ∈ R between two symbolic
names is safe if for each execution trace the relation r′ between the two memory
blocks that have been accessed most recently via these symbolic names is at least
as precise as r (r′ vR r). A formal definition is given below.

3.3.1 Cache Trace Semantics

Instead of considering traces of complete system states, we focus on traces that
only contain the information about the corresponding memory accesses during the
execution. That is, we consider the underlying domain

T := 2(V×N×B)∗

Let TraceP ⊆ (V ×N×B)∗ be the semantics describing all memory access sequences
through the program P . Such finite sequences are of the form

τ = 〈v1, s1, b1〉 ◦ . . . ◦ 〈vl−1, sl−1, bl−1〉 ◦ 〈vl, sl, bl〉

Each triple consists of a program point, the symbolic name associated with the
respective instruction and the memory block that is accessed by that instance
of the instruction. We now have the most precise description of the history of
memory accesses at any program point. Therefore, it is suitable to formally describe
relations between symbolic names. Before addressing the issue how to obtain the
relational information, we first define the collecting semantics.

3.3.2 Collecting Semantics

In the following, let v ∈ V be a fixed program point. We now give the collecting
semantics that keeps track of which memory blocks have been accessed most
recently via symbolic names.
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3.3 Formalizing Congruence Analysis

Lattice The underlying domain is given by

Dcoll := 2N→B⊥

We can also directly define the partial order v=⊆, the join function t = ∪ as well
as the top element > = N → B⊥ and the bottom element ⊥ = ∅. Let blk ∈ Dcoll.
blk(s) = ⊥ means that s was not accessed yet.

Concretization function We will now relate the collecting semantics with the
underlying concrete semantics, our cache trace semantics. We therefor define a
concretization function γDcoll

: Dcoll → T

γ(F ) =
⋃

blk∈F

{τ ∈ (V ×N × B)∗ | τ = τ ′ ◦ 〈v,_,_〉 ∧ ∀s ∈ N.last(τ, s) = blk(s)},

where F is the information at program point v, which we fixed before. The auxiliary
function last is defined as follows

last(τ, s) =


last(τ ′) : τ = τ ′ ◦ 〈vl, sl, bl〉 ∧ sl 6= s

bl : τ = τ ′ ◦ 〈vl, sl, bl〉 ∧ sl = s

⊥ : τ = ε

and computes the block that was most recently accessed via the given symbolic
name.

Update function Finally, we define the update function of the collecting semantics
UDcoll

: Dcoll × (N × B)→ Dcoll.

UDcoll
(F, (s, b)) =

⋃
blk∈F

{blk[s 7→ b]}

where

blk[s 7→ b] := λt.

b : t = s

blk(t) : otherwise

3.3.3 Congruence Analysis

In the previous section, we have described the concrete semantics we base our
congruence analysis on. This section formalises which kind of information a
congruence analysis is supposed to compute. Later, we show how it can be used
for cache analysis.
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3 Relational Cache Analysis

For each program point v, which we assume to be fixed again, a congruence
analysis is supposed to compute a function

cgrv : N ×N → R

whose meaning is defined by the following predicate

consbcgr : (N → B⊥)× (N ×N → R)→ B

consbcgr checks whether a symbol-to-block mapping, blk, respects the results of
our congruence analysis module, cgrv. Formally, it is defined as

consbcgr(blk, cgrv) = ∀s1, s2 ∈ N .c = cgrv(s1, s2), b1 = blk(s1), b2 = blk(s2) :
(c 6= > ⇒ b1 6= ⊥ ∧ b2 6= ⊥)
∧(c v db ⇒ b1 6= b2)
∧(c v ss ⇒ cs(b1) = cs(b2))
∧(c v ssdb⇒ b1 = b2 ∨ cs(b1) 6= cs(b2))

Let s1 and s2 be two symbolic names, c the relation between them and b1 and
b2 the memory blocks that have been accessed most recently via the respective
symbolic name or ⊥ according to blk. In case b1 or b2 is ⊥, i.e. at least one of
s1 and s2 has not been accessed so far, there cannot be a relation between these
symbolic names, in which case the relation is >. If the relation c between symbolic
names s1 and s2 is not >, both symbolic names have been accessed already and
thus b1 and b2 cannot be ⊥.

Depending on the actual relation, further constraints must hold. Let us consider
two examples. First, if the relation between two symbolic names is db, b1 and b2
must denote different blocks. Second, consider the relation sb. Then, the constraints
for ss and ss db apply. The constraints for ss guarantee that the cache set b1 and
b2 map to are equal. This excludes the second case in the disjunction arising from
the constraint for ssdb. Thus b1 = b2 must hold, which expresses the meaning of
sb. The constraints for the other kinds of relations are similar.
With the help of this predicate we can define the concretization function

γ : (N ×N → R)→ Dcoll

γ(cgrv) = {blk ∈ (N → B⊥) | consbcgr(blk, cgrv)}

After having specified the meaning of the congruence analysis, we now address
the second module: the relational cache analysis.
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3.4 Relational Cache Analysis

After defining what the congruence analysis is supposed to compute, namely
relations between pairs of symbolic names, we will now define the relational cache
analysis that makes use of this relational information. We start by defining the
concrete name-instrumented cache domain — our underlying concrete collecting
semantics. Furthermore, we formalise the abstract relational cache domain and
explain how classifications of accesses as well as updates on abstract relational
caches work using the calculated relational information.

3.4.1 Concrete Name-Instrumented Cache Domain

In the following, we will refer to concrete cache sets and concrete caches. These
are defined here

SB := Lk
B

CB := (SB)n

SB is the set of k-way associative concrete cache sets. CB is the set of concrete
caches, where n is the number of cache sets.

Lattice The domain we are about to define is an extended version of the above
collecting semantics, additionally taking the cache into account. Our concrete
relational cache domain is thus defined as the following powerset lattice

I := 2(N→B⊥)×CB

Let (blk, cc) ∈ I. Like before, blk keeps track of the memory block each symbolic
name has accessed most recently. blk(s) = ⊥ means that this symbolic name was
not accessed yet. cc is a concrete cache that emerges from the initial cache and
an access sequence respecting blk. It is an instrumented version of the standard
concrete cache domain 2CB . This instrumentation is a technical requirement for
later proving our framework correct. We have the usual partial order and join
operation.

Classification Function Next, we define the concrete classification function
Class : I ×N → Cl.

Class(CC, (s, b)) :=
⊔

(blk,cc)∈CC

H : age(cc, b) <∞
M : otherwise
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3 Relational Cache Analysis

where age : CB × B → AB≤ is defined as

age([ccs0, . . . , ccsn−1], b) := age(ccscs(b), b)

and age : SB × B → AB≤

age([b0, . . . , bi, . . . , bk−1], b) :=

i : bi = b

∞ : otherwise

Given a concrete cache and a memory block, age returns the age of the memory
block, i.e. the position of the memory block in the cache. If the age of the accessed
memory block is less than ∞, the block is guaranteed to reside in the cache and
thus is classified as a hit. Otherwise a miss is predicted.

Update Function Next, we define the transformer, the update function for sets
of name-instrumented caches U : I ×N → I

U(CC, (s, b)) :=
⋃

(blk,cc)∈CC

{(blk[s 7→ b], Uc(cc, b))}

The transformer for a concrete cache Uc : CB × B → CB is defined as

Uc([ccs0, . . . , ccsi, . . . , ccsn−1], b) := [ccs0, . . . , Us(ccsi, b), . . . , ccsn−1],

where i = cs(b). For a concrete cache set Us : SB × B → SB the update is

Us([b0, . . . , bk−1], b) :=

[bi, b0, . . . , bi−1, bi+1, . . . , bk−1] : bi = b

[b, b0, . . . , bk−2] : otherwise

3.4.2 Abstract Relational Cache Domain

After having defined the underlying concrete cache semantics, we consider the
abstract domain to demonstrate how to operate on caches based on symbolic names
and using relations between symbolic names.
Our abstract relational cache domain is parametrised by the results of the con-

gruence analysis. Each domain operation depends on the results of the congruence
analysis that are valid for the program point the operation is performed at.

Lattice The relational abstract domain is defined using the following function
space.

C≤rel := N → AB≤
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The aim of the analysis is to bound the ages of symbolic names from above. Please
note the structural similarities to the analysis described in Section 2.4.
First, we need an auxiliary function

eab≤ :
(
N → AB≤

)
× (N ×N → R)→

(
N → AB≤

)
that takes an element from the domain ab and the congruence analysis results that
are valid at the current program point cgrv and returns a function called effective
age bound. For a symbolic name s, not only ab(s) bounds the age of s from above,
but each ab(t) in case that s and t are in sb relation at the current program point.
The effective age bound takes care of this fact:

eab≤(ab, cgrv) = λs ∈ N.min{ab(t) | t ∈ N ∧ cgrv(s, t) = sb},

where the minimum over an empty set is defined as ∞. We use

eab≤(ab, cgrv) = λs ∈ N. min
t ≈sb s

{ab(t)}

for short. The partial order and join operation are then defined as follows.

ab v ab′ = ∀s ∈ N.eab≤(ab, cgrv)(s) ≤ eab≤(ab′, cgrv)(s)
ab t ab′ = λs ∈ N.max(eab≤(ab, cgrv)(s), eab≤(ab′, cgrv)(s))

> = λs ∈ N.∞

Concretization Before defining the abstract update and classification functions,
we relate our abstract cache semantics to the name-instrumented concrete cache
semantics. In the concretization function

γ≤rel : C≤rel → I

we make use of the predicate consbcgr introduced in Section 3.3.3. consbcgr checks
whether a symbol-to-block mapping respects cgrv, the results of our congruence
analysis module. Now, we can define the concretization function γ≤rel : C≤rel → I.

γ≤rel(ab) := {(blk, cc) ∈ (N → B⊥)× CB | consbcgr(blk, cgrv)∧
∀s ∈ N.blk(s) 6= ⊥ ⇒ age(cc, blk(s)) ≤ eab≤(ab, cgrv)(s)}

The abstract cache represents a concrete cache if and only if its symbol-to-block
mapping respects the results of the congruence analysis module and the age of the
memory block a symbolic name accessed most recently respects the effective age
bound of this symbolic name in the abstract cache.
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Normalization function In our domain, there exist different elements ab, ab′ ∈ C≤rel
that express the same: ab v ab′∧ab′ v ab. Therefore we will employ a normalization
function in the sense of [5]. This enables easier classification and update functions
as well as a tighter abstract domain with the same expressive power. Indeed, the
normalization function is defined already: eab≤ (Definition 3.4.2).
The tighter domain can be obtained by putting symbolic names denoting the

same memory block together into one equivalence class. The lexicographically
smallest symbolic name is chosen as the representative of the equivalence class.
Only the age bounds for the representative elements are stored.

Note that the normalization depends on the current program point as the results
of the congruence analysis also depend on the current program point. Thus, two
symbolic names s and t may belong to the same equivalence class at one program
point and belong to different equivalence classes at another program point.

Classification Function Next, we define the classification function that operates
on the normalised domain.

Class≤rel(ab, s) :=

H : ab(s) <∞
> : otherwise

The analysis classifies an access to a symbolic name s as hit if and only if the
corresponding (effective) age bound is less than ∞ and thus s is guaranteed to be
in the cache.

Update function We define the update function U≤rel : C≤rel ×N → C
≤
rel by

U≤rel(ab, s) := λt.



0 : srel = sb

ab(t) : srel ∈ {ds, ssdb}
ab(t) : srel wR ssdb ∧ ab(s) ≤ ab(t)
ab(t) + 1 : srel wR ssdb ∧ ab(s) > ab(t) ∧ ab(t) < k − 1
∞ : srel wR ssdb ∧ ab(s) > ab(t) ∧ ab(t) ≥ k − 1

where srel = cgrv(s, t).
The age bounds of symbolic names that most recently have accessed the same

memory block as s does now, are set to 0 as the memory block just gets accessed
again. The age bounds of symbolic names that have a higher age than s before the
access are not changed. The symbolic names that might map to the same cache set
as s and have a lower age are aged by one or evicted according to their age. The
most interesting case is the second one. Note that we do not have to age elements
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that are guaranteed to map into a different cache set or are guaranteed to either
have accessed the same memory block as s or to be in a different cache set. The
latter case can occur when we miss alignment information. We cannot predict hits
in that cases but we still do not treat these elements overly pessimistically.

Theorems

All theorems about the correctness of the analysis and their respective proofs can
be found in Appendix A.

3.5 Example

Consider the function swap and the cache parameters in Figure 6 on page 15. We will
examine this example once more, but this time using our relational cache analysis.
The overall analysis and the following explanation always refer to Figure 12. For
the sake of simplicity, we do not normalise explicitly.

Congruence analysis In the first of the three phases, we associate unique symbolic
names with each instruction accessing memory. Relational information between
pairs of symbolic names are computed in the second phase and are shown in the
rightmost column. We only list relevant congruence information. Take a closer look
at the relations cgrv(s5, s3) and cgrv(s5, s4). Global value numbering might find
out that s5 and s3 access the same but unknown address, thus cgrv(s5, s3) = sb.
Similarly, another analysis using the results of the GVN might find out that the
addresses of s5 and s4 differ by four. Depending on the alignment of the memory
blocks, that are actually accessed, within the cache line and the cache line size, they
either access the same memory block or the accesses affect different cache sets. As
no alignment information is currently taken into account, we get cgrv(s5, s4) = ss db.

Cache analysis We do not examine the whole example, but point out the im-
portant updates and the classifications. First consider the access to s4 and the
corresponding update of the abstract cache. As cgrv(s4, s1) = cgrv(s4, s2) = >
and the access might bring a new element to the cache, we have to pessimistically
assume that s1 and s2 both age by one. On the other hand, s3 needs not be aged
as cgrv(s4, s3) = ss db. Either s3 accessed the same memory block as s4 or the two
accesses affect different cache sets. In the first case, the age of s3 would be reset
to 0 and in the second case, the age would not change as the access to s4 affects
another cache set.

Now, consider the access to s5. The congruence analysis tells us that s5 will now
access the same memory block as s3 did (cgrv(s5, s3) = sb) and as s3 is guaranteed
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read pending

a ← read sp+8

read a

read a+4

write a

write a+4

write pending

s1

{s1}

s2

{s2}
{s1} cgrv(s2, s1) = >

s3

{s3}
{s2}
{s1}

cgrv(s3, s1) = > cgrv(s3, s2) = >

s4

{s4,s3}

{s2}
{s1}

cgrv(s4, s1) = > cgrv(s4, s2) = >
cgrv(s4, s3) = ss db

s5

{s4,s3,s5}

{s2}
{s1}

cgrv(s5, s1) = > cgrv(s5, s2) = >
cgrv(s5, s3) = sb cgrv(s5, s4) = ss db

s6

{s4,s3,s5,s6}

{s2}
{s1}

cgrv(s6, s1) = > cgrv(s6, s2) = >
cgrv(s6, s3) = ss db cgrv(s6, s4) = sb
cgrv(s6, s5) = ss db

s7

{s7,s1}
cgrv(s7, s1) = sb

Figure 12: Analysis results using the relational must cache analysis

to be in the cache, the access is classified as cache hit. As s3 is guaranteed to have
age 0, no other cache elements have to be aged.

Results Using our relational cache analysis, we can predict the accesses to s5,
s6 and s7 as hits. All three could not be classified using Ferdinand’s analysis
(see Figure 7 on page 17): the first two due to imprecise address information and
the latter one because of too pessimistic updates in the presence of accesses to
imprecisely determined addresses.
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...
if (i < 5) {

x = ...; //symbolic name: s
} else {

x = ...; //symbolic name: t
}
... = x; //symbolic name: u

Figure 13: Example pointing out room for improvement of the congruence analysis

3.6 Open Issues

In the following we list some issues on how to further improve the precision of the
analysis.

Congruence analysis Consider the code snippet in Figure 13. Obviously the
access to x via symbolic name u results in a cache hit during program execution.
Either the if branch is executed in which case x is loaded into the cache via s or
the else branch is executed in which case x is also loaded into the cache but this
time via t.
Our analysis will not be able to predict the access via u as a hit due to the

following problems with the congruence analysis. According to the semantics of
our congruence analysis, cgrv(s, t) = > as s and t can never occur together in a
trace. Taking the join of the abstract cache as it is, neither s nor t are afterwards
guaranteed to still be in the cache. The problem is not with the cache analysis but
with the semantics of the congruence analysis that is not yet sophisticated enough.
Refining the semantics of the congruence analysis might solve this issue.

Relational cache analysis The relational cache domain can also be further im-
proved in terms of precision. Consider the access sequence 〈s, t, u〉 of symbolic
names with relations cgrv(s, t) = cgrv(s, u) = > and cgrv(t, u) = ds. After the
first access, s has guaranteed age 0. The consecutive two accesses each age s
pessimistically by one, although t and u access different cache sets. Thus the
analysis can only guarantee age 2 although the actual age is 1. This is due to the
lack of history information in the abstract cache domain. In case one knows the
actual cache sets t and u map into, one possibility is to maintain age bounds on
symbolic names for each cache set. This way, one only updates the age bounds of
a symbolic name that are associated with cache sets that may be affected by an
access.
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4 Related Work

Work closest to our contribution is related with data cache analysis because in
data cache analysis one has to care about accesses with imprecisely determined
addresses. There are several approaches to data cache analysis and we discuss
them in the following and compare them with our approach.
Li et al. [12] present an approach based on Integer Linear Programming (ILP).

First, they employ a data flow analysis to compute a range of possible addresses or
a list of addresses that are accessed sequentially. Second, a cache conflict graph is
constructed per cache set which corresponds to load/store instructions that may
access addresses mapping to the same cache set. Finally, they generate integer
linear equations from the conflict graph and solve them.
In [10], Hur et al. compute precise addresses of static accesses, i.e. accesses

relative to a global base pointer or relative to the stack pointer. To have precise
address information about accesses relative to the stack pointer, they distinguish
all call sites, thus needing a huge number of call strings. Since each possible
value of the stack pointer is considered separately, it is possible to obtain precise
address information for stack-relative accesses for each call site. So-called dynamic
accesses are handled by adding the miss penalty twice, once for the access itself
and once for a possibly evicted cache block. Note, that this approach only applies
to direct-mapped data caches.

In [11] and [19], slight extensions to the previous approach are proposed. Misclas-
sification of accesses as static and dynamic is reduced by tracking which accesses
(indirectly) depend on the global base pointer or the stack pointer. The number of
misses caused by dynamic accesses is bounded using the pigeonhole principle. An
additional miss penalty is only added if a useful cache block might be replaced.
Mueller et al. [14] introduce a technique for direct-mapped instruction cache

analysis, the so called static cache simulation. White et al. [21] extend the static
cache simulation to data caches in the first part of their paper. In a first step,
they calculate addresses of accesses. In order to gain precise addresses of accesses
to the stack, they distinguish different call sites. The algorithm for calculating
data cache states for direct-mapped caches adds all possibly accessed blocks to
the abstract cache state during an access to imprecisely determined addresses.
Therefore, their cache simulation is similar to a May-analysis. It remains unclear
to us how hits can be predicted for such accesses in general. In the second part,
this static cache simulation is extended towards set-associative instruction caches.
Analysis of set-associative data caches is not discussed explicitly.

In [13], Lundqvist presents a method to analyse data cache behaviour when
data structures are accessed in a predictable manner but with unknown placement
in memory. In a first phase, a simulator classifies memory accesses once using
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an unknown base pointer and once using a fixed one. Data structures are called
predictable with unknown placement, if an access to the data structure is classified
as unpredictable by the first classification, but classified as predictable by the second
classification. In a second phase, the accesses to each of these data structures
are analysed separately using fixed base pointers. The final conflict analysis
detects possible interferences of these access sequences by an exhaustive algorithm.
This basic analysis can be made arbitrarily accurate, but in general it causes an
explosion of the state space. There are neither restrictions on the programs nor
on the cache configurations that can be analysed. Nevertheless, for programs that
extensively use many data structures only the basic algorithm with low accuracy
might be applicable for efficiency reasons. The basic algorithm leads to significant
overestimation considering the presented benchmarks.
Ferdinand et al. [7] propose a must and a may analysis for predicting cache

behaviour of set-associative LRU caches. The must (may) analysis gives upper
(lower) bounds on the age of cache elements at a specific program point. A memory
access can then be classified as a hit (miss). In [8], they propose methods on
predicting the data cache behaviour. For scalar variables whose addresses can be
statically computed, must and may analyses are employed. For a restricted class of
programs, local memory hit ratios can be calculated using a special data dependence
analysis of arrays. Additional restructuring methods are used to improve data
locality in nested loops. In contrast to these methods, a persistence analysis is
proposed that bounds the number of possible cache misses — also in presence of
accesses with imprecisely determined addresses.

In [18], Sen et al. present an abstract–interpretation based method to analyse data
caches. First of all, an address analysis is proposed (Circular Linear Progressions)
that allows the precise modeling of induction variables and linear computations.
The programs that can be analysed are therefore restricted to special forms of
loops. The actual cache analysis is based on the approach of Ferdinand et al. [7].
The classification and update functions of the must analysis are extended to
handle circular linear progressions (CLP) and thus also accesses with imprecisely
determined addresses to some extent. Virtual and physical loop unrolling is
employed to increase precision.

Blieberger et al. [2] propose a method for analytically deriving a cache hit func-
tion at compile-time. In a first step, based on symbolic evaluation, they generate
a symbolic tracefile. Symbolic expressions and recurrences are employed to give
a constructive description for all possible memory accesses in chronological order.
In the second step, the symbolic cache evaluation derives an analytical function
from the generated symbolic tracefile. The function returns the number of hits
for a given program input. The approach is illustrated using array-manipulating
programs. Programs with many different data accesses with imprecisely deter-
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mined addresses cause many distinctions of cases during the transformation from
conditional recurrences into unconditional ones. It is unclear to us how programs
with different paths are analysed. It would have been interesting to see how the
approach scales for these programs and how precise the approximations for solving
the corresponding recurrences is.

In [20], Wegener presents an approach to improve the precision of static analysis
of programs using loops while keeping the effort low. Instead of virtually unrolling
a loop completely, it is only unrolled partially. In order to obtain precise analysis
results, multiple accumulative contexts are used instead of one. Within this setting,
he proposes a so-called relational cache analysis. With the help of alignment
information, which can be obtained by having multiple accumulative contexts and
difference bound matrices (DBM) he can conclude whether two accesses go to the
same cache line. Each of the accesses whose memory block is guaranteed to be still
in the cache is compared with the current access to determine whether they hit
the same cache line.
The symbolic expressions [2] are similar to our notion of symbolic names. Note

that we employ relations between symbolic names in order to detect interferences
instead of doing a state space exploration as in [2] or [13].

Ferdinand’s analysis [8] only gives precise results if the accessed addresses can be
exactly predicted whereas our relational analysis does not require precise address
information. This is discussed in detail in Section 3.1.

The cache analysis proposed in [20] can be seen as a special case of our framework.
The relational view on accesses is restricted to the sb relation whereas we also take
other relations, e.g. ds and ssdb into account. The cache analysis itself is specialised
to the use of alignment information and DBMs. Our relational cache analysis is
independent of the analyses that obtain relational information, thus we could make
use of the alignment information and DBMs without any adjustments. Due to the
restrictions on sb relations, his analysis can guarantee at most k memory blocks to
be in the cache. Due to ds relations, our relational cache analysis can potentially
guarantee this for as many elements as fit in the cache, namely n · k.
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5 Implementation

5.1 libFirm

libFirm1 is the C-library implementing the intermediate representation Firm.
Firm is a low-level intermediate representation that is based on SSA-form, described
by Rosen et al. [17], and that allows easy implementation of program analyses and
transformations. We also make use of the implementation of a C-compiler that
transforms C-programs into Firm’s intermediate representation. We will not go
into detail about compilers and SSA-form in this thesis. Using libFirm has several
advantages for us.

Low-level representation We do not have to care about parsing given input
programs or translating them into our intermediate representation. Although our
tool takes C-programs instead of binaries, the internal assembler (ASM) graph rep-
resentation our cache analysis works on, is very close to a binary. The instructions,
the nodes in the ASM graph, are already specific to the final target platform. All
kinds of compiler optimizations are finished, instructions as well as the basic blocks
are completely scheduled and resources like registers are also already allocated. We
can also compute the final addresses an instruction will finally have in the binary.
Thus, we get a perfectly realistic intermediate representation of our programs for
free.

x86 Address Computation As we use the x86 backend of libFirm, we will
sketch how an address is computed in x86. In general, an address computation can
be expressed via the following formula

B + I · S +O

where B denotes base, I index, S scale and O offset. B and I are thereby machine
registers. They are both optional and I cannot be the esp register. S is a constant
∈ {1, 2, 4, 8} and O a 32-bit number.

5.2 Symbolic Names

In Section 3.2, we have introduced the concept of symbolic names. For the sake of
simplicity, each program location has been associated with one unique symbolic
name. In practice, a single instruction can trigger several memory accesses. First
the instruction itself is referenced during the fetch phase in the pipeline. Then,

1http://pp.info.uni-karlsruhe.de/firm/Main_Page
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5 Implementation

the execution of the instruction can, depending on the type, trigger up to two
data memory accesses. Thus we associate up to three symbolic names with one
instruction — one for each potential memory access. More formally, we choose
N = L × {I,D1, D2} for implementation.

5.3 Congruence Analyses

In this section, we briefly describe the congruence analyses we employed and how to
obtain information about the relation between symbolic names from their respective
results. Note that although we describe the derivation of relational information for
each analysis independently, one gains more precision if the results of all analyses
are used simultaneously.
Several program analyses and transformations are performed during the opti-

mization phase of the compiler, e.g. global value numbering. We get the results
of these analyses and with their help we can already determine useful relations
between symbolic names. Additionally, we implemented a simple interval analysis.

5.3.1 Global Value Numbering

Synopsis Global value numbering (GVN) [17] is a technique that assigns each
variable and each expression a certain value number. In case two expressions have
the same value number, they are provably equivalent and one could for example
remove redundant code. As opposed to local value numbering, these global value
numbers are valid across basic blocks.

Use We can use GVN to detect that a symbolic name always accesses the same
memory block as another symbolic name did before. Formally, given two symbolic
names s and t, t provably access the same memory block as s did before if
• the expressions representing the respective address computations have the

same global value number and

• none of the addresses is recomputed on any path from s to t.
We can also find other relations using the results of GVN. Let s and t be two
symbolic names and B1 + I1 · S1 + O1, B2 + I2 · S2 + O2 the respective address
computations described in Section 5.1. Assume GVN finds out that B1 + I1 · S1
and B2 + I2 · S2 always evaluate to the same value and the offsets O1 and O2 are
known.
• If we have information about the alignment of the accessed memory blocks

and know that |O2 −O1|+ alignment ≤ linesize− 4, we can conclude that
they access the same block.
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• If we have no alignment information but know that |O2 −O1| ≤ linesize− 4
and we have at least 2 cache sets, we can derive the relation ssdb.

• If we know that linesize ≤ |O2 −O1| ≤ linesize · (nsets− 1), we can derive
the relation ds.

5.3.2 Interval Analysis

Synopsis Interval analysis computes for each register and each memory location
an interval [l, u] including all possible values the expression can evaluate to. It is
a well-known analysis that is already used in similar tools. We implemented an
interval analysis, that basically propagates the range of the stack pointer to the
stack-relative accesses and performs basic arithmetic operations. Although it is a
simple analysis we can derive several useful relations.

Use In the best case we can derive the precise addresses for given symbolic names
s (b1) and t (b2).

• b1 = b2 gives us the sb relation,

• b1 6= b2 ∧ cs(b1) = cs(b2) relation ssdb and

• cs(b1) 6= cs(b2) relation ds.

All other cases only allow to obtain less precise relations. As there are many
possibilities to derive such relational information, we only give one more example.
Let [ls, us] and [lt, ut] be the interval approximating the addresses for the symbolic
name s and t, respectively. If us < lt and lt − us ≥ linesize, we can derive the
relation db between s and t.

5.3.3 Other useful analyses

There are other program analyses that compute useful relational information but
are currently not implemented in our framework. We will mention three of them
and give examples that would profit from them.

Difference-Bound Matrices and Octagon Analysis The Difference-Bound Ma-
trix (DBM) is a datastructure that stores constraints of the form x− y ≤ c and
±x ≤ c, where x and y are variables (or registers) and c a constant. The octagon
analysis computes constraints of form ±x± y ≤ c and ±x ≤ c, where x and y are
again variables or registers and c is a constant. This kind of relational information
can be used for deriving relations between symbolic names.
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...

... = a[0];
for (int i = 1; i <= 100; i += 4) {

a[i]++;
}
a[0] = ...;
...

Figure 14: Code snippet demonstrating the use of the Value-set Analysis

Let s1 and s2 be symbolic names that load from addresses x and y, respectively.
If |x− y| ≤ linesize− 4 and we have information about the alignment within the
cache line, we can derive the sb relation. If linesize·(nsets−1) ≥ |x−y| ≥ linesize,
we can derive the ds relation. Note that this formula has to be rewritten in order
to fit the given kind of constraints.

Value-set Analysis The value-set analysis of Balakrishnan et al. [1] computes
an over-approximation on the addresses that might be accessed via a specific
symbolic name. They use reduced interval congruences (RIC) within their value-set
analysis to represent possibly accessed addresses. A RIC can be represented by a
4-tuple (a, b, c, d) (written as a × [b, c] + d) that denotes the values described by
{a ·N + d | N ∈ [b, c]}. The domain is more expressive than the interval domain
we currently employ.

To demonstrate the use of these RICs for the relational cache analysis, consider
the example program in Figure 14. Assume that the addresses of the array a range
from 1000 to 1400. Furthermore, let the cache be 4-way associative with 4 sets and
a line size of 4 bytes.
Both accesses to a[0] go to address 1000. This can be represented in both

domains, the interval and the reduced interval congruence domain.
Within the loop, every forth array element a[i] is accessed starting from 1004 up

to 1400. Using an interval domain, the possibly accessed addresses are represented
by an interval from 1004 up to 1400. The interval domain is not able to take linear
congruences into account, such as only every forth array element is accessed. Using
the reduced interval congruence domain, the addresses that might be accessed
can be expressed as 16 × [0, 24] + 1004. Using interval information, we have to
pessimistically assume that we access cache set 0 — the one that holds a[0] —
25 times during the execution of the loop. At the end, the cache analysis cannot
guarantee that memory block a[0] still resides in the cache. With the help of the
reduced interval congruence, we are able to conclude that all accesses within the
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loop map to cache set 1 and thus do not affect cache set 0. Thus, the relational
cache analysis could predict the second access to a[0] as a hit.
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6 Evaluation

6.1 Classes of Examples

There are several classes of programs whose worst-case execution time analysis
can take advantage of our relational cache analysis. We now discuss the results
of one representative program for each of these classes. We will also outline other
examples that require some extensions to our congruence analysis that are currently
beyond the scope of this work.

6.1.1 Stack-relative memory accesses

Consider the function comp in Figure 15 in the corresponding context presented in
the motivating example Figure 8 on page 18.

The function makes heavy use of local variables. Since there are that many local
variables but only few registers available on the target machine, the compiler needs
to spill some locals on the stack. The addresses of these spill slots depend on the
stack pointer. To predict hits for such accesses, prior analyses need to distinguish

int comp(int a1, int a2, int a3,
int b1, int b2, int b3,
int c1, int c2, int c3) {

int p1 = a2 * b3 + a3 * b2;
int p2 = a3 * b1 + a1 * b3;
int p3 = a1 * b2 + a2 * b1;

int p4 = a2 * c3 + a3 * c2;
int p5 = a3 * c1 + a1 * c3;
int p6 = a1 * c2 + a2 * c1;

int p7 = b2 * c3 + b3 * c2;
int p8 = b3 * c1 + b1 * c3;
int p9 = b1 * c2 + b2 * c1;

return p1 * c1 + p2 * c2 + p3 * c3 +
p4 * b1 + p5 * b2 + p6 * b3 +
p7 * a1 + p8 * a2 + p9 * a3;

}

Figure 15: Function comp, which computes the sum of three triple products
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Table 1: Number of 32 static memory references predicted as hits

Configuration Precise SP 0xc000 Imprecise SP 0xc000 - 0xc008

ls k n traditional relational traditional relational

4 4 4 18 18 0 14
4 8 4 18 18 0 15
8 4 4 25 23 0 15
8 8 4 25 25 0 18
16 4 4 28 28 0 18
16 8 4 28 28 0 18

the call sites of comp to obtain precise address information. This approach results
in a higher running time of the analysis, because this requires one analysis instance
per call site. Using our relational view, we are able to predict hits in the presence
of an unknown stack pointer value.

Regard Table 1 that lists the number of cache hit predictions for function comp.
We benchmark different cache configurations, different stack pointer configurations
— once precisely and once imprecisely determined stack pointer — as well as different
analysis types.
First, let us look at the analysis results using a precisely determined stack

pointer. We recognise that the relational cache analysis produces almost the same
number of cache hit predictions as the traditional one. For configuration linesize 8,
associativity 4 and number of sets 4, the relational cache analysis performs a little
bit worse. This is caused by the situation already mentioned in Paragraph 3.6.
Second, let us consider the results for an imprecisely determined stack pointer.

The traditional cache analysis is not able to predict any hits — as expected. The
relational cache analysis still predicts up to 83% of the hits it has predicted in the
case of the precise stack pointer. The analysis results are naturally less tight than
the ones before because the relational information is preciser in case of the precise
stack pointer, but the analysis time is lower.

6.1.2 Array reuse within one loop iteration

Consider Figure 16. This is a slightly modified function taken from the Mälardalen
benchmark suite2. The accesses to the array int a[50][50] are of major interest
to us. Again, there is the possibility to increase context sensitivity, i.e. completely
unroll the loops in order to gain the exact address for each access. This is of course
not feasible for programs with deeply nested loops due to exponential increase in

2http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
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int a[50][50], b[50];

int main(void) {
int i, j, n = 50, w;
for (i = 0; i <= n; i++) {

w = 0;
for (j = 0; j <= n; j++) {

a[i][j] = (i + 1) + (j + 1); // access (a)
if (i == j)

a[i][j] *= 10; // access (b)
else

a[i][j] *= 2; // access (c)
w += a[i][j]; // access (d)

}
b[i] = w;

}
return 0;

}

Figure 16: Function main taken from ludcmp.c
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Table 2: Number of 13 static memory references predicted as hits

Configuration Precise SP 0xc000 Imprecise SP 0xc000 - 0xc008

ls k n traditional relational traditional relational

4 4 4 0 3 0 3
4 8 4 0 3 0 3
8 4 4 3 6 0 3
8 8 4 3 6 0 3
16 4 4 5 8 0 3
16 8 4 5 8 0 3

running time. Our relational cache analysis is able to predict hits for the last three
accesses to a[i][j] (namely accesses (b), (c) and (d)) during each loop iteration
— without any loop transformation or any rise of context sensitivity.

We benchmark again different cache configurations, different analysis types as
well as different stack pointer configurations. The results are shown in Table 2. No
matter which configuration we look at, the relational cache analysis always predicts
three more hits than the traditional one. These three predicted hits correspond to
the accesses (b), (c) and (d) — as expected. Each time one of these accesses is
performed, it will result in a cache hit. Although the analyses have been performed
without increasing context sensitivity or transforming the loop, the relational cache
analysis predicts 23% more static memory references as hits compared to the
traditional cache analysis.

6.1.3 Input-dependent addresses

Finally, consider Figure 17 also taken from the Mälardalen benchmark suite. This
time the base address of the array accesses is unknown as it is an argument.
Additionally the indices may depend on the argument lx. State-of-the-art cache
analyses are not able to classify any of these accesses as hits since their addresses are
unknown. Increasing context sensitivity is not useful in this case and distinguishing
all possible addresses of the argument is infeasible. Whereas the previous examples
motivated our relational analysis by decreasing context sensitivity and thus running
time of the analyses, this time our analysis generates a new class of programs that
can be precisely analysed.

Consider the results of benchmarking different system configurations in Table 3.
First, we focus on the case with a precisely determined stack pointer. The relational
cache analysis is able to predict up to 11 hits — or 14% — more than the traditional
cache analysis is able to. These hits are predicted for the stores in pass one and pass
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void fdct(int *blk, int lx) {
...
/* Pass 1: process rows. */
...
/* Pass 2: process columns. */

block=blk;
for (i = 0; i<8; i++) {

tmp0 = block[0] + block[7*lx];
tmp7 = block[0] - block[7*lx];
tmp1 = block[lx] + block[6*lx];
tmp6 = block[lx] - block[6*lx];
tmp2 = block[2*lx] + block[5*lx];
tmp5 = block[2*lx] - block[5*lx];
tmp3 = block[3*lx] + block[4*lx];
tmp4 = block[3*lx] - block[4*lx];
...
block[0] = ...
block[4*lx] = ...
block[2*lx] = ...
block[6*lx] = ...
block[7*lx] = ...
block[5*lx] = ...
block[3*lx] = ...
block[lx] = ...
/* advance to next column */
block++;

}
}

Figure 17: Function fdct taken from fdct.c
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Table 3: Number of 123 static memory references predicted as hits

Configuration Precise SP 0xc000 Imprecise SP 0xc000 - 0xc008

ls k n traditional relational traditional relational

4 4 4 11 13 0 7
4 8 4 26 28 0 17
4 16 4 43 54 0 43
8 4 4 36 38 0 11
8 8 4 54 54 0 20
8 16 4 64 71 0 51
16 4 4 56 57 0 14
16 8 4 73 79 0 32
16 16 4 78 89 0 55

two of the program. The remaining hit predictions are for stack-relative accesses
as the computation itself uses a lot of local variables, which are spilled.

In the second scenario with the imprecisely determined stack pointer, the tradi-
tional cache analysis cannot predict any hits — neither for the array accesses nor
the stack-relative accesses. As the relational cache analysis can handle both kinds
of accesses, the number of predicted hits of the relational cache analysis and the
traditional one differ greatly. The relational cache analysis is able to classify up to
45% of all static memory references as hits.

6.1.4 Further examples

There are still many other classes of programs that benefit from our relational
cache analysis. We will now outline two more of them. Analysis of these programs
requires extensions to our, up to now simple, congruence analysis that are out of
the scope of this thesis. Note, that the cache analysis itself does not need to be
modified which emphasises the modular character of the overall analysis.

Position-independent instruction cache analysis The overall WCET-analysis
takes a statically linked binary as argument. As the binary is statically linked, one
knows the exact addresses of the specific instructions and the cache analysis can
precisely classify accesses to the instruction cache. Having our relational cache
analysis, we observe that the analysis does not require precise address information
but relations between symbolic names. Analysing the instruction cache, we can
obtain precise relations (sb, ssdb, ds) without relying on the addresses. This enables
position-independent instruction cache analysis, that means we could analyse code of
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dynamically linked binaries or of dynamically loaded libraries. Concrete application
areas will need further investigation.

Heap allocated data structures Up to now, analysing accesses to dynamically
allocated data structures is beyond technical feasibility. First, function calls to
malloc(...) influence the cache state and second, the dynamically allocated data
structures do not have statically known base addresses. Recent work [9] tackles
the first problem: CAMA — a cache aware memory allocator — allows constant
response times and a predictable effect on the cache. Although the precise address
of a dynamically allocated data structure is still not known, one at least knows the
cache set it maps to because this is passed as argument to cmalloc(..., set). In
[6], Dudziak et al. present a method how to obtain alias information of accesses with
the help of a shape analysis based on 3-valued logic. Combining these techniques
with our relational cache analysis will be part of future work. It might allow the
use of dynamically allocated data structures in programs for embedded systems,
which is currently prohibited.

6.2 Results

The results we discussed in the previous section have shown that our relational
cache analysis obtains classifications of memory accesses that are at least as precise
as the ones of the traditional approach. In general, this is not the case because the
precision of the relational cache analysis depends on the precision of the congruence
analysis. There are rare examples for which our relational cache analysis yields
worse results, e.g. the one mentioned in Paragraph 3.6. Remembering the key
motivations for our work (Section 3.1), we meet all of these expectations:

Reducing context sensitivity We have shown that reducing the context sensi-
tivity (distinguishing call sites, unrolling loops) has not that high effect on the
relational cache analysis compared to the state-of-the-art approach. Although we
also lose precision in these cases, we can predict a quite valuable number of memory
accesses as cache hits. In the examples we discussed in detail, we could still predict
up to 56% of the static memory references as hits — at most 31% less hits than
possible when the context sensitivity is increased. The resulting WCET bound
might be already tight enough for our purposes and the overall analysis time can
be reduced.

Input-dependent addresses In case the address of a memory access depends
on an unknown input, these accesses worsen the must cache information of the
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int a[50];
void foo() {

for (int i = 1; i < 50; ++i) {
... = a[i];
a[i-1] = ...;

}
}

Figure 18: Reuse across loop iterations

traditional cache analysis overly pessimistically. Furthermore, no new memory
blocks are loaded into the abstract must cache. Thus no hits can be predicted
for such accesses. We have shown how to overcome this dependency on precise
address information and the results of our relational cache analysis are already
very promising. We are able to predict hits for many of those accesses. In the
examples we discussed, the relational cache analysis could predict up to 14% more
hits compared to the traditional cache analysis.

6.3 Limitations

The results for these first examples are already very promising. Nevertheless, the
relational cache analysis can be further improved.
Reconsider Figure 16. We are able to detect the cache hits resulting from the

temporal locality within the scope of the loop. Nevertheless, there is still more
potential reuse due to spatial locality to exploit. Assume cache lines of size 16 bytes.
The first access to a[i][j] will only result in a miss every fourth iteration. During
the other three iterations, the access results in a hit as the complete cache line
has been loaded at once. Up to now, we are not able to deal with this, but it will
definitely be investigated in future work.

Similarly, we are not yet able to predict hits that result from inter iteration reuse.
Consider one more example in Figure 18. Except the first access to a[i-1], all
others will result in cache hits because the accessed memory block is the same as
the memory block a[i] accessed one iteration before. Again, we are not yet able
to predict such accesses to result in cache hits. Similar problems arise from inter
loop reuse.
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7 Summary

7.1 Conclusion

In Section 3.1 we have discussed several problems and weaknesses of currently used
cache analyses. The contribution of this work is to characterise and analyse these
problems and to present a new cache analysis, called relational cache analysis, that
is able to overcome most of these weaknesses. The approach is three-fold.

Symbolic names We have introduced the notion of a symbolic name. A symbolic
name is a representative for all memory blocks that might be accessed at a specific
instruction. We can use these symbolic names as our new abstract cache elements,
thus accesses with imprecisely determined addresses can be represented in an
abstract cache, in contrast to the traditional analysis.

Relations between symbolic names In order to do precise updates and classi-
fications on the new abstract caches, we have to know, e.g., whether a symbolic
name that is accessed, always accesses the same memory block as a symbolic name
that resides in the abstract cache. In that case we can predict a hit.
In general, we employ a modular congruence analysis that computes relations

between symbolic names and can answer questions like the one above. The
congruence analysis is independent from the cache analysis and can thus run
as a preprocessing step. It has a clearly shaped interface that is important as
adjustments in the internal parts of the congruence analysis does not affect the
cache analysis that makes use of it. The analysis is modular since we can plug in
several analyses and compute the actual relations between symbolic names from
their results. We have shown several possible analyses that can be used for that
purpose and how relational information is extracted.

Relational cache analysis We have defined a new cache analysis that uses sym-
bolic names as abstract cache elements and relations between them to do updates
and classifications. The analysis is based on the approach of abstract interpretation,
a widely used technique to relate concrete and abstract semantics and to prove
the soundness of analyses. We have proven our analysis correct; it is a sound
approximation of the underlying concrete collecting semantics. Several classes of
programs have been examined and the results are throughout promising although
we only used very simple congruence analyses in our implementation. More power-
ful congruence analyses lead to better relational information and thus more precise
cache predictions.
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When analyzing stack-relative accesses without distinguishing call sites, the
relational cache analysis can still classify up to 56% of the static memory references
as hits — or up to 83% of the hits that can be predicted by the analysis with full
context sensitivity. Although we lose precision here, we can shorten the overall
analysis time and the WCET bound might already be tight enough. If increasing
the context sensitivity is not feasible, e.g. in deeply nested loops, the relational
cache analysis can nevertheless find out a reasonable amount of hits whereas the
traditional cache analysis cannot predict any hits.

In case of input-dependent addresses, the traditional cache analysis cannot predict
any hits as the addresses can only be imprecisely determined. Increasing context
sensitivity does not increase the precision of the traditional cache analysis and
distinguishing all possible inputs is infeasible. Our relational cache analysis does
away with the popular misconception that precise address information is required
for cache analysis. Up to 14% more hits can therefore be predicted by the relational
cache analysis compared to the traditional one, if accesses with input-dependent
addresses are involved. Thus, our cache analysis generates a new class of programs
that can be precisely analysed.

7.2 Future Work

We have presented fundamental work on relational cache analysis. Nevertheless,
there is a lot more to do in order to improve the analysis.

Congruence analysis We want to examine more congruence analyses, e.g. the
Value-Set analysis [1] and how their information can be used to derive relational
information. Concrete effects of the different congruence analyses on the precision
of the relational cache analysis is interesting future work.

Cache analysis We will try to further increase the precision of the analysis, e.g.
by taking partial positioning information into account.
The effect of spatial locality on the cache predictions is not negligible although

we do not care about this up to now. Doing more precise predictions due to spatial
locality effects will be a further aim.
We presented only a relational must cache analysis so far. A may analysis that

uses symbolic names as abstract cache elements can be defined analogously.
In this thesis, we have focused on the LRU replacement policy, but there are also

other replacement policies like first-in first-out (FIFO). We will investigate whether
existing cache analyses, that use memory blocks as abstract cache elements, can be
canonically extended to a relational cache analysis.
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Applications Last but not least, we want to investigate further application areas
like e.g. programs using dynamically allocated data structures. Therefore we could
combine the shape analysis from [6] with our congruence analysis in order to obtain
precise aliasing relations.
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A Proofs

Lemma A.1 (Consistency of v≤rel and t≤rel). The partial order v and the join
function t are consistent :

∀x, y ∈ C≤rel . x t y = y ⇔ x v y

Proof. Let x and y ∈ C≤rel and cgrv be the results of the congruence analysis at
the current program point. For the sake of readability let x′ = eab≤(x, cgrv)
and y′ = eab≤(y, cgrv). Using the transitivity property of the sb relation (∗), we
conclude

x t y = y
Def⇐⇒ ∀s ∈ N.eab≤(x t y, cgrv)(s) = y′(s)
Def⇐⇒ ∀s ∈ N.eab≤(λt ∈ N.max(x′(t), y′(t)), cgrv)(s) = y′(s)
Def⇐⇒ ∀s ∈ N. min

u ≈sb s
max( min

v ≈sb u
x(v), min

v ≈sb u
y(v))(s) = y′(s)

(∗)⇐⇒ ∀s ∈ N. min
u ≈sb s

max( min
v ≈sb s

x(v), min
v ≈sb s

y(v))(s) = y′(s)

⇐⇒ ∀s ∈ N.max(x′(s), y′(s)) = y′(s)
⇐⇒ ∀s ∈ N.x′(s) ≤ y′(s)
Def⇐⇒ x v y

Theorem A.2 (Join semilattice). (C≤rel ,v
≤
rel) is a (finite) join - semilattice that

satisfies the ascending chain condition.

Proof. Reflexivity, antisymmetry and transitivity of v≤rel follow directly from the
respective properties of ≤. The binary relation t≤rel is defined on all pairs of C≤rel
and is consistent with v≤rel (see Lemma A.1).

Theorem A.3 (Monotonicity of γ≤rel). The concretization function γ is monotonic:

∀x, y ∈ C≤rel : x v y =⇒ γ(x) ⊆ γ(y)

Proof. Let x v y ∈ C≤rel , cgrv be the results of the congruence analysis at the current
program point and (blk, cc) ∈ γ(x). We have to show (blk, cc) ∈ γ(y), i.e.

consbcgr(blk, cgrv) ∧ ∀s ∈ N.blk(t) 6= ⊥ ⇒ age(cc, blk(s)) ≤ eab≤(y, cgrv)(s)

As (blk, cc) ∈ γ(x), consbcgr(blk, cgrv) hold. To see the last part of the conjunction,
let s ∈ N. If blk(t) = ⊥, the implication is trivially satisfied. Otherwise, as
(blk, cc) ∈ γ(x) we have

age(cc, blk(s)) ≤ eab≤(x, cgrv)(s).
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Since x v y, also

eab≤(x, cgrv)(s) ≤ eab≤(y, cgrv)(s),

and thus together with the transitivity of ≤

age(cc, blk(s)) ≤ eab≤(y, cgrv)(s).

Lemma A.4 (Normalization function eab≤). The normalization function does not
change the concretization of abstract elements

γ≤rel = γ≤rel ◦ eab≤

Proof. Let ab ∈ C≤rel and cgrv be the results of the congruence analysis at the current
program point. The claim directly follows from the idempotence property of eab≤
proven in Lemma A.5.

γ≤rel(eab≤(ab, cgrv))
= {(blk, cc) ∈ (N → B⊥)× CB | consbcgr(blk, cgrv)∧

∀s ∈ N.blk(s) 6= ⊥ ⇒ age(cc, blk(s)) ≤ eab≤(eab≤(ab, cgrv), cgrv)(s)}
A.5= {(blk, cc) ∈ (N → B⊥)× CB | consbcgr(blk, cgrv)∧

∀s ∈ N.blk(s) 6= ⊥ ⇒ age(cc, blk(s)) ≤ eab≤(ab, cgrv)(s)}
= γ≤rel(ab)

Lemma A.5 (Normalization function eab≤). The normalization function is idem-
potent, reductive, and monotonic. Let cgrv be the valid results of the congruence
analysis at the current program point.
For all ab, ab′ ∈ C≤rel

eab≤(ab, cgrv) = eab≤(eab≤(ab, cgrv), cgrv)
eab≤(ab, cgrv) v ab

ab v ab′ ⇒ eab≤(ab, cgrv) v eab≤(ab′, cgrv)

Proof. First, we will prove the idempotence property as the other properties follow
directly from the idempotence.
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Idempotent Let s ∈ N be a symbolic name. We can conclude using the transi-
tivity of the sb relation (∗)

eab≤(eab≤(ab, cgrv), cgrv)(s)
= min

t ≈sb s
min

v ≈sb t
{ab(v)}

(∗)= min
t ≈sb s

min
v ≈sb s

{ab(v)}

= min
v ≈sb s

{ab(v)}

=eab≤(ab, cgrv)(s)

After having proven the idempotence of eab≤, the other properties are easy to
prove.

Reductive

eab≤(ab, cgrv) v ab

⇐⇒∀s ∈ N.eab≤(eab≤(ab, cgrv), cgrv)(s) ≤ eab≤(ab, cgrv)(s)
⇐⇒∀s ∈ N.eab≤(ab, cgrv)(s) ≤ eab≤(ab, cgrv)(s)

The claim follows by the reflexivity of ≤ on the natural numbers.

Monotonic

ab v ab′

⇐⇒∀s ∈ N.eab≤(ab, cgrv)(s) ≤ eab≤(ab′, cgrv)(s)
⇐⇒∀s ∈ N.eab≤(eab≤(ab, cgrv), cgrv)(s) ≤ eab≤(eab≤(ab′, cgrv), cgrv)(s)
⇐⇒eab≤(ab, cgrv) v eab≤(ab′, cgrv)

Theorem A.6 (Local consistency of U≤rel). Let cgrv be the results of the congruence
analysis at the current program point. The abstract transformer U≤rel is locally
consistent with the concrete transformer U :

∀x ∈ C≤rel ∀s ∈ N, b ∈ B.
(blk, cc) ∈ γ(x) ∧ consbcgr(blk[s 7→ b], cgrv)⇒

U((blk, cc), s, b) ∈ γ(U≤rel(x, s))

Proof. Let x ∈ C≤rel , s ∈ N and b ∈ B. Furthermore let (blk, cc) ∈ γ≤rel(x) where
consbcgr(blk[s 7→ b], cgrv) holds. The latter condition ensures, that the local
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consistency must only hold for valid combinations of a symbolic name and a
memory block. We therefore assume that blk[s 7→ b] is consistent with cgrv: blk
is a valid symbol-to-block mapping before the access, s 7→ b models the address
computation and cgrv represents valid relational information after the address
computation. Substituting the definitions of γ≤rel and parts of U our proof goal
becomes

consbcgr(blk[s 7→ b], cgrv)∧
∀t ∈ N.blk(t) 6= ⊥ ⇒ age(Uc(cc, b), blk(t)) ≤ eab≤(U≤rel(x, s), cgrv)(t)

The first part of the conjunction holds, as it is one of our assumptions. Now, let
t ∈ N. If blk(t) = ⊥, the implication is trivially satisfied. If blk(t) 6= ⊥, the proof
goal is reduced to

age(Uc(cc, b), blk(t)) ≤ eab≤(U≤rel(x, s), cgrv)(t).

We split the proof into three subcases.
(a) cgrv(s, t) = sb

Now consbcgr guarantees that blk(s) = blk(t). Thus

age(Uc(cc, b), blk(t)) = age(Uc(cc, b), b)
= 0 (Definition Uc)
= eab≤(U≤rel(x, s), cgrv)(t) (Definition U≤rel)

(b) cgrv(s, t) = ds
Now consbcgr guarantees that cs(blk(t)) 6= cs(blk(s)). Thus, only the cache
set cs(blk(s)) is updated and

age(Uc(cc, b), blk(t)) = age(cc, blk(t)) (Definition Uc)
≤ eab≤(x, cgrv)(t) ((_, cc) ∈ γ≤rel(x))
= eab≤(U≤rel(x, s), cgrv)(t) (Definition U≤rel)

(c) cgrv(s, t) = ssdb
We have now to distinguish three further cases.
1) x(s) ≤ x(t) We get two further subcases.

i) age(cc, blk(t)) > age(cc, b)

age(Uc(cc, b), blk(t)) = age(cc, blk(t)) (Definition Uc)
≤ eab≤(x, cgrv)(t) ((_, cc) ∈ γ≤rel(x))
= eab≤(U≤rel(x, s), cgrv)(t) (Definition U≤rel)
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ii) age(cc, blk(t)) < age(cc, b)

age(Uc(cc, b), blk(t)) = age(cc, blk(t)) + 1 (Definition Uc)
≤ age(cc, b)
≤ eab≤(x, cgrv)(s) ((_, cc) ∈ γ≤rel(x))
≤ eab≤(x, cgrv)(t)
= eab≤(U≤rel(x, s), cgrv)(t) (Definition U≤rel)

2) x(s) > x(t) ∧ x(t) < k − 1
From the fact that one access to an LRU cache can age any element by at
most one, we conclude

age(Uc(cc, b), blk(t)) ≤ age(cc, blk(t)) + 1
≤ eab≤(x, cgrv)(t) + 1 ((_, cc) ∈ γ≤rel(x))
= eab≤(U≤rel(x, s), cgrv)(t) (Definition U≤rel)

3) x(s) > x(t) ∧ x(t) ≥ k − 1

age(Uc(cc, b), blk(t)) ≤ ∞
= eab≤(U≤rel(x, s), cgrv)(t) (Definition U≤rel)

The cases cgrv(s, t) = ss, cgrv(s, t) = db and cgrv(s, t) = ssdb can be reduced
to the above three cases by case distinction. For cgrv(s, t) = ss, we have e.g. to
consider the cases sb and ssdb and we have to prove that the update for ss correctly
accounts for both cases.

Theorem A.7 (Monotonicity of U≤rel). The abstract transformer U≤rel is monotonic.

∀s ∈ N ∀x, y ∈ C≤rel .x v y ⇒ U≤rel(x, s) v U≤rel(y, s)

Proof. Let x v≤rel y ∈ C
≤
rel be abstract relational caches and s be a symbolic name.

We have to show that

∀t ∈ N.U≤rel(x, s)(t) ≤ U≤rel(y, s)(t).

Let t be a further symbolic name. We distinguish five cases according to cgrv(s, t).
(a) cgrv(s, t) = sb

U≤rel(x, s)(t) = 0 (Definition of U≤rel)
= U≤rel(y, s)(t) (Definition of U≤rel)
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(b) cgrv(s, t) ∈ {ds, ssdb}

U≤rel(x, s)(t) = x(t) (Definition of U≤rel)
≤ y(t) (Precondition)
= U≤rel(y, s)(t) (Definition of U≤rel)

(c) cgrv(s, t) wR ssdb ∧ x(s) ≤ x(t)
Then, U≤rel(x, s)(t) = x(t) and U≤rel(y, s)(t) can either be y(t) or y(t) + 1 or ∞.
In all cases

U≤rel(x, s)(t) ≤ U≤rel(y, s)(t)
(d) cgrv(s, t) wR ssdb ∧ x(s) > x(t) ∧ x(t) < k − 1

Then, U≤rel(x, s)(t) = x(t) + 1 and U≤rel(y, s)(t) can again either be y(t) or
y(t) + 1 or ∞. For the latter two cases U≤rel(x, s)(t) ≤ U≤rel(y, s)(t) holds. Let
us consider the first case. From U≤rel(y, s)(t) = y(t), we can conclude by the
definition of U≤rel , that y(s) ≤ y(t). Thus

U≤rel(x, s)(t) = x(t) + 1 (Definition of U≤rel)
≤ x(s) (Assumption (d))
≤ y(s) (x v≤rel y)
≤ y(t)
= U≤rel(y, s)(t) (Definition of U≤rel)

(e) cgrv(s, t) wR ssdb ∧ x(s) > x(t) ∧ x(t) ≥ k − 1
As x v≤rel y, y(t) ≥ x(t) ≥ k − 1 and thus U≤rel(y, s)(t) =∞.
U≤rel(x, s)(t) ≤ U≤rel(y, s)(t) is now trivially satisfied.

Theorem A.8 (Validity of the classification function Class≤rel). Let cgrv be the
results of the congruence analysis at the current program point. The abstract
classification function Class≤rel is valid with respect to the concrete classification
function Class.

∀x ∈ C≤rel ∀s ∈ N ∀b ∈ B.
(blk, cc) ∈ γ≤rel(x) ∧ consbcgr(blk[s 7→ b], cgrv)⇒

Class(γ≤rel(x), s, b) vCl Class
≤
rel(x, s)

Proof. Let x ∈ C≤rel be a normalised abstract relational cache and (blk, cc) ∈ γ≤rel(x).
Furthermore let s ∈ N be a symbolic name and b ∈ B a memory block with
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consbcgr(blk[s 7→ b], cgrv). The latter condition ensures, that the local consistency
must only hold for valid combinations of a symbolic name and a memory block.
We therefore assume that blk[s 7→ b] is consistent with cgrv: blk is a valid symbol-
to-block mapping before the access, s 7→ b models the address computation and
cgrv represents valid relational information after the address computation.

We distinguish two cases, corresponding to possible results of Class≤rel(x, s). The
case Class≤rel(x, s) = >Cl is trivial. Now, let Class≤rel(x, s) = H. Therefore, the age
bound of the symbolic name s must be smaller than ∞. We need to show

age(cc, b) <∞

From the definition of γ≤rel follows, that

age(cc, b) ≤ eab≤(x, cgrv)(s)
= x(s) <∞

Thus, Class(γ≤rel(x), s, b) = H.
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B Symbols

Symbol Meaning
B Set of memory blocks
B⊥ Set of memory blocks including ⊥
Bi Set of memory blocks mapping into cache set i
L Set of program locations
k Cache associativity
n Number of cache sets
LB Set of cache lines contents
SB LRU cache sets
CB LRU caches
age Function computing the age of a memory block
AB≤ Set of possible ages
S≤Fer Abstract LRU must cache sets
C≤Fer Abstract LRU must caches
N Set of symbolic names
R Set of relations between symbolic names
cgrv Function providing relation information
consbcgr Function checking the consistency of symbol-to-block mappings
eab≤ Normalization function computing effective age bounds
I Concrete Name-Instrumented LRU caches
C≤rel Abstract relational LRU must cache

Table 4: Symbols used in this thesis
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