
Reverse Engineering of Cache Replacement Policies
in Intel Microprocessors and Their Evaluation

Andreas Abel and Jan Reineke
Department of Computer Science

Saarland University
Saarbrücken, Germany

Email: {abel, reineke}@cs.uni-saarland.de

Abstract—Performance modeling techniques need accurate
cache models to produce useful estimates. However, properties
required for building such models, like the replacement policy,
are often not documented. In this paper, using a set of carefully
designed microbenchmarks, we reverse engineer a precise model
of caches found in recent Intel processors that enables accurate
prediction of their cache performance by simulation. In partic-
ular, we identify two variants of pseudo-LRU that, unlike previ-
ously documented policies, employ randomization. We evaluate
their performance and demonstrate that it differs significantly
from known pseudo-LRU variants on some benchmarks.

I. INTRODUCTION

To bridge the increasing latency gap between the processor
and main memory, modern microarchitectures employ mem-
ory hierarchies with multiple levels of cache memory. These
caches are small but fast memories that make use of temporal
and spatial locality. Typically, they have a big impact on the
execution time of computer programs.

In recent years, different approaches have been proposed
to estimate the performance of software systems. This in-
cludes analytical modeling, as well as simulation-based and
profile-based prediction techniques. All these approaches need
sufficiently detailed models of the cache hierarchy in order
to produce useful estimates. Similarly, such models are an
essential part of worst-case execution time (WCET) analyzers
for real-time systems [1]. Furthermore, information on cache
properties is also required by self-optimizing software systems,
as well as platform-aware compilers.

Unfortunately, documentation of relevant properties at the
required level of detail is often not available, or may be
misleading. One such property is the cache replacement policy.
In this paper, we develop a novel set of microbenchmarks to
reverse engineer replacement policies used in recent Intel pro-
cessors. Based on the results we obtain from these microbench-
marks, we then propose models for the replacement policies
that are detailed enough to precisely predict the performance of
applications by simulation. Finally, we compare these policies
to well-known existing ones by evaluating their performance
on the PARSEC benchmark suite.

II. PROBLEM DESCRIPTION

CPU Caches are structured as follows. They consist of a
number of cache sets, each of which can store k memory
blocks from the main memory (k is also called the associativity
of the cache). A specific memory block can only be stored in

one cache set; this set is determined by a part of the block’s
memory address. Upon a cache miss, a so called replacement
policy must decide which memory block of the corresponding
set to replace. One popular strategy is to replace the least-
recently used (LRU) block. As the cost of implementing this
policy is rather high for larger associativities, processors often
use a tree-based approximation to LRU, called pseudo-LRU or
PLRU (for details we refer to [2]).

In [3] we observed that several Intel Core 2 Duo CPUs
appear to use different replacement policies for their L2 caches.
According to Intel [4], these CPUs “use some variation of
a pseudo LRU replacement algorithm”. However, while we
could verify that the Core 2 Duo E6300 (2MB, 8-way set-
associative cache) uses the tree-based PLRU policy, the cache
behavior of the E6750 (4MB, 16-way set-associative) and the
E8400 (6MB, 24-way set-associative) was found to be different
from previously documented PLRU variants. The following
experiment reveals these differences:

1) Clear the cache.
2) Access one block in all cache sets.
3) Access n different blocks in all cache sets.
4) Access the blocks from 2) again and measure the misses.

Figure 1 shows the result of running this experiment with
different values for n on the CPUs mentioned above. Note
that all of those CPUs have 4096 cache sets. For the tree-
based PLRU policy, we would expect to get 0 misses if n is
smaller than the associativity, and 4096 misses otherwise, as
is the case for the Core 2 Duo E6300. The goal of our work is
to develop techniques to build a precise model of the policies
used by the other two Core 2 Duo processors.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

L2
 m

is
se

s

n

Core 2 Duo E6300 Core 2 Duo E6750 Core 2 Duo E 8400

Fig. 1: Experimental analysis of the L2 cache behavior of the
Intel Core 2 Duo E6300, E6750, and E8400.

l0 l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13 l14 l15

RND RND RND RND RND RND RND RND

0 1 0 1

0 1

1

Fig. 2: PLRU-Rand state after an access to l4.

III. METHODOLOGY & CHALLENGES

We developed several microbenchmarks to analyze specific
properties of replacement policies, for example the effects of
additional hits to elements in the cache, whether the replace-
ment behaviors in different cache sets are independent of each
other, and a test for pseudo-randomness.

Implementing these microbenchmarks was challenging in
several aspects. As we consider the L2 cache, the access
sequences had to be designed in a way such that all accesses
lead to misses in the L1 cache and are thus passed to the
L2 cache. Furthermore, we had to find ways to minimize
the effect of performance enhancing techniques like out-of-
order execution or non-blocking caches. Finally, we developed
techniques to accurately measure the number of cache misses.
Unlike previously described approaches, our techniques are
able to analyze individual memory accesses.

IV. RESULTS

A. Models

Based on the results from running the microbenchmarks,
we built the following models.

For the Core 2 Duo E6750, the following model agrees
with our observations: Consider a PLRU-like policy in which
the lowest bits of the tree (i.e., the bits closest to the leaves)
are replaced by (pseudo-)randomness. Figure 2 illustrates this
policy. Under such a policy, one of the two elements to which
the tree bits point is replaced with a probability of 50%.
Furthermore, after every eight subsequent misses the tree bits
point to the same subtree. So the probability that an element is
replaced after n subsequent cache misses can be determined by
the following function: P (n) = 1−

(
1
2

)bn8 c. This corresponds
well to the results from the experiment in Section II. In the
following, we will call this policy PLRU-Rand.

The behavior of the Core 2 Duo E8400, on the other
hand, can be described by the following model: Consider
a PLRU-like policy in which the root node is replaced by
(pseudo-)randomness, as illustrated in Figure 3. In this policy,
the elements are separated into three groups with 8 elements
each; within each group they are managed by a tree-based
PLRU policy. Upon a miss, one of these groups is chosen
randomly. For this policy, the probability that an element is
replaced after n subsequent cache misses can be determined
by the function P (n) =

∑n
a=8

(
1
3

)a · (23)n−a · (na). In the
following, we will call this policy Rand-PLRU.

l0 l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13 l14 l15 l16 l17 l18 l19 l20 l21 l22 l23

1 0 1 0 0 1 1 0 0 1 0 1

0 1 0 1 0 0

0 1 0

RND

Fig. 3: Rand-PLRU state after an access to l4.

B. Benchmarks

We have compared the performance of the discovered
replacement policies to other popular policies on the PARSEC
benchmark suite [5]. To this end, we have implemented these
policies in the Cachegrind cache simulator.

We found that the performance of Rand-PLRU is on
most benchmarks comparable to PLRU. In one case (the
blackscholes benchmark on a 4MB cache), the miss ratio of
Rand-PLRU was about 45% higher than PLRU, and in another
case (the vips benchmark on a 6MB cache), the miss ratio of
Rand-PLRU was close to a third of the miss ratio of PLRU,
but about three times the miss ratio of LRU. However, in both
cases, the absolute values of the miss ratios are rather low,
which means that the impact on the overall performance of an
application would be rather small.

For PLRU-Rand, on the other hand, we observed a large
difference in the miss ratio on the streamcluster benchmark.
On a simulated 4MB cache, the miss ratio for PLRU is
about 10% higher, and on a 6MB cache it is almost 50% higher.
Moreover, as the absolute values of the miss ratio and the L2
access rate are also very high for this benchmark, this would
lead to a significantly higher overall execution time.

V. FUTURE WORK

Arriving at a model of a replacement policy by using the
microbenchmarks we presented requires some manual work.
We are currently exploring the use of techniques from machine
learning for building such models automatically. Furthermore,
we plan to extend our work to other architectural features,
such as translation lookaside buffers, branch predictors, and
prefetchers.

REFERENCES

[1] R. Wilhelm et al., “The worst-case execution time problem—overview
of methods and survey of tools,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 7, no. 3, 2008.

[2] D. Grund and J. Reineke, “Toward precise PLRU cache analyis,” in
Proceedings of 10th International Workshop on Worst-Case Execution
Time (WCET) Analysis, July 2010, pp. 28–39.

[3] A. Abel and J. Reineke, “Measurement-based modeling of the cache
replacement policy,” in 19th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), April 2013, pp. 65–74.

[4] R. Singhal, Personal communication, Intel, August 2012.
[5] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,

Princeton University, January 2011.

