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Abstract. We study the following gray-box learning problem: Given the
serial composition of two Mealy machines A and B, where A is known
and B is unknown, the goal is to learn a model of B using only output
and equivalence queries on the composed machine.
We introduce an algorithm that solves this problem, using at most |B|
equivalence queries, independently of the size of A. We discuss its efficient
implementation and evaluate the algorithm on existing benchmark sets
as well as randomly-generated machines.

1 Introduction

Tools to analyze software or hardware systems, such as static analyzers or model
checkers, require accurate system models as input. Third-party components,
however, are rarely specified at the level of detail required by such tools.

One approach to automatically obtain formal models of systems is active
learning. Here, one commonly assumes an oracle, or teacher, that admits two kinds
of queries about the system: output queries return the result of the system for a
specific input; equivalence queries check whether a conjectured model is consistent
with the system to be learned and return a counterexample if not. Based on this
setup, Angluin introduced the L∗ algorithm [2] for learning deterministic finite
automata. L∗ has since been extended to other modeling formalisms, such as
Mealy machines [19], register automata [11], or symbolic automata [16]. It is also
at the heart of several model checking approaches, including [4, 8, 20].

As the system is treated as a black box, no information about the internal
structure of the system can be taken into account by most existing learning
algorithms. In practice, however, systems are often composed of sub-components,
for some of which models might be available, but it is not possible to access the
known and the unknown parts separately from the outside. Partial information
about the inner workings of a system may be inferred from manuals or conjectured
from similar, yet better documented systems. This scenario is depicted in Figure 1.

While it is in theory possible to learn a model of the entire system using
existing black-box approaches, this is often not viable in practice because the
state space is too large. A problem, which has received little attention in the
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literature so far, is how to use the available information about the system to
focus the learning algorithm on those parts that are unknown. This problem
could be termed gray-box learning.

In this paper, as a first step toward solving this problem, we study one specific
instance: We assume that the system C is the serial composition of two Mealy
machines A and B, and that we have a model for the left machine (A) and want
to learn the right machine (B). We further assume that we can perform output
and equivalence queries only on C as a whole. This scenario is shown in Figure 2.

While output queries can often be realized cheaply by measurements on the
actual system, equivalence queries can usually only be approximated by a large
number of such measurements. Our primary focus is thus to minimize the number
of equivalence queries. We introduce an algorithm to exactly learn B in the context
of A that performs at most |B| equivalence queries, where |B| denotes the number
of states of B. We also discuss a more practical variant of this algorithm that
requires a polynomial number of equivalence queries in the size of B.

We evaluate several variants of our approach on compositions of randomly-
generated machines against an implementation of the classic L∗ algorithm in
LearnLib [13]. Furthermore, we also compare the performance of our approach
with the tool BICA [17] on a set of standard benchmarks for minimizing incom-
pletely specified Mealy machines. We show that our approach requires significantly
fewer output and equivalence queries on most benchmarks.

2 Problem statement

In this section, we first formally define several concepts used throughout this
paper. Then, we give a precise description of the problem that we address.

2.1 Basic notions

Definition 1 (Mealy Machine). A Mealy machine M is a tuple (Q, I,O, δ, qr),
where Q 6= ∅ is a finite set of states, I 6= ∅ is a finite set of input symbols, O 6= ∅
is a finite set of output symbols, δ : Q × I → Q × O is the transition function,
and qr ∈ Q is the initial (reset) state.



We extend δ to sequences in the usual way. We use ε to denote the empty
sequence. Further, we use M(x) to denote the output sequence of M when reading
x, and ML(x) to denote last output of M when reading x.

Given two Mealy machines A and B, we can compose them to a serial Mealy
machine C by using the output of A as the input for B. Formally:

Definition 2 ((Synchronous) Serial Composition of Mealy Machines).
Let A = (QA, IA, OA, δA, qr,A) and B = (QB , IB , OB , δB , qr,B) be two Mealy ma-
chines such that OA ⊆ IB. The serial composition of A and B is a Mealy
machine C = (Q, I,O, δ, qr), where Q := QA × QB, I := IA, O := OB,
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and qr = (qr,A , qr,B ).

Given a composition of two Mealy machines A and B, we define a machine B′

to be right-equivalent to B in the context of A if the composition of A and B
describes a machine that is equivalent to the composition of A and B′. Formally:

Definition 3 (Right-equivalence). Let A,B, and B′ be Mealy machines. Then,
B′ is right-equivalent to B in the context of A iff ∀x ∈ I∗ : B(A(x)) = B′(A(x)).

2.2 The gray-box learning problem

In this paper, we address the following problem. We assume that we have a serial
composition C of two Mealy machines A and B. Further, we assume that we
have a model of A, but B is unknown. While we do not have a model of C, we
assume that we can determine the output of C on any input by an output query,
and we can test whether a machine is equivalent to C by an equivalence query.

Using existing techniques, like Angluin’s L∗ algorithm [2], one could consider C
to be a black box and learn a model of C. Such an approach would in the worst
case employ a polynomial number of output and equivalence queries in the size
of C, which can be up to |A| · |B|.

Instead, our goal is to exploit the knowledge we have about A, and to learn a
model of a minimum-size machine B′, such that B′ is right-equivalent to B in
the context of A. In particular, as we consider equivalence queries to be more
expensive than output queries, we want the number of equivalence queries to be
polynomial in the number of states of B′, independently of the size of A.

3 Preliminaries

Existing active learning approaches for Mealy machines (and related machine
types) are usually based on a Myhill-Nerode-like equivalence relation that parti-
tions the set of input words into classes such that the words that are in the same
class cannot be distinguished with respect to different suffixes:

Definition 4 (Equivalence of input words). Given a function F : I∗ → O,
two words x, y ∈ I∗ are equivalent, x ∼ y, iff ∀z ∈ I∗ : F (x · z) = F (y · z).



F can be modeled by a Mealy machine iff this relation has finitely many
equivalence classes. One can then construct a minimum-size Mealy machine whose
states are the equivalence classes of this relation. Existing approaches compute
the equivalence relation in a co-inductive fashion. In the beginning, they consider
all words to be equivalent. Then, in each round this hypothesis is refined by
identifying at least one new equivalence class, until the equivalence relation is
fully determined.

If we consider the machine B in the serial composition with A, then it is
possible that not all input sequences for B can be produced by A. Let tr(A) =
{A(x) | x ∈ I∗} be the set of output sequences that A can produce. For each
output sequence x ∈ tr(A) there might be multiple input sequences that produce
this output. Let A−1 : tr(A)→ I∗ be a function such that A−1(x) returns one
of these input sequences. In the following, it will not be important which of the
possibly multiple sequences is actually returned.

We have that every right-equivalent Mealy machine B′ for B in the context
of A has to agree with the partial function FP : I∗B ⇀ O such that ∀x ∈ tr(A) :
FP (x) = BL(x). Note that while we do not have immediate access to B, we can
use output queries on C to access B, as for all x ∈ tr(A), BL(x) = CL(A−1(x)).

Similarly to Definition 4, we define two words to be right-compatible in the
context of A iff they cannot be distinguished with respect to different suffixes.

Definition 5 (Right-compatibility). Two words x, y ∈ I∗B are right-compatible
in the context of A, x ∼A y, iff ∀z ∈ I∗B : (xz /∈ tr(A) ∨ yz /∈ tr(A) ∨BL(xz) =
BL(yz)). Otherwise, x and y are incompatible, x �A y.

However, right-compatibility is, unlike equivalence, not transitive. Thus it is
not an equivalence relation, which means we cannot directly use the construction
sketched above to build a minimum-size machine.

To see this, consider a Mealy machine A and two output symbols a, b ∈ OA

with ∀z ∈ I∗B : az, bz ∈ tr(A)∧BL(az) = 0∧BL(bz) = 1 and ∀z ∈ I∗B : cz /∈ tr(A).
So B always outputs 0 if the first output of A was a, it always outputs 1 if the
first output of A was b, and A never outputs c as the first output.

This means that a ∼A c and b ∼A c, but a �A b. For this example, we can build
a machine with three states that is right-equivalent to B. From the start state, a
transition with c can go to any state. This also shows that there can be multiple
machines with the minimum number of states that are right-equivalent to B.

4 Approach

Equivalence queries are typically assumed to be more expensive than output
queries. Many existing active learning techniques therefore focus on keeping the
number of required equivalence queries low.

At a high level, Angluin’s L∗ algorithm for instance, can be described as
follows. In each round, the algorithm first performs a sequence of output queries
in a systematic way, until there is exactly one machine of minimum size that is
consistent with the results from all output queries performed so far. Only then, the



algorithm performs an equivalence query. If this query returns a counterexample,
this implies that the correct machine must have at least one additional state.
Thus, Angluin’s algorithm performs at most n equivalence queries, where n is
the size of the minimal correct machine.

Unlike in Angluin’s setting, in general no unique machine of minimum size
that is consistent with a set of observations exists. The basic idea behind our
approach is to perform output queries until all machines of minimum size that
are consistent with these queries are right-equivalent in the context of A. We
then perform an equivalence query for one of these machines. If this query results
in a counterexample, this counterexample witnesses that all of these machines are
incorrect, and thus, the correct machine must have at least one additional state.

One challenge is to find a suitable sequence of output queries that is guaranteed
to reduce the number of machines that are consistent with all queries performed
so far. The basic idea is to iteratively construct all machines of minimum size
that agree with all of the previous queries. We can then check whether each pair
of these machines is right-equivalent. If they are not, we use a distinguishing
sequence as a counterexample, without performing an equivalence query.

However, applying this approach naively would not be viable in many cases
because there can be an exponential number of machines of the same size that are
consistent with a set of observations, in particular in the beginning, when only
a small number of queries have been performed. Thus, we identify a number of
necessary conditions for candidate machines to be right-equivalent which can be
efficiently determined on observation tables. Some of these conditions correspond
to notions from Angluin’s algorithm, such as consistency and closedness, while
others, like input-completeness, are special to our particular setting.

In the rest of this section, we describe our proposed algorithm in detail and
introduce the necessary theoretical concepts. In particular, we describe in detail
which output queries our algorithm performs to systematically reduce the number
of machines that are consistent with the observations made so far. In the following,
we assume that the reader is familiar with Angluin’s L∗ algorithm [2].

4.1 Observation tables

The main data structure used in our approach is an observation table. The rows
of the table are indexed by a set of prefixes, the columns by a set of suffixes, and
the entries of the table store the last output symbol of an output query for the
concatenation of the corresponding prefix and suffix. If this concatenation is not
a possible output sequence of the left machine A, we do not perform an output
query, but store ⊥ in this cell instead. In contrast to most previous definitions,
our observation tables do not consist of two explicitly distinguished parts.

Definition 6 (Observation Table). An observation table T = (S,E,Q) con-
sists of a finite non-empty prefix-closed set of prefixes S ⊆ tr(A), a finite
suffix-closed set of suffixes E ⊆ I∗B (such that IB ⊆ E, and ε /∈ E), and a
function Q : (S,E)→ OB such that Q(x, e) = CL(A−1(xe)) iff xe ∈ tr(A) and
Q(x, e) = ⊥ otherwise.



For a set R ⊆ S and a ∈ IB, let SuccT (R, a) := {xa | x ∈ R ∧ xa ∈ S}, i.e.,
SuccT (R, a) is the set of successor rows for elements of R that are in the table.

In the following, we will use the term row both for the prefixes and for the
entries of a row, when it is clear what is meant from the context.

We call two rows compatible if all columns that are not ⊥ in both rows are
the same.

Definition 7 (Compatibility). The rows for two prefixes x, y ∈ S are compat-
ible iff ∀e ∈ E : Q(x, e) = ⊥ ∨Q(y, e) = ⊥ ∨Q(x, e) = Q(y, e).

We call an observation table consistent if whenever two rows are compatible,
their successors are also compatible.

Definition 8 (Consistency). An observation table T is consistent iff for all
prefixes x, y ∈ S such that the rows for x and y are compatible, for all a ∈ IB all
rows in SuccT ({x, y}, a) are compatible.

If there is a suffix e ∈ E that shows that the successors of x and y under an input
a are not compatible, then ae is a suffix that shows that the rows for x and y
are also not compatible. Thus, we can add ae to E to resolve this inconsistency.

We define a partition of the set of rows as follows.

Definition 9 (Partition). A partition for observation table T = (S,E,Q) is a
partition P = {P1, ..., Pk} of S, such that

• for all x, y ∈ Pi: the rows for x and y are compatible,

• for each Pi, and for all a ∈ IB, there is a Pj, such that: SuccT (Pi, a) ⊆ Pj.

Note that if SuccT (Pi, a) 6= ∅ then there is only one such Pj since all classes
of the partition are disjoint.

We will later show how we can use partitions to build candidate machines
that are consistent with the observations made so far. The words in the same
class of a partition will then lead to the same states in these candidate machines.

We call a partition closed if for each class of the partition and each input
symbol a, the observation table contains a successor row (under a) for at least
one word of this class, if we know from the observations made so far that such
a successor must exist. Our inference algorithm uses closedness as a way to
determine which additional rows should be added to the table.

Definition 10 (Closedness for Partitions). Let P = {P1, ..., Pk} be a par-
tition for T = (S,E,Q). P is closed if for all Pi ∈ P : if there is some x ∈ Pi

and some sequence az ∈ E with a ∈ IB and z ∈ I∗B such that Q(x, az) 6= ⊥, then
there must be some y ∈ Pi for which Q(y, az) 6= ⊥, and ya ∈ S.

Given an observation table T , let Π(T, n) be the set of all partitions of size n.
Let Πmin(T ) be the set of partitions of minimum size for an observation table T ,
i.e., Πmin(T ) = Π(T,m) where m = min{n | Π(T, n) 6= ∅}.

Definition 11 (Closedness). An observation table T = (S,E,Q) is closed if
all minimum-size partitions P ∈ Πmin(T ) are closed.



Definition 12 (Partial Closedness). An observation table T is partially closed
(p-closed) iff for all prefixes x ∈ S and all sequences az ∈ E such that Q(x, az) 6=
⊥, there is a prefix y ∈ S such that the rows for x and y are compatible,
Q(y, az) 6= ⊥ and ya ∈ S.

If a table is not p-closed, then no partition can be closed.

Definition 13 (Agreement). A Mealy machine M agrees with an observation
table T = (S,E,Q) if for all x ∈ S and e ∈ E, Q(x, e) = ⊥ ∨Q(x, e) = ML(xe).

For any closed partition P = {P1, ..., Pk} in Πmin(T ), we can build the
following Mealy machine MP = (Q, I,O, δ, qr) with k+1 states: Q := P ∪{error},
I := IB, O := OB ∪ ⊥, δ(Pi, a) := (error,⊥) if SuccT (Pi, a) = ∅, otherwise:
δ(Pi, a) := (Pj , b) such that for some x ∈ Pi: Q(x, a) = b 6= ⊥ and SuccT (Pi, a) ⊆
Pj , and qr := Pi such that ε ∈ Pi.

This machine enters a special error state if there is a class of the partition,
for which the successor class is not defined.

In the following, we will use the notation πi(t) to denote the i-th component
of a tuple t, e.g., π2(qr, a) = a.

Lemma 1. Let P be a closed partition of an observation table T = (S,E,Q),
and MP = (Q, I,O, δ, qr) the Mealy machine constructed as described above. Then
for all words x ∈ S, x ∈ π1(δ∗(qr, x)).

Theorem 1. For a closed partition P of an observation table T , the machine
MP agrees with T .

Definition 14. Let γ(MP ) be the set of machines with k states that can be
obtained from MP by removing the error state and replacing the transitions to
the error state by transitions with arbitrary outputs and successor states.

Theorem 2. Let T be a closed observation table. Then every minimum-size
machine M that agrees with T is isomorphic to an element of γ(MP ) for some
P ∈ Πmin(T ).

Theorem 3. If for a closed partition P the error state is not reachable in a
composition of A with MP , then all machines in γ(MP ) are right-equivalent. 1

If the error state is reachable, we can use an input sequence that leads to the
error state to extend the observation table.

Definition 15 (Input-Completeness). An observation table T = (S,E,Q) is
input-complete if for all minimum-size partitions P ∈ Πmin(T ), the error state
is not reachable in a composition of A with MP .

Definition 16 (Uniqueness). An observation table T = (S,E,Q) is unique if
for all pairs of minimum-size partitions P, P ′ ∈ Πmin(T ), the machines MP and
MP ′ are right-equivalent in the context of A.

1 The proofs for the theorems in this section are available at http://embedded.cs.

uni-saarland.de/GrayBoxLearning/details.pdf.



It follows that all machines of minimum-size size that agree with a consistent,
closed, input-complete, and unique observation table are right-equivalent, and
they can be obtained from the partitions.

Algorithm 1: Main algorithm

Input: Machine A, OutputQuery OQ, EquivalenceQuery EQ
begin

ObservationTable OT ← empty table
addRow([ε])
curSize ← 1
while (true) do

while (¬consistent ∨ ¬p-closed) do
makeConsistent() // consistency

makePClosed() // p-closedness

set partitions ← ∅
prevMachine ← ⊥
while (true) do

partition ← findNextPartition(partitions, curSize)
if (partition = ⊥) then

if (prevMachine = ⊥) then
curSize ← curSize+1
continue

else
counterexample ← EQ(prevMachine)
if (counterexample = ⊥) then

removeErrorState(prevMachine)
return prevMachine

else
handleCounterexample(counterexample)
break

if (¬isClosed(partition)) then
closePartition() // closedness

break

machine ← getMachineForPartition(partition)
errorPath ← getPathToErrorStateInComposition(A,machine)
if (errorPath 6= ⊥) then

handleCounterexample(errorPath) // input-completeness

break

if (prevMachine 6= ⊥) then
distInput ← checkRightEquivalence(A, machine, prevMachine)
if (distInput 6= ⊥) then

handleCounterexample(distInput) // uniqueness

break

partitions ← partitions ∪ {partition}
prevMachine ← machine

4.2 Inference algorithm

At a high level, our algorithm works as shown in Algorithm 1. In each iteration
of the main loop, we first make sure that the observation table is consistent
and p-closed (by adding additional rows and columns if necessary). Then, we
successively determine the partitions of minimum size for the observation table.
Whenever we find a partition that is not closed, we add new rows to the table
such that the partition becomes closed, and we continue with the next iteration
of the main loop. If we find a closed partition, we check whether the error state
is reachable in a composition of the corresponding machine with A. If we find
a sequence that leads to the error state, this means that the table is not input-
complete. Thus, we add this sequence (and its prefixes) to the observation table



and continue with the next iteration of the main loop. If we find more than one
closed and input-complete partition in the same iteration of the main loop, we
check whether the machines for these two partitions are right-equivalent in the
context of A. If we find a distinguishing sequence, we extend the observation table
accordingly, and continue with the next iteration of the main loop. If finally the
table is consistent, closed, input-complete, and unique, we perform an equivalence
query for the last machine we found (which is right-equivalent to all machines of
minimum size that agree with the table). If the equivalence query is successful,
we are done, otherwise, we get a counterexample that we add to the table.

5 Implementation

In this section, we describe how our algorithm can be implemented. We also
propose some improvements that make the algorithm more usable in practice.

5.1 Computing the partitions

We reduce the problem of finding the partitions for a given size n, which is an NP-
complete problem, to a boolean satisfiability (SAT) problem. Related reductions
were used by [1] for minimizing incompletely-specified Mealy machines, and by [10]
for finding DFAs that agree with a set of positive and negative input samples.

For space reasons, we will omit the details of our reduction approach. They are
available at embedded.cs.uni-saarland.de/GrayBoxLearning/details.pdf.

5.2 Reachability of the error state

If the error state is reachable with an input a from a state in the composition of
the hypothesis machine with the left machine A, this means for no prefix p in the
observation table that leads to this state, the input pa is a possible output of the
left machine, however, there is another possible output sequence that leads to
the same state that has a corresponding successor. We can thus use this sequence
as a counterexample.

A straightforward way to check the reachability would be to build the compo-
sition, and then to perform a breadth-first search on the composition. A necessary
condition for the reachability of the error state in the composition is that the
error state is reachable in the hypothesis machine. We have observed that in
practice, if the error state is reachable in the hypothesis machine, then in many
cases, it is also reachable in the composition. Thus, we use the following approach
to find a corresponding sequence quickly: We first determine for each state of
the hypothesis machine the distance of the shortest path to the error state. We
then use this distance to guide the search in a modified breadth-first search in
the composed machine.



5.3 Checking if two machines are right-equivalent

A straightforward way to check whether two hypothesis machines B and B′

are equivalent in the context of A would be to compose both with A, and then
check the two compositions for equivalence, for example using Hopcroft-Karp’s
near-linear algorithm. However, this can be computationally expensive when A
is large compared to B and B′, as it requires building the composition twice.

Therefore, we take the following alternative approach. We build a new ma-
chine D that outputs 1 iff the outputs of B and B′ differ on (a prefix of) the
corresponding input, and 0 otherwise. While the size of D can be quadratic in
the size of B, we have observed that, after minimization, in practice the sizes are
smaller or comparable to B. To check whether B and B′ are right-equivalent we
can then just check whether the composition of A with the minimized version of
D can output 1, using the search algorithm described in the previous section.

5.4 Performing additional equivalence queries

While evaluating our approach on the benchmarks from Section 6.2, we came
across several benchmarks, for which the number of right-equivalent machines
is very large. We propose the following modification of our algorithm that uses
some additional equivalence queries to achieve better performance in practice. For
each value of curSize, we perform the n-th equivalence query after computing 2n

partitions, rather than first enumerating all right-equivalent machines.

The number of Mealy machines of size n with input alphabet I and output
alphabet O that compute different functions is bounded by (n · |O|)n·|I|. So
the number of equivalence queries performed for machines of size i is at most
log2(i · |O|)i·|I| = i · |I| · log2(i · |O|). For n = |B|, the modified algorithm performs
at most

∑n
i=1 i · |I| · log2(i · |O|) ∈ O(n3 · |I| · log2 |O|) many equivalence queries.

5.5 Handling counterexamples

Like in the original version of Angluin’s L∗ algorithm, we handle counterexamples
by adding all prefixes of the counterexamples as rows to the table. Since, in
general, the length of a counterexample can depend on |C|, the number of rows
that are added (and hence the number of output queries that need to be performed
to determine their entries) is not independent of |A|.

Rivest and Schapire [18] described an improved approach to handle counterex-
amples that needs to perform only a logarithmic number of membership queries
(in the length of the counterexample). However, it is not possible to directly
adapt this method to our setting, since it requires that there is always a suffix of
the counterexample that is a distinguishing suffix for two compatible rows. It is
future work to develop more advanced methods to deal with counterexamples in
our setting.



GBLearning GBLearning-No5.4 GBLearning-Simple Learnlib/Comp Learnlib/⊥

(1
00
0;
1)

(1
00
;1
0)

(1
0;
10
0)

(1
;1
00
0)

(1
00
00
;1
)

(1
00
0;
10
)

(1
00
;1
00
)

(1
0;
10
00
)

(1
;1
00
00
)

(1
00
00
0;
1)

(1
00
00
;1
0)

(1
00
0;
10
0)

(1
00
;1
00
0)

(1
0;
10
00
0)

(1
;1
00
00
0)

(1
00
00
00
;1
)

(1
00
00
0;
10
)

(1
00
00
;1
00
)

(1
00
0;
10
00
)

(1
00
;1
00
00
)

(1
0;
10
00
00
)

(1
;1
00
00
00
)

100

102

104

106

#
O
Q

1

2

4

8

16

32

#
E
Q

0.1

1

10

100

T
im

e
/
s

0

5

10

T
O
+
E

Fig. 3. Evaluation on randomly-generated machines

6 Evaluation

6.1 Randomly-generated machines

In this section, we compare several variants of our approach (that differ, in
particular, with respect to the number of equivalence queries they perform) with
the Mealy machine version of Angluin’s L∗ algorithm. We use a set of randomly
generated compositional Mealy machines with between 1, 000 and 1, 000, 000
states, and an input and output alphabet of size 4.

The results are shown in Figure 3. GBLearning (“Gray Box Learning”) is an
implementation of the approach described in the previous sections. GBLearning-
No5.4 is a variant of our approach that does not perform the additional equiva-
lence queries described in Section 5.4. GBLearning-Simple is another variant of
our approach that does neither check whether the error state is reachable, nor
whether different machines that are consistent with the observation table are
right-equivalent. Instead, it immediately performs an equivalence query upon
finding a closed partition. Thus, the number of equivalence queries of this variant
is not independent of the size of the right machine.

We compare these implementations with two variants of Angluin’s L∗ algo-
rithm, as implemented in LearnLib [13] (ExtensibleLStarMealy). Learnlib/Comp
treats the system as a black box, and learns the composition. Furthermore, we



modified Learnlib (Learnlib/⊥) such that it uses L∗ on the right machine; impos-
sible inputs are assumed to result in a special output symbol (⊥). Equivalence
queries are performed by first composing the hypothesis for the right machine
with the left machine. Note that this variant does not learn a minimum-size
machine; in fact, the learned machine might even be larger than the composition.

The columns of Figure 3 show the sizes of the randomly-generated machines
in the form (|QA|; |QB |). The rows show the number of output queries (#OQ),
equivalence queries (#EQ), and the execution time in seconds (averages, minima
and maxima for the successful runs of 10 different randomly-generated machines
of the same size). The row TO+E shows on how many of the 10 runs a timeout
(5 minutes), or an error occurred. For Learnlib/Comp we observed one error, for
Learnlib/⊥ three errors due to an exception (“incompatible output symbols”).
All other entries in this row were timeouts. We used the jar-Release of LearnLib
in version 0.9.1-ase2013-tutorial-r1. Both our tool and Learnlib use a query cache
to avoid performing the same output query multiple times.

We observe that Learnlib/⊥ was only successful when A had 10 or fewer states,
or when B had just one state. It performed slightly better than Learnlib/Comp
in only a few cases where |QA| = 1 or |QB | = 1. Learnlib/Comp was successful
on almost all benchmarks with up to 100,000 states; however, it could not solve
any benchmark with more states.

The implementations of our tool could also handle composed machines of
larger sizes, in particular when B is relatively small. GBLearning and GBLearning-
No5.4 were successful on all benchmarks where B had up to 1,000 states, on
several where B had 10,000 states, and on two where B had 100,000 states.

For those machines that our implementations and Learnlib/Comp could handle,
the number of required output queries was much smaller for our implementations
if |QA| > 1. In this case, there was no significant difference in the number of
output queries between the different variants of our approach. Also, for |QA| > 1,
the number of output queries depends mainly on |QB | for all three variants.

For GBLearning and GBLearning-No5.4, the number of equivalence queries
was mostly 1 or 2 even for relatively large unknown machines; however, randomly-
generated machines might not be representative in this regard. GBLearning-
Simple needed significantly more equivalence queries than these two variants for
|QB | > 1, but significantly fewer than Learnlib/Comp for |QA| > 10.

6.2 Benchmarks for the minimization of incomplete Mealy machines

We now compare the same variants of our implementation with BICA [17]. BICA
is a tool that uses a modification of Angluin’s L∗ algorithm for minimizing
incompletely specified Mealy machines, a known NP-complete problem. If we
choose as the left machine A of the composition a machine such that tr(A)
corresponds exactly to the specified inputs of the right machine, the minimization
of incompletely specified Mealy machines can be considered to be a special case
of our approach.

We use the same set of benchmarks that was used by the authors of BICA to
evaluate their approach, but we excluded those benchmarks for which some output
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Fig. 4. Minimization benchmarks

bits are not specified, as this is currently not supported by our implementation.
We use BICA in version 5.0.3. We added code to count the number of output
and equivalence queries.

The results are shown in Figure 4. All variants of our approach require signif-
icantly fewer output queries than BICA; this might in part be due to the use of
a query-cache in our implementations. Both GBLearning and GBLearning-No5.4
require significantly fewer equivalence queries than BICA; however, GBLearning-
No5.4 did not terminate on several of them within a timeout of 5 minutes.
GBLearning-Simple could solve all benchmarks; the number of equivalence queries
was comparable to GBLearning for about one third of the benchmarks, on the
remaining benchmarks it was comparable to BICA. However, the objective of
the algorithm used by BICA was not mainly to minimize the number of queries,
since output and in particular equivalence queries are very cheap in the present
scenario, as the machines to be minimized are readily available, and equivalence
queries can be performed by automata constructions. Instead, the focus of their
approach was to minimize the execution time. In such a case, minimizing the
number of equivalence queries as we do, by checking right-compatibility of many
different candidates, is not beneficial in terms of runtime. In fact, BICA was
faster on many of the benchmarks.

7 Related work

The concept of actively learning DFAs using membership and equivalence queries
was introduced by Angluin in [2]. Angluin developed a polynomial-time learning



algorithm, called L∗, for fully-specified DFAs. Rivest and Schapire [18] later
improved this algorithm and proposed a modification that does not require the
system to have a reset state.

Multiple studies [15, 6, 7, 17, 12] considered scenarios in which the teacher
is unable to answer some output queries. In contrast to our setting, where the
input language is a known regular language, these approaches assume that no
information about the unspecified inputs is available a priori, so that whether
a particular input is specified can only be determined by performing an output
query. In this scenario, the best bound Leucker and Neider [15] could give for the
number of required equivalence queries is nO(n). Hsu and Lee [12] claimed that
their approach is able learn a minimum-size model for an incompletely specified
FSM in polynomial time. However, this approach is incorrect; it does in general
not find a minimum-size machine [14].

The term “gray-box” has been used in relation with Angluin’s algorithm
before, but in different contexts. Babic et al. [3] describe an approach to learn an
input-output relation for a program. They propose a symbolic version of L∗ that
is allowed to inspect the internal symbolic state of the program. Henkler et al. [9]
consider real-time statecharts that have an additional interface for retrieving the
current internal state. Elkind et al. introduce grey-box checking [5]. A grey-box
system consists of completely-specified (white boxes) and unknown components
(black boxes). The goal of grey-box checking is then to check whether the system
satisfies a property, given e.g. by an LTL formula. The main problem studied by
Elkind et al. is to learn a model of the entire system given the knowledge about
the white boxes, which can then be used to model check the property. In contrast
to our setting, they consider finite automata that synchronize on common letters
in their alphabet, whereas we consider Mealy machines with explicit inputs and
outputs. Furthermore, they only use output queries; equivalence queries are
realized via a large number of output queries.

8 Discussion and future work

We have introduced an algorithm for gray-box learning of serial compositions
of Mealy machines. Experimental results confirm that taking into account prior
knowledge about a system to be learned often yields significant performance gains.

There are plenty of open problems left for future work: In this paper, we have
considered the serial composition of two Mealy machines. In future work, we
would like to extend our approach to arbitrary composition topologies.

While we can precisely bound the number of equivalence queries, we lack such
knowledge about the number of output queries. More generally, we would like to
better understand the computational complexity of the problem at hand.

In our experimental evaluation, we realized equivalence queries by automata-
theoretic constructions, as we had precise knowledge of the system to be learned.
In real application scenarios, such knowledge is not available. In those cases,
it would be interesting to systematically perform measurements in a way that
focuses on the unknown parts.
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