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ABSTRACT

Timing compositionality is assumed by almost all multicore
timing analyses. In this paper, we show that compositional
timing analysis can be incorrect even for simple microarchi-
tectures with in-order execution. We then introduce three
approaches to enable sound compositional analysis: two
based on analysis and one based on a hardware modifica-
tion. In the experimental evaluation we explore the strengths
and weaknesses of these three approaches. One of the two
analysis-based approaches provides an attractive trade-off
between analysis cost and precision, enabling sound com-
positional timing analysis even for microarchitectures with
out-of-order execution.

1. INTRODUCTION

Hard real-time embedded systems are an important class of
embedded systems in which a violation of timing constraints
could result in catastrophic outcomes. In order to reduce
size, weight, power, and cost, there is a trend to transition
from federated architectures towards integrated architectures,
where multiple critical functions are integrated on a single,
shared multicore execution platform. As any violation of
timing constraints could have catastrophic consequences, it
is imperative to prove in advance that all timing constraints
are guaranteed to be met; a process we refer to as timing
analysis.

Timing analysis for single-core architectures has for long
been addressed by a two-step approach. First, worst-case
execution time (WCET) analysis determines the maximal
execution time of each task when run in isolation. Then,
schedulability analysis determines whether each task can be
guaranteed to meet its deadlines, accounting for all possible
interference the task might experience due to the execution
of other tasks on the same processor.

Timing analysis for multicore architectures faces the chal-
lenge that tasks not only interfere on the processor cores,
but also on other shared resources, such as shared buses,
shared caches, and shared memories. It is an open question,
how interference on resources other than the processor cores
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should best be accounted for. One can distinguish at least
three approaches:

1. The Murphy approach |5 is to compute a bound on
the execution time of a task accounting for all possible
interferences on shared resources other than the proces-
sor within WCET analysis. This is only feasible if every
resource access has bounded latency independently of
interference. Where applicable, the Murphy approach
can be extremely pessimistic, leading to drastic overes-
timations 31} [33].

2. In a fully-integrated timing analysis |16} 24, 22|, tasks
running on different cores are simultaneously analysed,
precisely capturing all possible interleavings of resource
accesses from different cores, as well as latency hid-
ing due to pipelined execution. While this approach
promises the highest possible precision, it appears to
be practically infeasible for realistic systems due to the
enormous number of system states.

3. Compositional timing analysis can be seen as a natural
extension of the classical two-step approach: low-level
analysis computes the “resource demand” of each task
for each shared resource. In a system with a shared
bus, low-level analysis would compute a bound on the
task’s number of bus accesses and on its execution time
on the processor core assuming the task is run in isola-
tion. Given such task characterisations, schedulability
analysis [37] |7, [20] then determines, whether each task
can be guaranteed to meet its deadlines, accounting
for the interference it may experience on each of the
shared resources.

We believe that compositional timing analysis is the most
promising approach to multicore timing analysis: it avoids
the pessimism of the Murphy approach, while not suffering
from combinatorial explosion as a fully-integrated timing
analysis would. It also maintains a fairly simple interface be-
tween low-level analysis and schedulability analysis, allowing
different communities to focus on their particular skills.

However, for contemporary multicore architectures it is
neither obvious whether compositional timing analysis is
sound nor whether it is precise: it relies on the assumption of
timing compositionality. Informally speaking the assumption
is that timing contributions from different shared resources
can simply be added up to obtain the response time of a
task. We provide a more formal definition of timing compo-
sitionality in Section [2] In Section [3] we demonstrate that
even simple in-order pipelined processors feature amplifying
timing anomalies which render “naive” compositional tim-
ing analysis unsound. On the other hand, we also observe
that due to pipelining, modern processors can sometimes
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hide the latency of accesses to shared resources, rendering
compositional timing analysis potentially imprecise.

We discuss three approaches to enable sound composi-
tional timing analysis with respect to interference on shared
resources, where shared buses will serve as an example, in
Section One approach is based on a small hardware
modification that guarantees timing compositionality, while
sacrificing average-case performance under interference. The
other two approaches are analysis-based, accounting for the
effect of anomalies either in the timing contribution of the
core or in the timing contribution of the shared bus. Both
approaches are applicable to existing microarchitectures, but
they offer different trade-offs between analysis efficiency and
precision.

The purpose of the experimental evaluation in Section
is to determine the cost of enabling sound compositional
timing analysis in terms of analysis efficiency and precision.
To this end, we use a semi-integrated analysis [21] to compute
interference response curves, i.e., curves that capture how the
execution time of a task responds to interference on shared
resources. Comparing the three approaches with each other
in terms of analysis cost and with the interference response
curve in terms of analysis precision reveals their relative
strengths and weaknesses.

To summarise, we make the following contributions:

e We show that even simple microarchitectures do not
admit “naive” compositional timing analysis as it is
found in most approaches in the literature.

e We introduce and evaluate three approaches to enable
sound compositional timing analysis, two of which are
analysis-based and applicable to existing microarchi-
tectures without modification.

2. BACKGROUND

2.1 Timing Compositionality

Intuitively, timing compositionality enables separate analy-
ses of different aspects of a system’s timing behaviour and the
subsequent combination of the respective individual analysis
results to a sound overall timing guarantee.

There are two motivating factors to employ composition-
ality during timing analysis. First, the individual separate
analyses can be more efficient than a single integrated analy-
sis. Second, compared with the Murphy approach, individual
analyses offer a richer interface to schedulability analysis
compared to single WCET bounds that are independent
of co-running tasks and their interference. Schedulability
analysis can thus combine the more fine-grained results of
the separate analyses to obtain more precise results. As an
example, Altmeyer et al. |7] demonstrate how to use such
a richer interface in a response-time analysis to account for
interference on multiple shared resources.

In the following, we provide a formal definition of timing
compositionality based on [17]. In this definition, a system
configuration comprises everything that influences the timing
behaviour of a system, i.e. the state of all active tasks,
the values of registers and memory, and the state of the
hardware including pipelines, caches, bus arbitration, and
the memory controller. An execution trace is a sequence of
system configurations formed by the cycle-wise execution of
the processor. Thus the execution time of a given trace 7 in
processor cycles is given by its length |7|.
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Figure 1: Schematics of a complex contemporary multicore
architecture.

Shared bus (e.g. round-robin)

Different constituents of the system influence its timing
behaviour, e.g. the bus arbiter blocking accesses to the shared
bus or the DRAM controller scheduling refreshes. Each
constituent’s contribution to the system’s overall timing is
captured by a contribution function, which maps execution
traces to the constituent’s contribution. This contribution is
not necessarily expressed by a number of processor cycles,
but e.g. by the number of interfering bus accesses. Finally,
a combination operator calculates an overall timing bound
based on the contributions of all constituents:

DEFINITION 1. Let T be the set of finite execution traces.
A family of contribution functions (tc; : T— Wj)j=1..n and
a monotonic combination operator € : H;L:1W7' — N form a
timing decomposition if

VreT. |t < @ tej (7). (1)

Jj=1

The following example decomposition matching Figure
is similarly chosen in the literature, e.g. in [40 |8} 7]:

e The “ideal” execution time of the tasks running on one
of a multicore’s cores, assuming the absence of any
interference tcigeal(7) =1 € Wigews = N,

e the number of additional cache misses due to preemp-
tions tcorpp(T) = em € Werpp = N,

e the number of accesses interfering on the shared bus
tepus(T) = ba € Wiys = N, and

e the number of DRAM refreshes performed
tepram(7) = dr € Wpram = N.

These contributions are then combined using the following
combination operator:

@(i, cm,ba,dr) :=i+mp-cm+bp-ba+rp-dr, (2)

where mp, bp, and rp denote the additional timing penalty
that one cache miss reload, interfering bus access, or DRAM
refresh can contribute to the execution time. An intuitive
approach—commonly employed in literature as in |7]—is to
choose what we call the direct effect as the respective penalty
as described in the following. The direct effect penalty for
a cache miss due to preemption mp is the latency to load a
cache line from the background memory. In work-conserving
bus arbitration, each concurrent interfering access can block
access to the shared bus at most for the length of the access,
i.e. bp is chosen as the background memory latency. The
penalty 7p is chosen as the refresh latency provided by the
DRAM chip datasheet. We will see in Section [3] that the
above “naive” decomposition with direct effect penalties can
be incorrect even for simple microarchitectures. In Section
we will then discuss three remedies to this problem.



In response-time analysis, each contribution tc; of a de-
composition can be approximated by combining the results of
corresponding low-level analyses of each involved task. Such
analyses focus on the timing contributions of the system
constituents during the response time of a given task p. We
denote the set of traces from the release of task p until the end
of p’s execution, including periods in which p is preempted
by other tasks, by 7, C 7. Thus, for the response-time of a
given task p, we can derive:

n
Tnéz% T < ine%g; 6_9 te;(T) Def. compositionality
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In conventional single-core response-time analysis for fixed-
priority scheduling, only Analysis, .., (p) is considered
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where (), is a bound on task p’s execution time in isolation
obtained by a low-level analysis, and T}, is the period of p.
In multi-core response-time analysis 7] each Analysis,(p)
similarly aggregates the bounds on the contributions of each
task computed by corresponding low-level analyses. In that
case, the different analyses, (Analysis;(p));=1,....n, are cou-
pled through the task’s response time R,.

2.2 Low-Level Timing Analysis

In this section, we describe a slight generalisation of to-
day’s de-facto standard approach to WCET analysis. This
generalisation [21], which we call semi-integrated analysis,
allows to analyse a program’s execution time in terms of the
amount of interference it experiences on shared resources. We
will use this generalisation to evaluate the imprecision and
possible unsoundness of compositional analysis in Sections
and[f] Further, it is the basis of one of the two approaches to
enable compositionality by analysis described in Section [4

We distinguish three analysis phases: 1. value and control-
flow analysis, 2. microarchitectural analysis, and 3. path
analysis. The first phase computes properties of the program
that are independent of the underlying microarchitecture, in
particular the possible values of registers and memory cells
at different points in the program, as well as loop bounds
and other constraints on the set of feasible program paths.
This information is used in the two following analysis phases.

As the microarchitecture determines each instruction’s
timing, microarchitectural analysis characterises all possible
execution traces of a given task. It is practically infeasible to
enumerate them all due to their sheer number. Thus the anal-
ysis operates on abstract microarchitectural states [43], which
each implicitly represent a large set of concrete microarchi-
tectural states. In particular, abstract microarchitectural
states completely abstract from the values of registers and
memory cells, which are characterised in Phase 1. They
do model the state of the pipeline, and of the caches, for
which good abstractions are known. In a fully-integrated
analysis, abstract states would also comprise the state of
the co-running tasks and the exact state of the peripherals
such as a DRAM controller. Despite the precision of such an
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(a) One edge per processor cycle. (b) Compressed chains. One
edge represents multiple cycles.

Figure 2: Variants of microarchitectural execution graphs.

approach, such analyses [16] [24, 22| cannot handle realistic
hardware platforms without crippling assumptions—due to
the size of the state space. In a semi-integrated analysis [21],
which we describe here, microarchitectural states further
abstract from the co-running cores and the exact state of the
peripherals to coarse information about whether the shared
bus is blocked or a DRAM refresh is ongoing.

Microarchitectural analysis begins with the set of abstract
states in which the program under analysis is about to enter
the pipeline for execution. Then the analysis successively
computes the abstract states that arise within one processor
cycle—until the program under analysis has left the pipeline
and finished execution. The abstraction introduces non-
determinism upon analysing the effect of one processor cycle,
e.g. whether a cache access is a hit, or a bus access is blocked
by another access of a co-running task. Thus, an abstract
microarchitectural state can have multiple possible successor
states. If two abstract states are sufficiently “similar” they
can be joined to a single abstract state to speed up the
analysis.

Based on the set of reachable abstract states, microar-
chitectural analysis generates an abstract microarchitectural
execution graph (aka prediction-file [42]). The nodes in this
graph are abstract states and the edges describe the evolu-
tion during a processor cycle as shown in Figure 2a] For
efficiency of the following path analysis, the resulting graph
is compressed by replacing chains of edges by a single edge
resulting in Figure 2] (see [42] for details). In the compressed
graph, each edge e is annotated with weights, in particular
the number of processor cycles time.. To model the impact
of interference such as shared-bus blocking, additional edge
weights can be used to capture the number of interfering
events occurring during the processor cycles modelled by an
edge, e.g. the number of interfering bus accesses blocking an
access to the shared bus blocked.. For example, in state s1 in
Figure due to the abstraction of the state of co-running
tasks, it is unknown whether bus access will be blocked or
not, resulting in non-determinism, where one successor edge
is labelled with blocked = 0 and the other with blocked = 1.

Finally, path analysis determines the longest execution
trace through the microarchitectural execution graph. The
standard approach, implicit path enumeration |27, is to en-
code the longest-path problem as an Integer Linear Program
(ILP). For each edge e in the graph, a frequency variable z.
is used to model the number of times e is taken. To obtain
an upper timing bound, the objective function then is

max Z timee - Te. (4)
edge e

The microarchitectural execution graph is encoded via flow
conservation constraints for each vertex in the graph. Fur-
thermore, cycles in the graph are bounded using loop bound



information. More details on such ILP formulations can be
found in [42].

If an upper bound on the amount of interference I—e.g.
on the shared bus—is known, an interference constraint

> blocked - z. < I (5)

edge e

can be added to exclude paths that experience an infeasi-
ble amount of interference [21]. Similar constraints can be
formulated to bound the impact of DRAM refreshes or the
impact of cache misses due to preemptions, provided the
graph is annotated with corresponding weights.

Throughout the paper, we refer to the analysis described
above that models interference by non-determinism as a semi-
integrated analysis. It is apparent that Analysis,,,, from
Section which can assume the absence of interference is
more efficient: less non-determinism needs to be considered
in the microarchitectural analysis and the ILP path analy-
sis formulation becomes simpler with fewer constraints. In
particular, no interference constraint is required.

3. THREATS TO COMPOSITIONALITY

All approaches involved with timing compositionality which
we encountered in the literature feature a composition op-
erator that is linear w.r.t. interference—similar to the one
described in Section 21} i.e., each unit of interference is
assumed to contribute a fixed penalty of additional execution
cycles. This system model assumption is sound if a unit
of interference can never cause more additional execution
time than given by the penalty, and it is precise if a unit of
interference almost always increases execution time by the
penalty.

To validate these two assumptions, we introduce inter-
ference response curves. The interference response curve of
a task bounds its interference-induced additional execution
time in terms of the amount of interference that the task
experiences during its execution. We use a semi-integrated
analysis as described in Section to compute such bounds.
Here, interference may be quantified by the number of addi-
tional cache misses due to preemptions, the number of DRAM
refreshes, or the number of blocking accesses at the shared
bus. In this paper, we focus w.l.o.g. only on interference
caused by shared-bus blocking.

For a given program, the interference response curve is
implicitly given by the integer linear program used in the
path analysis as described in Section 2.2} A single point
on the curve can be computed by choosing a corresponding
constant amount of interference I in the ILP constraints.

Figure[3a]shows the interference response curves for several
programs w.r.t. shared-bus blocking. The underlying hard-
ware configuration—a dual-core machine with round-robin
event-driven arbitration—is described in detail in Section [5.21
In round-robin arbitration, a single access can be blocked
by at most one concurrent access per co-running core. Thus,
there is a maximal amount of interference that can affect
the execution of a program. The y-axis shows the additional
execution time due to interference, relative to the direct
effect of this maximal interference. A curve corresponding
to perfect compositionality would have a slope of one with a
y-intercept of zero.

Figure zooms in on the interval from 0% to 5% of
the maximal amount of interference that affects a given
benchmark. We make two observations:
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Figure 3: Sampled interference response curves for four pro-
grams. 100 samples each. Configuration 4, see Section

OBSERVATION 1. For some programs, the additional exe-
cution time due to shared-bus interference exceeds the expected
direct effect penalty. See Figure [38

OBSERVATION 2. For some programs, a significant portion
of the expected additional latency is hidden. See Figure[3d

In general, it depends both on the core architecture and
the particular shared resource whether a drop in slope of the
curve can be observed: Using, e.g., fixed-priority bus arbitra-
tion, all interfering accesses can—in the worst case—block a
single access, and so very little of their contributions can—in
the worst case—be hidden. Under round-robin arbitration,
on the other hand, the ability of the core to overlap bus
blocking with other computations determines the drop in
slope of the curve, as each individual access may only be
blocked by a small number of interfering accesses.

The interference response curve can be multi-dimensional
modelling the cumulative effects of multiple different sources
of interference.

3.1 Amplifying Timing Anomalies

Timing anomalies [29] 34] are a well-known challenge for
timing analysis. Due to the non-determinism in the mi-
croarchitectural analysis, an abstract state can have multiple
successors. One of them is often considered to be the local
worst case (e.g. shared bus blocked, or additional cache
miss) with a bounded direct effect on the execution time as
described in Section B-11

A non-deterministic choice where the local worst case
does not imply the global worst case is known as a timing
anomaly. Microarchitectural analysis thus needs to follow all
possible successors to obtain a sound upper bound, which
can be expensive. Such anomalies are not harmful w.r.t.
compositionality and are thus not the focus of this paper.

However, Lundqvist and Stenstrém [29] found a second
type of anomaly. While servicing the local worst case the
abstract pipeline state can change in a way that leads to
an indirect effect, i.e. an additional execution time increase
beyond the direct effect penalty. We call a non-deterministic
choice, an amplifying anomaly, if the overall execution time
increases by more than the direct effect, i.e. there is a positive
indirect effect.

Considering the combination operator presented in Sec-
tion it is apparent that this poses a challenge for timing
compositionality. Ignoring indirect effects leads to unsound
bounds, which is supported by our Observation [I]

The microarchitectural analysis of dynamically-scheduled
(a.k.a. out-of-order) processors is known to be prone to am-
plifying timing anomalies. Lundqvist and Stenstrém [29]
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Figure 4: Amplifying timing anomaly upon uncertainty of
length of store access str, e.g. due to shared-bus blocking.

prolonged
—_——

Figure 5: The execution of two subsequent arithmetic in-
structions hiding the latency of a preceding store.

provide examples of amplifying timing anomalies triggered
by uncertainty about the cache behaviour and the varying
latencies for cache hits and misses. Such anomalies can also
be triggered by uncertainty about the memory latency due
to shared-bus blocking.

As one of the contributions of this paper, we observe
amplifying timing anomalies even in the analysis of low-
complexity processors comparable to an ARM® Cortex®-
M4 [3]. In the following, we provide an example, which we
encountered during the microarchitectural analysis of the
benchmark program bsort100.c taken from [15]. We found
this anomaly during the analysis of the in-order pipeline with
store buffer described in Section

In Figure [d] we show the relevant program snippet and
the amplifying anomaly triggered by the uncertainty of the
duration of the store memory access str. The upper case
depicts the situation that str finishes fast, while the lower
case depicts the situation that the access str is prolonged, e.g.
by bus blocking. As stores are buffered, str can complete
and leave the pipeline so that the execution of subsequent
instructions can advance in the pipeline. In both cases, the
fetch of instruction mul becomes ready, but is blocked because
the memory is busy with str. The data access of the load 1dr
becomes ready during the prolonged part of str. After access
str finished, the fetch of mul is started in the upper case
as it is the only ready access. In the lower case, there are
two ready accesses: the fetch of mul and the data access of
1dr. As in the aforementioned Cortex®-M4 (3], the data
access is prioritised over the instruction fetch and thus ldr
starts. In both cases, mul can only execute after it has been
fetched. In the upper case, mul’s execution can be overlapped
with the (independent) load. In the 5-stage in-order pipeline
from Section [£.2] the multiplication is performed in the
execute stage while the load is concurrently performed in the
subsequent memory stage. This overlapping is not possible in
the lower case as the load has been performed prior to the mul
fetch. Finally, the incurred penalty on the execution time is
larger than the prolongation of the access. The indirect effect
in this example is determined by the execution latency of mul.

3.2 Hiding Latencies

In Figure we observe that there can be significant
latency hiding effects. Thus, a timing bound that is derived
compositionally may significantly overestimate the bound
derived by a semi-integrated analysis.

The reason is that parts of memory accesses—thus also
parts of shared-bus blocking—can overlap with computa-
tions within the processor pipeline. This effectively hides
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Figure 7: Example: snippet of a cycle-wise microarchitectural
execution graph.

parts of the overall latency. The better a microarchitecture
can hide latencies, the less precise compositionally derived
bounds will be. As an example, consider Figure |5 A store
operation is performed in the background memory, while
subsequent arithmetic instructions execute concurrently due
to pipelining and the presence of a store buffer. For the
overall execution time, it is irrelevant whether the store is
prolonged or not, as in both cases the memory latency is
hidden by the execution of independent operations.

4. ENABLING COMPOSITIONALITY

In the following, we present three different solutions to es-
tablish a sound decomposition—ranging from microarchitec-
tural design changes to new analysis techniques. Although we
focus on interference by shared-bus blocking, all approaches
can be applied for other sources of interference as well. The
effects of the three approaches on analysis precision and
soundness are summarised in Figure[6]

4.1 By Hardware Design: Pipeline Stalling

The first approach is to eliminate indirect effects by hard-
ware design and thus allow the sound use of the decomposi-
tion introduced in Section [2.1] using direct effects as penalties.
Consider the execution graph snippet in Figure[7a] that shows
the behaviour of an access that can be blocked (bl) at the
bus. The ideal timing contribution tc;geq; covers the timing
behaviour under the absence of bus blocking (s4). Timing
compositionality is violated if a trace starting from s5 or sg
is longer than every trace starting from sy4, i.e. there is an
indirect effect caused by bus blocking which is not captured
by tcideal-



A technique to eliminate indirect effects by hardware design
is to stall the core while a memory access is blocked at the
shared bus. If the core is stalled, the state of the core
does not change as e.g. instructions cannot advance in the
pipeline. In Figure [7B] this results in states si,s2, and
s3—and consequently s4, s5, and ss¢—being identical. Thus,
they exhibit the same subsequent timing behaviour which is
soundly covered by tcCideai-

Besides the indirect effects, the stalling approach also elim-
inates any hiding of the additional latency due to interference.
This can degrade average-case performance.

4.2 By Analysis: Sound Penalty

Adjusting the microarchitectural design is often not fea-
sible due to practical or economical reasons. As a second
approach, we turn the timing contributions and the com-
bination operator described in Section [2.1]into a sound de-
composition. In order to do so, we adjust the penalties used
in the combination operator. The bus blocking penalty bp
should not only account for the direct effect of one blocking
access but also include all indirect effects possibly caused
by this access. The calculation of sound penalties needs an
in-depth analysis of the underlying microarchitecture. To
the best of our knowledge, no techniques are available to
calculate the maximal possible indirect effect for a realisitic
microarchitecture. Rather, there are scenarios known as
domino effects where indirect effects are not even bounded
by a constant |36]. For such microarchitectures, the sound
penalty approach cannot be applied.

In reality, indirect effects happen only rarely and under
specific circumstances. If the indirect effects are incorporated
into the penalty, they are always taken into account, i.e.
for every interfering access. Considering the dotted line in
Figure [6] it is apparent that such an approach will lead to a
drastic overestimation of the actual timing.

In Section [5] we experimentally determine—per program—
the respective minimum penalty required to over-approximate
the interference response curve. Sound program-independent
penalties would have to be at least as high. For a given
program p, we can use an integer linear program—similar to
the formulation we present in Section [£.3]—to check whether
a conjectured penalty is sound. Using this check in a binary
search, we can calculate a penalty that is sound for p. Due
to space constraints, details on this calculation can be found
in our extended technical report [18].

4.3 By Analysis: Compositional Base Bound

Now, we present a sound and reasonably precise approach
to obtain timing contributions that can be used in a composi-
tional way during schedulability analysis—without modifying
the underlying hardware and even in the presence of domino
effects.

The idea is to account for the rare indirect effects in the
“ideal” execution time contribution. To this end, we adjust
the decomposition from Section [2.I] with the focus on shared-
bus blocking as follows:

e The base execution time ignoring the direct effects of
shared-bus blocking but taking into account all possible
indirect effects tCpase(T) =b € Whese = N,

e the number of accesses interfering on the shared bus
tc;,us(T) =ba € Wyys = N.

For this decomposition the combination operator is defined as:

EP(b,ba) = b+ bp - ba, (6)

where bp denotes the direct effect timing penalty.

How can tcpese(7) = b be soundly approximated? In
Section [2| we describe a path analysis via Implicit Path
Enumeration that uses an ILP to obtain the longest path
through the microarchitectural execution graph, satisfying
constraints such as the interference constraint. As the ILP is
an implicit encoding of the interference response curve, we
can modify it to compute a sound approximation of b, which
we term a compositional base bound. In addition to the ILP
variables x. that model the execution count of edges in the
execution graph, we introduce an integer variable i to model
the amount of interference. The interference constraint for
shared-bus blocking then becomes

> blocked. - ze < i. (7)

edge e

We want to find a value b such that the linear approximation
@(b,i) = b+ bp-i is greater than or equal to the interference
response curve for all possible values of i. We obtain the
smallest such b, i.e. a sound base bound, by maximising

max Z timee - Te | — bp - 1. (8)

edge e

Intuitively, the first term captures the entire execution time
of the program, including interference on the shared resource
(under the interference constraint in Equation . The sec-
ond term, bp - i, captures the share of execution time that is
explained by the direct effects of interference for any amount
of interference i, particularly also for a concrete ba. So the
difference between the two captures the share of execution
time not explained by the direct effects of interference. This
includes uninterfered execution but also indirect interference
effects. By maximizing over all possible amounts of interfer-
ence i, the solution to this ILP provides an upper bound on
the execution time that is not explained by direct interfer-
ence effects, i.e., the compositional base bound. Thus the
compositional base bound includes the maximum possible
indirect effects for the program under analysis. A formal
proof of correctness of this approach is given in [18].

This approach can be generalised to multiple dimensions,
i.e. to multiple sources of interference such as shared-bus
blocking and DRAM refreshes and cache misses due to pre-
emption. In this case, we introduce integer variables i1, ..., i,
and corresponding interference constraints for each source of
interference. The objective function then becomes

k=1

where py. is the direct effect penalty for interference of type k.

max E timee - Te

edge e

S. EXPERIMENTAL EVALUATION

In this section, we evaluate the implications of the pro-
posed approaches on analysis efficiency and precision. A
rough qualitative comparison is given in Table If we
employ stalling, we efficiently obtain precise bounds by con-
struction, however the actual average-case system perfor-
mance likely is significantly degraded. Note that a thorough
evaluation of actual performance is out of the scope of this



Table 1: Overview of the approaches with their strengths
and weaknesses.

Analysis  Analysis Average-case

Proposed Approach Efficiency Precision Performance

Stalling v v X
Sound penalty v X v
Compositional base bound o o v
Semi-integrated analysis X v v

paper. Due to modelling interference by non-determinism
in the microarchitectural analysis, the compositional base
bound approach is expected to be less efficient than the
two other approaches based on stalling or sound penalties.
However, it should result in more precise bounds than the
approach based on sound penalties, while still sacrificing
some precision compared with a semi-integrated analysis.
In contrast to the other approaches, the semi-integrated
analysis does not offer a compositional interface. To our
knowledge, there is currently no schedulability analysis that
can handle such a non-compositional interface. In any case,
such a schedulability analysis needs additional runs of the
path analysis whenever a different amount of interference is
to be considered—potentially inside a fixed-point iteration.
The following experimental evaluation sheds light on how
significant the differences are quantitatively.

5.1 Experimental Setup

We employ our timing analysis framework LLVMTA. The
framework allows to run context-sensitive analyses on the
binary-level program representation of the LLVM compiler
infrastructure. It provides state-of-the-art techniques for
microarchitectural analysis [43] and path analysis [42].

Table [3] provides an overview of the benchmark programs
used for evaluation. Besides the Milardalen benchmark
suite (M) [15], we use programs generated from models devel-
oped in the SCADE suite including the examples delivered
with SCADE (S), own models (O), and a model provided by
an industrial partner (I).

5.2 Hardware Configurations

We evaluate the proposed approaches on hardware con-
figurations of differing complexity. The processors under
analysis feature either two, four, or eight cores. We consider
two different types of cores: the simpler type has a five-stage
in-order pipeline, while the more complex one has an out-of-
order pipeline with Tomasulo dynamic scheduling, both as
described in detail in [19]. The out-of-order pipeline has a
reorder buffer of size 8 and a 4-entry instruction queue which
issues multiple instructions to either the Load-/Store-Unit or
one of two arithmetic functional units executing instructions
with variable latency. Both pipelines employ static branch
prediction, where conditional branches are predicted not
taken. The out-of-order pipeline additionally features spec-
ulative execution. Optionally, store instructions are passed
through a store buffer (a.k.a. write buffer) of size one that
allows the pipeline to complete the store instruction while
the memory operation is performed in the background.

The cores access the shared bus via private instruction
and data caches of size 1 KiB with associativity 2 and LRU
replacement policy. As the benchmarks are small, we con-
sequently choose such a small cache size. Upon concurrent
instruction and data cache misses, the resulting data access
is prioritised over the instruction access. The shared bus
employs round-robin event-driven arbitration and is directly

Table 2: Overview of evaluated core configurations.

Configuration Core Type 1l-entry Store Buffer Mem. Latency

1 in-order no 5
2 in-order yes 5
3 in-order yes 10
4 out-of-order yes 5
5 out-of-order yes 10
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Figure 8: Efficiency: analysis modelling interference by non-
determinism versus Analysis,;,, assuming the absence of
interference. Selected benchmarks and geometric mean over
all benchmark programs. Configuration 4, quad core.

connected to an SRAM background memory with a latency
of either 5 or 10 processor cycles.

For the evaluation, we choose the five core configurations
listed in Table 2] out of the eight possible combinations.
Pipelines without store buffers waste the potential of hiding
parts of the store latency and are rarely found in real-world
processors. Hence, we consider only one configuration with-
out a store buffer.

For the sake of brevity, we focus on the results for selected
representative benchmarks and a quad-core processor with
core Configuration 4 in Table [2]if not stated otherwise. Con-
figuration 4 featuring out-of-order execution, a store buffer,
and a memory latency of 5 exhibits the most potential for
overlapping effects: We prefer Configuration 4 over 5 as a
larger share of the shorter memory latency can be hidden by
overlapping the execution of other instructions. Condensed
evaluation results including analysis efficiency—i.e. memory
consumption and analysis runtime—and analysis precision
for all hardware configurations as well as fine-grained results
for each individual benchmark can be found in our extended
technical report [18].

Note, that while we do not precisely model any particular
commercial processor, the microarchitectural concepts used
in the different configurations can be found in real processors.
As an example, the ARM® Cortex®-M4 processor features
a three-stage in-order pipeline with an optional pipelined
floating-point unit and a store buffer of size one. Data ac-
cesses are prioritised over instruction accesses |4} [3]. The
ARM® Cortex®-A5 features an in-order pipeline with dy-
namic branch prediction and a 4-entry store buffer [1]. The
ARM® Cortex®-A9 features a complex out-of-order pipeline
with dynamic branch prediction and a 4-entry store buffer [2].

5.3 Analysis Efficiency

The stalling and sound penalty approaches both allow
to employ an efficient microarchitectural analysis that can
assume the absence of interference. The compositional base
bound approach as well as the semi-integrated analysis, on
the other hand, model the interference as non-determinism
during microarchitectural analysis. This results in larger
execution graphs and more expensive path analysis, as it has
to take additional constraints into account.
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(b) With maximum interference. For the sound penalty approach, we choose a penalty

of 15 cycles per interfering memory access according to Table [3| (forth column).

Figure 9: Ratio of the approaches to the semi-integrated timing bound for a certain amount of interference. Configuration 4,

quad-core processor.

We examine the cost of modelling interference via non-
determinism in Figure The first bar represents the analysis
assuming the absence of interference, the second bar repre-
sents the compositional base bound analysis. The numbers
are normalised w.r.t. the first bar. The bars are divided
into the subphases of the analysis: computing the reachable
abstract microarchitectural states, computing the execution
graph, and finally the path analysis. The preprocessing phase
including value and loop bound analysis took less than 1% of
the analysis time and is thus omitted. The analysis runtime
increases by a factor of 3.4 to 16.5 with a geometric mean of
8.6 across all benchmarks. The analysis memory consump-
tion increases by a factor of 2.1 to 7.5 with a geometric mean
of 4.8 across all benchmarks. The complete evaluation run
of the compositional base bound approach for all benchmarks
and four cores with Configuration 4 took less than 7 hours
and 30 minutes and 9.5 GiB memory on an Intel® Core™ i5
machine clocked at 3.3 GHz. Detailed results can be found
in the extended technical report [18].

In the context of low-level WCET analysis, it is common
for analyses to run for hours for a single benchmark tar-
geting a complex hardware platform. Thus, our evaluation
demonstrates that the compositional base bound approach—
although more expensive than the other approaches—has
practically acceptable analysis cost.

5.4 Analysis Precision

No technique is known to derive sound, general penalties
for interfering events on realistic microarchitectures. How-
ever, we can compute sound penalties for each particular
benchmark as sketched in Section [£2] The results for the
five hardware configurations and all benchmarks are shown
in Table[3] The maximally observed penalty was three times
the memory latency for an out-of-order core with a store
buffer. As expected, the impact of indirect effects increases
with increasing hardware complexity, and maybe surprisingly
with shorter memory latencies. With longer latencies, the
pipeline is more likely to converge while performing a single
memory access, i.e. each stage of the pipeline waits for the
memory access to complete. In the converged case, addi-
tional interference does not change the pipeline state and
cannot cause indirect effects. Thus, shorter memory latencies
leave more potential for indirect effects due to additional
interference. Except for the simplest configuration, taking
the direct effect as penalty is incorrect for many benchmarks.

We evaluate the precision of the proposed approaches
against the semi-integrated analysis of the respective bench-
mark programs at the extremal points, i.e. with no and with
maximal interference. The maximal imprecision relative to

Table 3: Penalty including indirect effects: Minimum penalty
per interfering memory access for each benchmark to ob-
tain a sound overapproximation. Hardware configurations
(1,2,3,4,5) as in Table

Benchmark  Penalty in cycles Benchmark Penalty in cycles
M adpem (5, 10, 19, 10, 17) M ndes (5, 10, 10, 9, 10)
M bs (5, 5,10, 5, 10) M ns (5, 8,10, 9, 28)
M bsort100 (5, 6, 14, 7, 10) M nsichneu (5, 10, 14, 9, 10)
M cnt (5, 10, 20, 8, 10) M prime (5, 5, 10, 10, 10)
M compress (5, 11, 14, 9, 10) M gsort (5, 10, 20, 10, 14)
M crc (5, 9,14, 11, 10) M qurt (5, 10, 14, 8, 10)
M edn (5, 10, 17, 11, 11) M select (5, 5,20, 10, 10)
M expint (5, 9, 20, 10, 10) M sqrt (5, 7,10, 7,12)
M fdct (5, 9,10, 10, 10) M statemate (5, 10, 17, 10, 10)
M ft1 (5, 9,10, 10, 10) M st (5, 10, 17, 9, 10)
M fibcall (5, 5,10, 5,10) M ud (5, 10, 12, 10, 10)
M fir (5, 6,10, 9,10) M whet (5, 10, 10, 9, 10)
M insertsort (5, 5, 10, 13, 10) S cruisectrl (5, 9, 16, 9, 10)
M janne (5, 6,10, 9,10) S stopwatch (5, 10, 14, 11, 10)
M jfdctint (5, 9,17, 10, 10) O es_lift (5, 9,11, 9, 10)
M Ims (5, 10, 10, 12, 14) S flight_ctrl (5, 10, 15, 13, 10)
M ludecmp (5, 6,10, 9, 10) S pilot (5, 10, 16, 13, 25)
M matmult (5, 10, 20, 9, 13) O roboDog (5, 8, 11, 15, 10)
M minver (5, 10, 20, 10, 16) I trolleybus (5, 10, 12, 11, 10)

semi-integrated analysis usually occurs at one of those two
points. In Figure we provide the ratio of the composi-
tional base bound to the timing bound without interference.
The ratios reflect the maximal impact of potential positive
indirect effects on the overall execution time. The other two
approaches to enable compositionality are by construction
precise in the case where no interference occurs.

In Figure [OB] we provide the ratio of the timing bounds
obtained with each approach to the timing bound obtained
using the semi-integrated analysis, under maximal interfer-
ence. For the sound penalty approach, we use the maximum
program-dependent penalty from Table [3] The first ob-
servation is that the sound penalty approach is extremely
imprecise at maximal interference. The results also show
that even at maximal interference the naive decomposition
using direct effects as penalty (Section is generally un-
sound (see benchmarks STATEMATE and NSICHNEU) if the
hardware is not modified accordingly. If the core employs
the stalling mechanism, the presented results are sound and
show that stalling can improve worst-case bounds in rare
cases by eliminating indirect effects. In general, however,
average- and even worst-case system performance is degraded
by stalling. The compositional base bound approach is sound
without hardware modifications at acceptable precision: At
maximal interference, we observe an average overestimation
of around 3% relative to the semi-integrated approach. There
are, however, exceptions (see benchmarks EXPINT and JFD-
CTINT) where the overestimation reaches up to 13%.



6. RELATED WORK

Lundqvist and Stenstrom [29] first observed the existence
of timing anomalies in dynamically-scheduled microproces-
sors. As a particular type of anomalies, they described what
we call amplifying timing anomalies, and demonstrated their
presence in processors with out-of-order execution. In this pa-
per, we showed that even processors with in-order execution
often feature at least one out-of-order resource, namely the
memory bus. We also observe that in the presence of ampli-
fying timing anomalies, compositional timing analyses that
only account for the direct effect of an event can be unsound.

Wilhelm et al. [44] distinguish three classes of microar-
chitectures: fully timing-compositional architectures, which
do not feature timing anomalies; compositional architectures
with constant bounded effects, which may exhibit timing
anomalies but no domino effects [29]; and non-compositional
architectures, which may exhibit timing anomalies and domino
effects. The sound penalty approach from this paper is only
applicable to the first two classes of microarchitectures, which
do not feature domino effects. The other two enablers for
compositionality are applicable to all microarchitectures.

De Dinechin et al. [13] describe the KALRAY MPPA®-256,
a many-core processor suitable for time-critical computing.
Its cores are claimed to be fully timing-compositional |44].
We note that due to the presence of a store buffer the cores
potentially feature amplifying timing anomalies as discussed
in Section[3] Schoeberl et al. [38] propose the T-CREST
platform, a multicore architecture optimised for the worst-
case rather than the average-case. It is conceivable but—to
our knowledge—mnot proven to be fully timing-compositional.

Various methods have been developed to bound the cache-
related preemption delay (CRPD) |10, [26 |41} /6], i.e., the cost
of additional cache misses induced by preemptive scheduling.
All of these methods assume timing compositionality. Our
methods to enable compositional analysis w.r.t. bus blocking
can analogously be applied w.r.t. additional cache misses.

Recently, a multitude of methods have been proposed for
timing analysis of tasks on multicores under interference on
shared resources, in particular shared buses with TDMA
arbitration [39, 30, |7], dynamic arbitration [32,37,12], or a
combination of the two [30} 40, |14} |25| |7]. These methods
differ in terms of the considered task models, the supported
types of shared resources, and concerning analysis precision
and efficiency. However, they all rely on timing composi-
tionality, and may be applied to a much broader class of
microarchitectures using the approaches to enable compo-
sitionality introduced in this paper. The same applies to
earlier work accounting for DRAM refreshes [3].

Fully-integrated analyses promise the highest precision
and do not require timing compositionality. Kelter and Mar-
wedel |24] describe a microarchitectural analysis that explores
all possible interleavings of a parallel, periodic task. Even
when tasks on different cores are perfectly synchronised they
observe an average slowdown by a factor of 130 compared
with [11]. Similarly, Gustavsson et al. |[16] employ a model
checker to exhaustively explore all possible executions of a
parallel program on a simple multicore architecture. How-
ever, scaling such approaches to realistic architectures and
program sizes appears difficult.

Semi-integrated analysis offers a compromise between com-
positional and fully-integrated analysis in terms of analysis
time and precision and it does not per se require timing
compositionality. The general idea is to analyse the execu-
tion of a task on a given core under an abstraction of the

interference on shared resources generated on other cores.
Kelter et al. [23] show to precisely account for TDMA arbi-
tration within WCET analysis. This approach was later |11]
extended to take into account shared caches, by accounting
for the maximal interference of other tasks upon every mem-
ory access. This line of work is not immediately applicable
to dynamic arbitration policies, which have been shown to
provide better worst-case performance [7]. Jacobs et al. [21]
present a semi-integrated analysis accounting for interference
on shared buses with dynamic arbitration. Our proposed
compositional base bound approach employs techniques pre-
sented in [21]. An open question for future work is how
to directly employ “non-murphy” semi-integrated analysis
within a multi-core response-time analysis.

An alternative to analysing interference on shared resources
is to eliminate such interference. Bui et al. [9] discuss methods
to achieve temporal isolation in multicores, including TDMA
arbitration of buses. The PTARM |28] provides the illusion
of private resources to multiple hardware threads by parti-
tioning resources in space and time, including background
memory [35]. We believe that a combination of isolation
and interference analysis will be required to extract good
worst-case performance out of future multicore architectures.

7. SUMMARY AND CONCLUSIONS

Naive compositional analysis as found in most approaches
in the literature is unsound even for low-complexity hard-
ware platforms. We demonstrated this by an example of an
amplifying timing anomaly on a microarchitecture similar to
commercial processors such as the ARM® Cortex®-M4.

To bridge the gap between a large body of academic ap-
proaches that is assuming timing compositionality and non-
compositional commercial hardware platforms, we presented
three approaches to enable compositionality. The first ap-
proach, stalling, requires a hardware modification that is
detrimental to average-case performance. The second ap-
proach incorporates the indirect effects into a sound penalty,
leading to high overestimation if the interference is high.
The third and most-promising approach incorporates the
indirect effects in a compositional base bound leading to rel-
atively precise results at acceptable analysis cost. While
the second approach is limited to microarchitectures without
domino effects, the third approach can be applied to any
microarchitecture without modification.
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