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Abstract—Modern microarchitectures employ memory hier-
archies involving one or more levels of cache memory to hide
the large latency gap between the processor and main memory.
Cycle-accurate simulators, self-optimizing software systems, and
platform-aware compilers need accurate models of the memory
hierarchy to produce useful results. Similarly, worst-case execu-
tion time analyzers require faithful models, both for soundness
and precision. Unfortunately, sufficiently precise documentation
of the logical organization of the memory hierarchy is seldom
available publicly.

In this paper, we propose an algorithm to automatically model
the cache replacement policy by measurements on the actual
hardware. We have implemented and applied this algorithm
to various popular microarchitectures, uncovering a previously
undocumented cache replacement policy in the Intel Atom D525.

I. INTRODUCTION

Detailed models of the microarchitecture are at the heart
of static worst-case execution time (WCET) analyzers [1].
To develop such detailed models, engineers need a deep
understanding of the microarchitecture. Unfortunately, docu-
mentation at the level of detail required for sound and precise
static WCET analysis is hard to come by. Processor manuals
are often ambiguous as they are written in natural language.
Sometimes they do not provide any information about a
particular architectural feature at all.

As a consequence, engineers are forced to either create
“conservative” models, which yield imprecise WCET esti-
mates, sacrifice soundness, or to obtain a better understanding
of the microarchitecture by other means. An engineer might
contact the processor manufacturer to inquire more details,
which the manufacturer is often not willing or able to provide
to protect his intellectual property. As a last resort, the engineer
is often found tinkering with evaluation boards, performing
measurements on microbenchmarks, iteratively refining his
models of architectural features, until he is sufficiently con-
fident in his conjectured model. This process is both costly
and error-prone.

We believe that the process of inferring a model of the
microarchitecture by measurements can—at least partially—
be automated. Automation promises to reduce costs and to
increase confidence in the results.

In this paper, we focus on the memory hierarchy. The
memory hierarchy is an attractive target, because it has a
strong influence on execution times. At the same time, most

memory hierarchies are structured similarly, and offer a simple
interface: loads and stores. Further, modern microarchitectures
feature hardware performance counters that can be used to
count the number of cache accesses and misses a program
generates. We have developed algorithms to determine the
capacities, associativities, block sizes, and replacement poli-
cies of first- and non-inclusive second-level instruction and
data caches.

On the algorithmic side, the main contribution of our
work is an algorithm to automatically infer the replacement
policy used in a cache. To this end, we introduce permutation
policies, a class of replacement policies that includes well-
known policies, such as least recently used (LRU), first-in
first-out (FIFO), and pseudo-LRU (PLRU) in addition to a
large set of so far undocumented policies. Permutation policies
admit efficient inference through measurements on the actual
hardware.

We have developed chi1, a portable and robust implemen-
tation of the algorithm that can be run on standard Linux
distributions without any modifications. This implementation
includes a novel approach to handle instruction caches. We
have successfully applied it to a number of x86 processors. On
the Intel Atom D525, we discovered a—to our knowledge—
previously undocumented approximation of LRU.

In addition to WCET analysis, automatic microarchitectural
modeling as performed by chi may be of interest in other
domains: It can aid in the development of cycle-accurate
simulators, such as PTLsim [2]. It can also be employed within
self-optimizing software systems like ATLAS [3], PHiPAC [4],
or FFTW [5], platform-aware compilers, such as PACE [6],
as well as system-level protection mechanisms against side-
channel attacks, such as STEALTHMEM [7], all of which
require detailed knowledge of cache characteristics.

A. Outline

In Section II, we provide the necessary background re-
garding caches and the formalization of a cache template.
Based on this cache template, we present a concise problem
statement in Section III. We introduce permutation policies in
Section IV. In Section V, we then describe our algorithm and
its implementation. The experimental evaluation, illustrating
strengths and weaknesses of our approach, is provided in
Section VI. We discuss related work in Section VII and
conclude the paper with an overview of potential future work.

1chi is available for download: http://embedded.cs.uni-saarland.de/chi.php



A ∈ Associativity = N The associativity of the cache.
B ∈ BlockSize = N The block size in bytes.
N ∈ NumberOfSets = N The number of cache sets.
C = A ·B ·N The cache capacity in bytes.
P ∈ Policy The set of replacement policies.

addr ∈ Address ⊆ N Set of memory addresses.
tag ∈ Tag ⊆ N Set of tags.
v, w ∈ Way = {0, . . . , A− 1} Set of cache ways.

i ∈ Index = {0, . . . , N − 1} Set of indices.

Fig. 1: Parameters and basic domains.

II. CACHE ORGANIZATION

In this section we introduce caches and their parameters in-
tuitively and formally. The formalization allows us to precisely
state the problem in the following section.

A. Intuition and Parameters

Caches are fast but small memories that store a subset of
the main memory’s contents to bridge the latency gap between
CPU and main memory. To profit from spatial locality and
to reduce management overhead, main memory is logically
partitioned into a set of memory blocks of block size B. Blocks
are cached as a whole in cache lines of the same size. Usually,
the block size is a power of two. This way, the block number is
determined by the most significant bits of a memory address,
more generally: blockB(address) = baddress/Bc.

When accessing a memory block, the cache logic has to
determine whether the block is stored in the cache (“cache
hit”) or not (“cache miss”). To enable an efficient look-
up, each block can only be stored in a small number of
cache lines. For this purpose, caches are partitioned into N
equally-sized cache sets. The size of a cache set is called the
associativity A of the cache. A cache with associativity A is
often called A-way set-associative. It consists of A ways, each
of which consists of one cache line in each cache set. In the
context of a cache set, the term way thus refers to a single
cache line. Usually, also the number of cache sets N is a
power of two such that the set number, also called index, is
determined by the least significant bits of the block number.
More generally: indexB,N (address) = blockB(address)
mod N. The remaining bits of an address are known as the
tag: tagB,N (address) = bblockB(address)/Nc. To decide
whether and where a block is cached within a set, tags are
stored along with the data.

Since the number of memory blocks that map to a set is
usually far greater than the associativity of the cache, a so-
called replacement policy must decide which memory block to
replace upon a cache miss. Replacement policies try to exploit
temporal locality and base their decisions on the history of
memory accesses. Usually, cache sets are treated independently
of each other such that accesses to one set do not influence
replacement decisions in other sets. Well-known replacement
policies in this class are least recently used (LRU); pseudo-
LRU (PLRU), a cost-efficient variant of LRU; first-in first-out
(FIFO), also known as ROUND ROBIN; and not-most-recently
used (NMRU) [8]. An exception to the rule of treating cache

sets independently, used in several ARM and MOTOROLA
processors [9], is PSEUDO ROUND ROBIN, which maintains
a single “FIFO pointer” for all cache sets.

B. Formalization of Caches and a Cache Template

A cache can be modeled as a 4-tuple C =
(CacheStateC , s

0
C ,upC ,hitC), where CacheStateC is the

cache’s set of states, s0
C is its initial state, upC :

CacheStateC ×Address→ CacheStateC models the change
in state upon a memory access, and hitC : CacheStateC ×
Address → B, determines whether a memory access results
in a cache hit or a cache miss.

Similarly, a replacement policy can be modeled as a tuple
P = (PolStateP , s

0
P , evictP ,upP ), where PolStateP is the

set of states of the policy, s0
P ∈ PolStateP is the initial

state of the policy, evictP : PolStateP → Way determines
which memory block to evict upon a cache miss, and upP :
PolStateP × (Way ∪ {miss}) → PolStateP computes the
change in state upon a cache hit to a particular cache way or
upon a miss. Parameters and basic domains used here and in
the following are introduced in Figure 1.

Caches considered in this paper are fully determined by
the four parameters associativity A, block size B, number of
cache sets N, and replacement policy P introduced above.
Specifically, they are instances of the cache template T , which
maps each parameter combination to a particular cache:

T (A,B,N, P ) := (CacheStateT , s
0
T ,upT ,hitT ),

whose components are introduced in a top-down fashion below.
CacheStateT consists of a cache set state (defined in more
detail later) for each index:

CacheStateT := Index→ SetState.

The initial state s0
T maps each index to the initial cache set

state: s0
T := λi.s0

set.

The cache update delegates an access to the appropriate
cache set; similarly, whether an access is a hit or a miss is
determined by querying the appropriate cache set:

upT (cs, addr) := cs[index 7→ upset(cs(index), tag)],
hitT (cs, addr) := hitset(cs(index), tag),

where index = indexB,N (addr) and tag = tagB,N (addr).
We denote by f [i 7→ j] the function that maps i to j and
agrees with the function f elsewhere.



States of cache sets consist of the blocks that are being
cached, modeled by a mapping assigning to each way of the
cache set the tag of the block being cached (or ⊥, if the cache
line is invalid), and additional state required by the replacement
policy P to decide which block to evict upon a cache miss:

SetState := (Way → (Tag ∪ {⊥}))× PolStateP .

Initially, cache sets are empty and the replacement policy is
in its initial state, thus s0

set := 〈λw.⊥, s0
P 〉. An access to a set

constitutes a hit, if the requested tag is contained in the cache:
hitset(〈bs, ps〉, tag) := ∃i : bs(i) = tag.

The cache set update needs to handle two cases: cache
misses, where the replacement policy determines which line
to evict, and cache hits, where the accessed way determines
how to update the state of the replacement policy:

upset(〈bs, ps〉, tag) :={
〈bs[w 7→ tag],upP (ps,miss)〉 : if ∀v : bs(v) 6= tag

〈bs,upP (ps, v)〉 : else if bs(v) = tag

where w = evictP (ps).

Clearly, the above model is not exhaustive, but just fine-
grained enough for our purpose. One of the limitations is that
reads are not distinguished from writes.

III. PROBLEM STATEMENT:
THE CACHE PARAMETER INFERENCE PROBLEM

In order to state our goal more precisely, we first need
to discuss by which means inference algorithms can gain
information about the cache.

A. What can be measured?

Inference algorithms can neither observe nor directly con-
trol the internal state or operation of the cache. They can,
however, use hardware performance counters to determine the
number of cache misses incurred by a sequence of memory
operations.

Let missesC(s,~a) denote the number of misses that the
cache C incurs performing the sequence of memory accesses
~a starting in cache state s. For brevity, we omit the precise
definition of missesC(s,~a) in terms of upC and hitC , which
could easily be given.

An inference algorithm cannot control the cache state at
the beginning of its execution. This introduces nondeterminism
when measuring the number of misses incurred by a sequence
of memory accesses:

measureC(~a) = {missesC(s,~a) | s ∈ CacheStateC}.

By performing “preparatory” memory accesses ~p, aimed at
establishing a particular cache state, before starting to measure
the number of misses, an inference algorithm can often extract
more information about the cache:

measureC(~p, ~m) =

{missesC(upC(s, ~p), ~m) | s ∈ CacheStateC},

where upC is lifted from individual memory accesses to
sequences. The preparatory memory accesses may reduce or
even eliminate the nondeterminism from the measurement.

Later on, in pseudo code, we will use measureC(~p, ~m) as
an expression that will nondeterministically evaluate to one of
the values of the set defined above.

B. What can be inferred?

Two caches may exhibit the same hit/miss behavior but
differ internally, e.g. in how they implement a replacement
policy. For instance, there are many different realizations of
LRU replacement.

Since only a cache’s hit/miss behavior can be observed, it is
impossible to infer anything about how it is realized internally.
For the purpose of modeling a cache’s behavior such aspects
are irrelevant anyway. The following definition captures when
we consider two caches to be observationally equivalent:

Definition 1 (Observational Equivalence of Caches). Caches
C and D are observationally equivalent, denoted C ≡ D,
iff missesC(s0

C ,~a) = missesD(s0
D,~a) for all memory access

sequences ~a ∈ Address∗. Otherwise, we call two caches
observationally different.

Now we are ready to more precisely state the problem
tackled in this paper:

Definition 2 (Cache Parameter Inference Problem). The cache
parameter inference problem is to derive parameter values
A,B,N , and P through measurements on an implementation
of a cache C, such that T (A,B,N, P ) ≡ C.

IV. A CLASS OF REPLACEMENT POLICIES:
PERMUTATION POLICIES

Parameter inference algorithms work as follows. They
perform a predetermined set of measurements2. Each mea-
surement result excludes some of the parameter values, e.g.,
a measurement result may imply that the associativity of the
cache is greater than 3, excluding associativities 1, 2, and 3.
The set of measurements needs to be designed in such a way
that for any possible outcome at most one parameter value
will be compatible with all measurement results. For this to be
possible, we need to a priori restrict the set of parameter values
to a finite set. For the first three parameters, associativity, block
size, and number of sets, this can be done easily by fixing a
maximal value for each of the parameters.

As replacement policies are implemented in hardware, a
simple and realistic assumption is that their set of states is
finite. Putting a bound b on the number of states of the policy
yields a finite set of observationally different replacement
policies. Unfortunately, however, b needs to be at least the
factorial of the associativity, which is the minimal number of
states to implement LRU. For such a b, there are too many
observationally different replacement policies for inference to
be practically feasible.

2Adaptive inference algorithms that base later measurements on earlier
measurement results are also conceivable. The core of the following argument
applies to them as well.



ΠLRU
0 = (0, 1, 2, 3, 4, 5, 6, 7)

ΠLRU
1 = (1, 0, 2, 3, 4, 5, 6, 7)

ΠLRU
2 = (2, 0, 1, 3, 4, 5, 6, 7)

ΠLRU
3 = (3, 0, 1, 2, 4, 5, 6, 7)

ΠLRU
4 = (4, 0, 1, 2, 3, 5, 6, 7)

ΠLRU
5 = (5, 0, 1, 2, 3, 4, 6, 7)

ΠLRU
6 = (6, 0, 1, 2, 3, 4, 5, 7)

ΠLRU
7 = (7, 0, 1, 2, 3, 4, 5, 6)

(a) LRU

ΠPLRU
0 = (0, 1, 2, 3, 4, 5, 6, 7)

ΠPLRU
1 = (1, 0, 3, 2, 5, 4, 7, 6)

ΠPLRU
2 = (2, 1, 0, 3, 6, 5, 4, 7)

ΠPLRU
3 = (3, 0, 1, 2, 7, 4, 5, 6)

ΠPLRU
4 = (4, 1, 2, 3, 0, 5, 6, 7)

ΠPLRU
5 = (5, 0, 3, 2, 1, 4, 7, 6)

ΠPLRU
6 = (6, 1, 0, 3, 2, 5, 4, 7)

ΠPLRU
7 = (7, 0, 1, 2, 3, 4, 5, 6)

(b) PLRU

ΠFIFO
0 = (0, 1, 2, 3, 4, 5, 6, 7)

ΠFIFO
1 = (0, 1, 2, 3, 4, 5, 6, 7)

ΠFIFO
2 = (0, 1, 2, 3, 4, 5, 6, 7)

ΠFIFO
3 = (0, 1, 2, 3, 4, 5, 6, 7)

ΠFIFO
4 = (0, 1, 2, 3, 4, 5, 6, 7)

ΠFIFO
5 = (0, 1, 2, 3, 4, 5, 6, 7)

ΠFIFO
6 = (0, 1, 2, 3, 4, 5, 6, 7)

ΠFIFO
7 = (0, 1, 2, 3, 4, 5, 6, 7)

(c) FIFO

Fig. 2: Permutation vectors for LRU, PLRU, and FIFO at associativity 8.

A. Permutation Policies

We have identified what we call permutation policies as an
interesting finite (for a fixed associativity) set of replacement
policies for which inference is practically feasible.

Permutation policies maintain an order on the blocks stored
in a cache set. Such an order can be represented by a
permutation π of the set of cache ways. Then, π(i) determines
which cache way stores the ith element in this order. Upon a
miss, the last element in the order, i.e., the block in cache way
π(A−1) is evicted. In LRU, for example, π(0) and π(A−1)
determine the cache ways that store the most- and the least-
recently-used blocks, respectively.

Permutation policies differ in how they update this order
upon cache hits and misses. In LRU, upon a cache hit, the
accessed block is brought to the top of the order, whereas in
FIFO, cache hits do not alter the order at all. More complex
updates happen in case of, e.g., PLRU. The update behavior
upon hits and misses of a policy can be specified using
a permutation vector Π = 〈Π0, . . . ,ΠA−1,Πmiss〉. Here,
permutation Πi determines how to update the order upon an
access to the ith element of the order, and Πmiss determines
how to update the order upon a cache miss. Then, the new
order π′ is π ◦ Πi or π ◦ Πmiss, respectively. By π ◦ Πi we
denote the functional composition of π and Πi defined by
(π ◦Πi)(x) = π(Πi(x)) for all x.

Upon a cache miss, all policies we have come across move
the accessed block to the top of the order and shift all other
blocks one position down. In the following, we thus fix Πmiss
to be (A−1, 0, 1, . . . , A−2). Essentially, this implies that upon
consecutive cache misses a policy fills all of the ways of a set
and evicts blocks in the order they were accessed.

The following permutation policy template PT formalizes
how a permutation vector Π defines a replacement policy:

PT (Π) = (PolStateΠ, s
0
Π, evictΠ,upΠ),

where

PolStateΠ := {π : Way →Way | π is a permutation},
s0

Π := idWay = λi ∈Way.i,

evictΠ(π) := π(A− 1),

upΠ(π,w) :=

{
π ◦Πmiss : if w = miss,
π ◦Ππ−1(w) : otherwise.

Fixing the miss permutations as described above has an ad-
ditional benefit: two permutation policies PT (Π) and PT (Ψ)
with Πmiss = Ψmiss are observationally equivalent3 if and
only if Πi = Ψi for all i ∈ {0, . . . , A− 1}. That is, once the
miss permutation is fixed there is a unique representation of
each permutation policy. Without this restriction, there would
be observationally equivalent policies defined by different
permutation vectors.

Thus, the set of permutation policies has the following three
beneficial properties:

1) It includes well-known replacement policies, such as
LRU, FIFO, and PLRU (as demonstrated in Figure 2
for associativity 8), in addition to a large set of so far
undocumented policies.

2) For a fixed miss permutation, each permutation policy has
a unique representation, which enables easy identification
of known policies.

3) For all “realistic” associativities the set is sufficiently
small for efficient inference.

B. Logical Cache Set States

Cache set states as defined in Section II-B model the
contents of the physical ways of the cache in addition to the
state of the replacement policy. Several such cache set states
may exhibit the same replacement behavior on any possible
future access sequence. As an example, consider the two cache
set states 〈[0 7→ a, 1 7→ b], (0, 1)〉 and 〈[0 7→ b, 1 7→ a], (1, 0)〉
of a two-way set-associative cache managed by a permutation
policy. In both states, the order on the blocks maintained by
the policy is a then b, and this order will change in the same
way upon future memory accesses.

Logical cache set states abstract from the physical location
of cache contents, distinguishing two states if and only if they
differ in their possible future replacement behavior. Permuta-
tion policies give rise to a particularly simple domain of logical
cache set states, ordering cache contents according to the state
of the permutation policy:

LogicalSetState := Way → (Tag ∪ {⊥}).

A cache set state of a permutation policy can be
transformed into a logical cache set state as follows:

3The notion of observational equivalence is transferred from caches to
replacement policies in the expected way.



logical(〈bs, π〉) := bs ◦ π. Both of the above example cache
set states map to the same logical state [0 7→ a, 1 7→ b]. For
brevity, in the following, we will denote such a state by [a, b].
We say that a is in position 0, and b is in position 1.

V. REPLACEMENT POLICY INFERENCE ALGORITHM

We focus our presentation on the replacement policy
inference algorithm. We have also developed algorithms to
determine associativity, way size, and block size that are
similar to those presented by Yotov et al. [10]. More details
on these algorithms can be found in Andreas Abel’s Master’s
thesis [11] and a workshop contribution [12].

Algorithm 1: Naive implementation of replacement pol-
icy inference algorithm.

Input: A← Associativity
B ← Block Size
N ← Number of Sets
W ← B ·N (= Way Size)

procedure initializeBasePointers()
emptyBase← allocate(3 ·A ·W)
initBase← emptyBase +A ·W
evictBase← initBase +A ·W

seq function emptyCacheSet(int set)
return 〈〈emptyBase + set ·B,W,A〉〉

seq function initializeSet(int set)
return 〈〈initBase + set ·B + (A− 1) ·W,−W,A〉〉

seq function accessBlockInSet(int block, int set)
return 〈initBase + set ·B+block·W 〉

seq function evictKBlocksInSet(int k, int set)
return 〈〈evictBase + set ·B,W,k〉〉

int function
newPosOfBlockInPerm(int block, int perm)

initializeBasePointers()
empty← emptyCacheSet(0)
init← initializeSet(0)
accPerm← accessBlockInSet(perm, 0)
accBlock← accessBlockInSet(block, 0)
for newPos ← A− 1 downto 0 do

evictk ←
evictKBlocksInSet(A−newPos, 0)

prep← empty◦init◦accPerm◦evictk
if measureC( prep, accBlock) = 1 then

return newPos

A. Intuitive Description of Algorithm

Our algorithm determines the permutation vector defining
a permutation policy one permutation at at time. To determine
permutation i, we execute the following three steps:

1) Establish a known logical cache set state.
2) Trigger permutation i by accessing the ith element of the

logical cache set state.
3) Read out the resulting logical cache set state.

Then, relating the state established in step 1 with the state
determined in step 3 yields permutation i.

Given a known logical cache set state [a0, . . . , aA−1],
step 2 simply amounts to accessing address ai. But how do
we establish such a state?

a) Establishing a known logical cache set state: Given
the fixed miss permutation, as described in the previous
section, we can establish a desired logical state, simply by
causing a sequence of cache misses to the particular cache set.
Accessing the sequence 〈aA−1, . . . , a0〉 consisting of addresses
a0, . . . , aA−1 mapping to the same cache set, results in the
logical cache set state [a0, . . . , aA−1], provided that all of the
accesses result in cache misses.

b) Reading out a logical cache set state: We need to
determine the position of each block ak of the original logical
state in the resulting logical state. We do so by a sequence
of checks that determine whether the block’s new position is
greater than j, for j ∈ {0, . . . , A− 1}.

By accessing block ak and comparing the performance
counters before and after the access, we can—at least in
theory—determine whether the access caused a miss, and thus
whether ak was cached or not. By causing A − j additional
cache misses before, we can determine whether the block’s
position was greater than j or not.

Each such check destroys the cache state. Thus, before
each check, the state before the measurement needs to be
reestablished by going through steps 1 and 2 again.

B. A Naive Implementation

Algorithm 1 shows a naive implementation of the function
to determine a block’s new position after triggering a particular
permutation. To compactly represent strided access sequences,
we use 〈〈base, stride, count〉〉 to denote the access sequence
〈base, base+ 1 · stride, . . . , base+ (count− 1) · stride〉. We
first introduce five helper functions:

• initializeBasePointers() initializes the three
pointers, emptyBase, initBase, evictBase, which are main-
tained in global variables. emptyBase, initBase, and
evictBase are used to access disjoint memory areas of
the size of the cache. Note that the three pointers map to
the same cache set.

• emptyCacheSet(int set) generates an access se-
quence used to evict previous contents from a given
cache set, where cache set 0 is defined to be the set that
emptyBase happens to map to.

• initializeSet(int set) generates an access se-
quence to establish a known logical state in set set. As the
addresses in this sequence are disjoint from those in the
sequence produced by emptyCacheSet(int set), and
both sequences entirely fill the cache, both sequences will
never produce any cache hits.

• accessBlockInSet(int block, int set) generates a
singleton access sequence to the blockth element of the
logical state created by initializeSet(set).

• evictKBlocksInSet(int k, int set) generates a se-
quence of k memory accesses to set set from the memory
area pointed to by evictBase. Accessing this sequence will
cause k misses in the desired set.



The loop in newPosOfBlockInPerm performs succes-
sive measurements to determine the position of the blockth

element of the logical state after triggering permutation perm.
It uses the above helper functions to generate a sequence prep,
which empties the cache set, establishes a known logical state,
triggers permutation perm, and finally evicts a number of
blocks from the set. Here ◦ denotes the concatenation operator.
This sequence is used to check whether or not the new position
(after triggering the permutation) of the blockth element of the
logical cache state was greater than newPos. In principle, one
could perform a binary search of the new position, slightly
improving the algorithm’s complexity, but for simplicity we
stick to the linear algorithm as typical associativities are small.

In an ideal world with perfect measurement ability and no
interference on the cache the above algorithm would work.
However, as in physics, measurements through the perfor-
mance counter library PAPI [13] (discussed in Section V-D1)
disturb the state of what is being measured. In particular, PAPI
methods need to be invoked between the preparation and the
measurement phase, which may alter the cache contents, and
cause cache misses of its own. Further, while performance
counters count events on a per-process basis, other processes
running concurrently may alter the cache contents and thus
increase the measured number of cache misses. As a result,
we cannot reliably determine for a single access whether it
results in a cache hit or a miss. We thus need to increase its
robustness to such disturbance in the measurements.

C. A More Robust Implementation

The first idea to improve robustness is to perform memory
accesses in all N cache sets instead of just one. This way,
the measurement needs to distinguish between 0 or N misses
rather than between 0 or 1 misses.

A simple way of realizing this is to create an interleaving
of N copies of the original access sequence, replacing every
access in the original sequences by equivalent accesses to all
cache sets, e.g., 〈a, b〉 would be replaced by 〈a, a + B, a +
2 · B, . . . , a + (N − 1) · B, b, b + B, b + 2 · B, . . . , b +
(N − 1) · B〉. Let prep′ and accBlock′ be the result of
interleaving several copies of prep and accBlock, respectively.
Then, replacing the condition measureC(prep, accBlock) = 1
by measureC(prep′, accBlock′) ≥ N , already yields a much
more robust algorithm.

Incidentally, the above approach also reduces the effect
of hardware-based prefetching. Prefetchers try to detect and
exploit some form of regularity in the access pattern, and
may thus introduce memory accesses that are not present
in the program, as well as changing the order of memory
accesses that are. Clearly such additional accesses may affect
our measurement results. The interleaving of access sequences
introduced above results in a very regular access pattern easy
to correctly predict by common prefetching mechanisms.

As discussed earlier, the execution of PAPI methods
between the preparatory and the measurement phase may
disturb the results. To avoid this disturbance, we replace
measureC(empty′◦init′◦accPerm′◦evictk′, accBlock′) by
measureC(empty′, init′◦accPerm′◦evictk′◦accBlock′) −
measureC(empty′, init′◦accPerm′◦evictk′). In an ideal setting,
this does not change the outcome, as the execution of empty′

results in an empty cache, and the following execution of
init′◦accPerm′◦evictk′ causes the same number of misses
in both measurements. The advantage is, that now, the
measurement routines are called when the cache contains data
that will not be accessed in the following. The disturbance
caused by the measurement routines does not invalidate this
invariant. In addition, taking the difference between two
measurements immediately eliminates any constant overhead
incurred by the measurements.

To further reduce the likelihood of interference affecting
the result, we repeat the measurements several times and only
take the minimum of the measured values into account.

D. Implementing measureC(~p, ~m)

How do we implement measureC(~p, ~m)? This really
amounts to two questions: 1. How to measure the number
of incurred cache misses? 2. How to implement the access
sequences ~p and ~m?

1) Measuring the Number of Cache Misses:

a) Performance Counters: Hardware Performance
Counters are special-purpose registers that are used to count
the number of various hardware-related events, including
the number of hits and misses in different levels of the
memory hierarchy. They are available on many modern pro-
cessors. The “Performance Application Programming Inter-
face” (PAPI) [13] provides a common interface to access these
counters on a number of different platforms, including all
recent Intel and AMD x86 processors.

b) Measuring Execution Time: Another approach is to
instead measure the execution time of an access sequence.
Since a cache miss takes more time than a cache hit, this can
be used to estimate the number of hits/misses. This approach
has the advantage of being available on virtually all platforms.
However, there are a number of caveats:

• A processor might not offer a timer that is precise enough
to capture the time differences when executing very short
code fragments.

• Modern CPUs feature non-blocking caches that can serve
other requests while fetching the data for a miss.

• Misses in different levels of the memory hierarchy have
different latencies making it challenging to analyze a
specific part of the memory hierarchy.

In our implementation, we leverage hardware performance
counters using PAPI, whenever they are available, because of
the higher accuracy they offer. If performance counters are
unavailable, to support as many platforms as possible, we
fall back to variations of our algorithms that use execution-
time measurements. Unfortunately, due to space limitations we
cannot discuss these in detail here.

2) Implementing Access Sequences:

a) Data Caches: To minimize the effect of non-
blocking caches and out-of-order execution, we serialize mem-
ory accesses by using a form of “pointer chasing” where each
memory location contains the address of the next access.

The following code snippet gives an idea of our implemen-
tation. We assume that base is an array that contains such a
sequence of memory addresses, starting at the offset start.



r e g i s t e r char∗ c u r =( char ∗ ) ( ba se + s t a r t ) ;
whi le ( c u r ! = 0 )

c u r =∗ ( char ∗∗ ) c u r ;

b) Instruction Caches: To analyze instruction caches of
x86 processors, we created a function, that, given an array of
memory addresses, allocates memory, declares it executable,
and populates it with a sequence of jump instructions that
will cause the desired instruction fetches. This approach could
easily be adapted to other instruction sets such as ARM
instruction sets, which are more prevalent in the embedded
world.

In particular, an unsigned char array is filled with the
machine instructions for a function call, a sequence of jumps
and finally a return instruction, as illustrated in the following
excerpt from our code:

code[0]=0x55; // push %rbp
...

code[40]=0xc9; // leaveq
code[41]=0xc3; // retq

The code can then be called with the statement
((void (∗)( void ))code )(); Special care needs to be taken
when a memory address is to be accessed twice.

c) Second-level Caches: We assume a non-inclusive
cache hierarchy, so that the second-level cache can be analyzed
independently of the first-level cache. In such a cache hierar-
chy, an access that misses in the first-level cache is passed to
the second-level cache. Exclusive and strictly-inclusive caches
feature more complicated interactions between the first- and
the second-level cache and are thus be more difficult to ana-
lyze. Further, our implementation is based on the assumption
that the way size of the second-level cache is larger than the
size of the first-level cache, which was the case for all second-
level caches under consideration. Then, between two accesses
to the same set of the second-level cache, our algorithm
accesses all other cache sets. So all memory accesses lead
to misses in the first-level cache and are thus passed to the
second-level cache.

d) Virtual Memory: Most current platforms have
physically-indexed L2 caches, whereas L1 caches are virtually-
indexed. As the way size of these caches is usually larger
than the page size, consecutive virtual addresses need not
map to consecutive cache sets, and virtual addresses that are
way size-apart need not map to the same cache set. We deal
with this problem by allocating huge pages4. This allows
us to allocate physically-contiguous memory areas that are
significantly larger than the standard page size of 4 kB and
usually a multiple of the way size of large caches. As a
consequence, we can deal with both physically- and virtually-
indexed L1 and L2 caches.

e) Eliminating Interference Constructively: The reader
might wonder why we have put so much emphasis on making
our implementation robust to interference. Many of the sources
of interference our implementation needs to deal with could
be eliminated:

4For information on huges pages see http://en.wikipedia.org/wiki/Page size.
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Fig. 3: Permutation vectors for Intel Atom D525 policy.
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Fig. 4: Intuitive description of Intel Atom D525 policy.

• Disabling caching for PAPI methods would eliminate
interference in the cache from the execution of these
methods.

• Flushing the cache with a special cache flush instruction
prior to our experiments would eliminate variability due
to the initial cache state.

• Running our tool in single-user mode would reduce,
but not eliminate, interference from processes running
concurrently.

• Prefetching can often be disabled.

These measures are all valid and should be applied if possible.
We refrained from implementing these measures as part of our
implementation, however, as they would reduce its portability,
which was one of the main design goals. As our experimental
evaluation shows, portability did not come at the cost of a
decrease in inference precision.

VI. EXPERIMENTAL EVALUATION

Using our algorithms, we were able to successfully deter-
mine the replacement policies of a number of different x86
CPUs that were introduced in the last twelve years. Table I
shows the results for first-level instruction and data caches
as well as for unified second-level caches. We could confirm
the inferred sizes and associativities from publicly available
documents. For the replacement policies, less precise docu-
mentation is available. Intel characterizes their replacement
policies as pseudo-LRU. Our inference is consistent with this
characterization, while providing an exact specification of the
policies’ logical behaviors.

A. Intel Atom D525 Replacement Policy

The Intel Atom D525 CPU features a 24 kB L1 data cache
with associativity 6. Using our approach, we obtained the
permutation vector shown in Figure 3 for its L1 replacement
policy. We were not able to find any detailed information
about the replacement policies used in Intel Atom CPUs in the



TABLE I: Results of replacement policy inference.

L1 Data L1 Instruction L2 Unified
Architecture Size Assoc. Policy Size Assoc. Policy Size Assoc. Policy
Intel Atom D525 24kB 6 see Section VI-A 32kB 8 PLRU 512kB 8 PLRU
Intel Pentium 3 900 16kB 4 PLRU 16kB 4 PLRU 256kB 8 PLRU
Intel Core 2 Duo E6300 32kB 8 PLRU 32kB 8 PLRU 2048kB 8 PLRU
Intel Core 2 Duo E6750 32kB 8 PLRU 32kB 8 PLRU 4096kB 16 see Section VI-B1
Intel Core 2 Duo E8400 32kB 8 PLRU 32kB 8 PLRU 6144kB 24 see Section VI-B1
Intel Core i5 460M 32kB 8 PLRU 32kB 4 see Section VI-B3 256kB 8 PLRU
Intel Xeon W3550 32kB 8 PLRU 32kB 4 see Section VI-B3 256kB 8 PLRU
AMD Athlon 64 X2 4850e 64kB 2 LRU 64kB 2 LRU 512kB 16 see Section VI-B2
AMD Opteron 8360SE 64kB 2 LRU 64kB 2 LRU 512kB 16 see Section VI-B2
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Fig. 5: Experimental analysis of L2 cache behavior of the Intel
Core 2 Duo E6750, E6300 and E8400.

documentation or elsewhere, so to the best of our knowledge,
this is the first publicly-available description of this policy.

Obviously, the policy is not a strict LRU policy but it
approximates LRU. Previously described implementations of
pseudo-LRU [8] were based on perfect binary trees and thus
required the associativity to be a power of two. We have found
the following intuitive description of its behavior, which is
illustrated in Figure 4: The six ways of the cache are organized
into three groups of two ways each. The policy maintains the
following two invariants:

1) Within each group, the two ways are ordered by the
recency of the last access to each of the two ways.

2) The three groups are ordered by the recency of the last
access to one of their two ways.

Upon a cache hit, the order of the groups and within each group
is updated to maintain the above invariants. Upon a cache miss,
the least-recently-used block in the least-recently-used group
is replaced.

Using RELACS5, we have determined that this replacement
policy is (1, 0)-competitive relative to LRU at associativity
4 [14]. This means that all static cache analyses previously
developed for LRU can be immediately applied in WCET
analyses of the Intel Atom D525.

5See http://rw4.cs.uni-saarland.de/∼reineke/relacs for details on RELACS.

B. Difficulties

1) Intel Core 2 Duo E6750 and E8400: The L2 replace-
ment policy could not be inferred by our algorithm on both an
Intel Core 2 Duo E6750 (4 MB, 16-way set-associative) and an
Intel Core 2 Duo E8400 (6 MB, 24-way set-associative), i.e.,
the new positions determined by newPosOfBlockInPerm
did not form a permutation. However, on an Intel Core 2 Duo
E6300 (2 MB, 8-way set-associative), the PLRU replacement
policy was inferred. According to Intel, all of these CPUs “use
some variation of a pseudo LRU replacement algorithm” [15].
To further investigate why our algorithm could not infer the
policy of the two processors mentioned above, we designed an
experiment, which:

1) Clears the L2 cache.
2) For each cache set, accesses one memory block that maps

to this set.
3) Accesses n other memory blocks in each cache set.
4) Counts the L2 cache misses when accessing the memory

blocks from step 2 again.

Under the PLRU policy, and all other permutation policies,
we would expect to get zero misses if n is smaller than the
associativity of the L2 cache and as many misses as there
are cache sets otherwise. Figure 5 shows that this is indeed
almost the case on the E6300. The slight jump at n = 7 is
likely due to interfering memory accesses. However, on the
other two Core 2 Duo machines, the results look different. On
the E6750, the curve can roughly be modeled by the function
4096·

(
1−

(
1
2

)bn/8c)
, where 4096 is the number of cache sets.

So far, we have not been able to find a conclusive explanation
for this behavior.

2) AMD Athlon 64 X2 4850e and Opteron 8360SE: Both
AMD CPUs have exclusive L2 caches with the same way
size as their first-level caches. Thus, their replacement policy
cannot be inferred by our current algorithm.

3) Intel Core i5 460M and Xeon W3550: Our imple-
mentation could not infer the replacement policies of the
instruction caches of these two Nehalem-based processors.
This might be due to the Micro-Op buffer first introduced in
this architecture6.

6For information about the Micro-Op buffer, see http://www.bit-tech.net/
hardware/cpus/2008/11/03/intel-core-i7-nehalem-architecture-dive/5.



C. Experimental Setup

The experiments were performed on different versions
of Ubuntu (with kernels ≥ 2.6.32), depending on what was
already installed on the machines we examined. Aside from
enabling support for huge pages, we did not perform any
modifications to the operating system. In particular, we did
not stop background processes or disable interrupts, which may
be useful to reduce interference. However, our goal is for our
implementation to be as robust as possible, so that it can be
easily applied in any context. To get access to performance
counter data, we used PAPI in version 4.2.1. The code was
compiled with GCC at optimization level 0, to avoid compiler
optimizations that might influence measurement results. The
execution time of our algorithm was usually less than one
minute.

VII. RELATED WORK

A. Measurement of Cache Parameters

Several publications have presented approaches to deter-
mine parameters like the cache size, the associativity and the
block size of data caches through measurements. Some of these
approaches use hardware performance counters to perform the
measurements [16], [17], [18] while the others use timing
information [10], [19], [20], [21], [22], [23], [24].

Only few [19], [18], [23] have also analyzed these pa-
rameters for instruction caches. However, in contrast to our
implementation, the approach described by Yotov et al. [19]
generates and compiles C source code dynamically, thus
requiring access to the compiler at runtime. On the other
hand, [18] relies on specific features of the GCC compiler.
Blanquer and Chalmers [23] do not give a detailed description
of their implementation. A compiler in the loop may not be
available on resource-constrained embedded systems, and is an
additional source of potential problems, which is eliminated in
our approach.

Some of these approaches make assumptions as to the
underlying replacement policy (e.g. [25] and [22] assume that
LRU replacement is used). However, only a few publications
have tried to determine the cache replacement policies as
well. The approaches described in [18] and [23] are able
to detect LRU-based policies but treat all other policies as
random. John and Baumgartl [16] use performance counters to
distinguish between LRU and several of its derivatives. How-
ever, the implementation requires a special real-time operating
system environment. Further, it does not rely on PAPI for
the performance counters, and thus needs to be adapted to
every different processor architecture. Additionally, they only
consider data caches and assume the other cache parameters
to be known and to be powers of two, which is not the
case on several of the processors we used in our evaluation.
While the above restrictions can be lifted rather easily, the
main advantage of our work over John and Baumgartl’s is its
ability to discover previously unknown replacement policies,
such as the one found in the Intel Atom D525. In John and
Baumgartl’s approach the set of replacement policies needs
to be provided beforehand by the user, and the measurements
need to be adapted manually to this set of policies and for
each associativity.

B. Template-based Synthesis

Our work can be seen as a form of template-based syn-
thesis [26], [27]. In the terms of Godefroid and Taly [27],
our algorithm is based on smart sampling, as the set of
measurements is independent of intermediate measurement
results.

C. Machine Learning

Caches as defined in Section II-B define a formal language:
a sequence of memory accesses is a member of the language
if the final memory access in the sequence results in a cache
hit, if the sequence is fed to the cache starting in its initial
state. Thus it would be interesting to apply methods to learn
formal languages.

Given an infinite set of memory addresses, caches are
infinite-state systems. However, replacement policies as de-
fined in Section II-B are finite-state systems. It thus might
be possible to adapt Angluin’s algorithm to learn regular
languages [28] to our problem. Angluin’s algorithm is based
on membership and equivalence queries. It is conceivable
but not immediately obvious that membership queries can be
realized through measurements. Equivalence queries can be
realized—at least probabilistically—using membership queries
as described in [29].

The connection between caches and canonical register
automata [30] is more immediate. We are thus exploring the
use of Howar et al.’s technique to learn such automata [31].
The question is whether general automata-learning methods
scale to the size of the state space of a replacement policy
such as LRU.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented a novel algorithm and its implementa-
tion chi to infer the cache replacement policy of a processor by
a series of measurements. Application to the Intel Atom D525
has revealed a previously undocumented approximation of
LRU. It should be straightforward to port our implementation
to ARM or PowerPC instruction sets, which are more prevalent
in embedded systems. Further, our work has raised a number
of challenges and questions to tackle in the future:

• Can we find a more general class of replacement policies
that still admits efficient inference?

• What are the replacement policies employed in the Intel
Core 2 Duo E6750 and E8400?

• With some effort it should be possible to extend our
approach to inclusive and exclusive L2 caches such as
the one in the AMD Opteron 8360SE. After the L1 cache
has been inferred, knowledge about its behavior can be
exploited to systematically direct memory accesses at the
L2 cache.

• What about trace and victim caches?
• Shared caches in multi-core processors feature various co-

herency protocols. It would be interesting to automatically
characterize these precisely.

We also plan to extend our work to other architectural features,
such as translation lookaside buffers, branch predictors and
prefetchers.



WCET analysis based on abstract interpretation requires
good abstractions of the memory hierarchy. Instead of inferring
a concrete model of a cache it might be possible to instead
directly infer a valid abstraction of the cache’s behavior. This
may be possible for classes of replacement policies for which
efficient inference of concrete models is impossible.
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