Automatic Cache Modeling by Measurements

Andreas Abel and Jan Reineke
Saarland University
abeand @studcs.uni-saarland.de, reineke @cs.uni-saarland.de

Abstract

Modern microarchitectures employ memory hierarchies
involving one or more levels of cache memory to hide the
large latency gap between the processor and main mem-
ory. Cycle-accurate simulators need to accurately model
such memory hierarchies to produce useful results. Simi-
larly, worst-case execution time analyzers require faithful
models, both for soundness and precision. Unfortunately,
sufficiently precise documentation of the logical organiza-
tion of the memory hierarchy is seldom available publicly.

In this paper, we propose a method to infer a number of
these properties automatically. In particular, we describe
algorithms to detect the cache size, associativity and block
size.

1 Introduction

Detailed models of the microarchitecture are at the heart
of static worst-case execution time (WCET) analyzers. To
develop such detailed models, engineers need a deep un-
derstanding of the microarchitecture. Unfortunately, docu-
mentation at the level of detail required for sound and pre-
cise static WCET analysis is hard to come by. Processor
manuals are often ambiguous as they are written in natural
language. Sometimes they do not provide any information
about a particular architectural feature at all.

As a consequence, engineers are forced to either create
“conservative” models, which yield imprecise WCET es-
timates without being provably sound, or to obtain a bet-
ter understanding of the microarchitecture by other means.
An engineer might contact the processor manufacturer to
inquire more details, which the manufacturer is often not
willing or able to provide to protect his intellectual prop-
erty. As a last resort, the engineer is often found tinker-
ing with evaluation boards, performing measurements on
microbenchmarks, iteratively refining his models of archi-
tectural features, until he is sufficiently confident in his con-
jectured model. Clearly, this process is both costly and
error-prone.

We believe that the process of inferring a model
of the microarchitecture by measurements can—at least
partially—be automated. Automation promises to reduce
costs and to increase confidence in the results.

In this paper, we focus on the memory hierarchy. The
memory hierarchy is an attractive target, because it has
a strong influence on execution times. Further, modern
microarchitectures feature hardware performance counters,
which can be used to count the number of cache accesses
and misses that a program generates.

We have developed algorithms to determine the capaci-
ties, associativities, block sizes of first-level data caches. At
a very high level of abstraction, our algorithms all follow
the following scheme:

1. Generate multiple sequences of memory accesses.

2. Measure the number of cache misses (alternatively: the
execution time) on each of the sequences.

3. Deduce the property of interest from the measurement
results and some structural assumptions.

In the following section, we review related work. In
Section 3, we provide the necessary background regard-
ing caches, performance counters, and time measurements.
Section 4 then describes our algorithms and Section 5 their
implementation. In Section 6, we conclude with a summary
of potential future work.

2 Related Work

Several publications have presented approaches for de-
termining parameters like the cache size, the associativity
and the block size through measurements. Some of these
approaches try to detect the actual parameters automatically
while others require the user to interpret the measurement
results manually. However, most of the proposed tools are
not available online, except LMBENCH [5] and CALIBRA-
TOR [4]. In addition, we were able to obtain X-RAY [7] by
contacting one of the authors.

Experiments with the existing tools on modern hardware
have shown that the results are often unreliable. We assume

that this is due to the complex optimizations used in the
memory hierarchies of recent CPUs, like prefetching and
non-blocking caches.

Moreover, some of the proposed approaches require spe-
cial real-time operating system environments and need to be
adapted to every different processor architecture [3]. Oth-
ers make assumptions on certain cache parameters, e.g. that
the cache size is a power of two, which is not the case on
several modern processors.

There are two different ways to perform the measure-
ments: one can either measure the time a particular part of
the program needs or one can use hardware performance
counters to record the number of cache misses.

Using timing information has the advantage of better
portability since hardware performance counters are not
available on all platforms. A number of papers use this
approach (e.g. [7, 1]). Using performance counters, on
the other hand, yields more accurate measurement results.
More recent papers tend to prefer this approach (e.g. [2, 3]).

3 Cache Organization

Caches are fast but small memories that store a subset
of the main memory’s contents to bridge the latency gap
between CPU and main memory. To profit from spatial
locality and to reduce management overhead, main mem-
ory is logically partitioned into a set of memory blocks of
block size B. Blocks are cached as a whole in cache lines
of the same size. Usually, the block size is a power of
two. This way, the block number is determined by the most
significant bits of a memory address: blockp (address) =
address/B.

When accessing a memory block, the cache logic has to
determine whether the block is stored in the cache (“cache
hit”) or not (“‘cache miss”). To enable an efficient look-
up, each block can only be stored in a small number of
cache lines. For this purpose, caches are partitioned into
N equally-sized cache sets. The size of a cache set is
called the associativity A of the cache. A cache with
associativity A is often called A-way set-associative. It
consists of A ways, each of which consists of one cache
line in each cache set. In the context of a cache set, the
term way thus refers to a single cache line. Usually, also
the number of cache sets N is a power of two such that
the set number, also called index, is determined by the
least significant bits of the block number. More gener-
ally: indexp N(address) = blockg(address) mod N.
The remaining bits of an address are known as the tag:
tagg N(address) = blockg(address)/N. To decide
whether and where a block is cached within a set, tags are
stored along with the data.

4 Cache Parameter Inference Algorithms

We follow an iterative approach. First, we infer the ca-
pacity C of the cache. We then determine the associativity
A of the cache, under the assumption of the capacity derived
before. Given both capacity and associativity, we derive the
block size.

4.1 Capacity

We use the following algorithm to infer the size of the
cache.

Algorithm 1: Cache Size

char almaxSize)

Meiq < 0

curCap <+ 1024

while curCap < maxSize do

reset performance counters

access 1000x a[0], a[1], ..., a[curCap]

Meiqg <—number of cache misses

if m — myq > threshold then
| return curCap — 1

curCap < curCap + 1024

Mold <— M

The algorithm accesses a contiguous memory area of
curCap bytes repeatedly. As long as curCap is less than
or equal to the actual capacity, all accessed bytes fit into the
cache and thus, no misses should occur. If curCap exceeds
the capacity, we expect to see a sharp increase in the num-
ber of misses.

Figure 1a shows the result of running this algorithm on an
Intel Atom D525 CPU which features a 24kB L1 Cache
with associativity 6 and block size 64.

4.2 Associativity

Given the cache size, the following algorithm determines
the associativity.

The algorithm uses the fact that the cache size is a mul-
tiple of the way size. Thus, when accessing the memory
with a stride of cache size many bytes, all accesses map to
the same cache set. If curAssoc exceeds the actual asso-
ciativity, the cache can no longer store all accessed memory
locations, and so we expect to see a jump in the number of
misses.

Figure 1b shows the result of running this algorithm on the
architecture mentioned above.

Algorithm 2: Associativity

Input: cache size cs

char almaxAssoc * s|

Moiq < 0

curAssoc + 1

while cur Assoc < maxAssoc do

reset performance counters

access 1000x a[cs], a[2 * cs], ..., a[cur Assoc x cs

meiqg <—number of cache misses

if m — myq > threshold then
L return curAssoc — 1

curAssoc < curAssoc + 1

Mold < M

4.3 Block Size

Given the cache size and the associativity, the following
algorithm infers the block size.

Algorithm 3: Block size

Input: cache size cs, associativity assoc
char alassociativity x cachesize|
Meiq < 0
curSize + 1
while true do
reset performance counters
access 1000x
al0], ales], ..., a[[assoc/2] — 1) x s], a[[assoc/2] *
cs + curSizel, ..., alassoc * ¢s + curSize]
meiqg <number of cache misses
if m — myq < threshold then
| return curAssoc — 1
curSize < curSize * 2
Mold < M

The algorithm first accesses [associativity/2] many
elements that map to the same cache set. Then
|associativity/2 + 1| many elements are accessed with
an offset of curSize such that all accesses map to the same
cache set as long as curSize is less than the actual block
size, and if curSize exceeds the actual block size, the ac-
cesses map to two different cache sets. Thus, in the first
case, the cache is not large enough to store all accessed lo-
cations, while in the second case, all elements fit into the
cache. Figure 1c shows again the result of running this al-
gorithm.

S Implementation of Inference Algorithms

In this section we describe how we implemented our al-
gorithms. First, we show the techniques we used to measure
cache misses. Then, we examine a number of challenges
arising on modern hardware and how we deal with them.

5.1 Measuring Cache Misses

To measure the number of cache misses, existing ap-
proaches have either used hardware performance counters
or timing information.

Performance Counters Hardware Performance Counters
are special-purpose registers that can count the number of
various hardware-related events, including the number of
hits and misses in different stages of the memory hierarchy.
They are available on many modern processors. The “Per-
formance Application Programming Interface” (PAPI) [6]
provides a common interface to access these counters on a
number of different platforms, including all recent Intel and
AMD x86 processors.

Measuring Execution Time Another approach is to mea-
sure the execution time of short code fragments. Since a
cache miss takes more time than a cache hit, this can be
used to estimate the number of hits/misses. This approach
has the advantage of being available on virtually all plat-
forms. However, there are a number of caveats:

e A processor might not offer a timer that is precise
enough to capture the time differences when executing
very short code fragments.

e Modern CPUs feature non-blocking caches which can
serve other requests while fetching the data for a miss.

In our implementation, we leverage hardware perfor-
mance counters using PAPI whenever they are available be-
cause of the higher accuracy they offer. Furthermore, we
have implemented a second version of our algorithms that
uses timing based information. This allows us to obtain
a high accuracy on many modern processors while at the
same time also supporting as many different platforms as
possible.

5.2 Dealing with Interference

Although the performance counters count events on a
per process basis, other processes running in parallel can
alter the cache contents and thus increase the number of
cache misses. To minimize this problem, we can perform
the same measurements repeatedly and keep the minimum
of the measurement results.

L1 Misses

30000

70000 »
60000 S i 25000 /
50000)"’M 20000 4‘/(
40000 15000
/ == L1 Misses
30000 / ——LMisses 00, //,
20000
s 5000
10000
0 N ® ® N
0 40— OrO——0—0—0—0—0—0rO——0—0—0-0—0-0-00"0T g v *> » ¢ v
12345678 9101112131415161718192021222324252627 28293031323334353637383940 1 2 3 4 5 6 7 8 9 10
(a) Cache size. (b) Associativity.
L1 Misses
7000
6000 & ¢ + g + <

5000

4000

3000

—4—L1 Misses

2000

1000

T
32

(c) Block size.

Figure 1: Result of running the algorithms to infer the cache size, associativity, and block size on an Intel Atom D525 CPU.

5.3 Prefetching

The memory hierarchies of modern processors often
make use of prefetcher that can detect constant strides in
memory accesses and memory locations are brought into
the cache before they are actually accessed. To deal with
this problem, we “shuffle” our access sequences so that the
accesses are performed in a random order. Moreover, we
implemented a form of “’pointer chasing” where each mem-
ory location contains the address of the next access.

6 Conclusions and Future Work

We have presented algorithms to infer the size, associa-
tivity, and block size of an L1 data cache through measure-
ments. Initial experimental evaluation of these algorithms
on the Intel Atom D525 has been promising.

In the future, we plan to extend our algorithms to L2 and
L3 caches, as well as to instruction and unified caches. Gen-
erating a particular sequence of instruction accesses, deter-
mined at runtime, is more challenging than generating a se-
quence of data accesses. We would also like to infer a model
of the replacement policy through measurements.

We also plan to develop algorithms to infer other aspects
of the microarchitecture that affect a program’s execution
time. Our vision is to eventually automate most of the work
involved in the construction of timing models for worst-case
execution time analysis.

References

[1] J. M. Blanquer and R. C. Chalmers. MOB: A memory orga-
nization benchmark. Technical report, 2000.

C. Coleman and J. Davidson. Automatic memory hierarchy
characterization. In Performance Analysis of Systems and
Software, 2001. ISPASS. 2001 IEEE International Symposium
on, pages 103 —110, 2001.

T. John and R. Baumgartl. Exact cache characterization by
experimental parameter extraction. In Proceedings of the 15th
International Conference on Real-Time and Network Systems
(RTNS), pages 65-74, Nancy : INPL, 2007.

S. Manegold and P. Boncz. Cache-memory and tlb calibration
tool. online: http://homepages. cwi. nl/~ manegold, 2009.

L. McVoy, C. Staelin, et al. Imbench: Portable tools for per-
formance analysis. In USENIX Annual Technical Conference,
pages 279-294. San Diego, CA, USA, 1996.

P. J. Mucci, S. Browne, C. Deane, and G. Ho. PAPI: A
portable interface to hardware performance counters. In In
Proceedings of the Department of Defense HPCMP Users
Group Conference, pages 7-10, 1999.

K. Yotov, K. Pingali, and P. Stodghill. Automatic measure-
ment of memory hierarchy parameters. In Proceedings of the
2005 ACM SIGMETRICS international conference on Mea-
surement and modeling of computer systems, SIGMETRICS
’05, pages 181-192, New York, NY, USA, 2005. ACM.

(2]

(3]

(4]
(3]

(6]

(7]

