
Analysis of infinite-state graph transformation

systems by cluster abstraction

?

Peter Backes and Jan Reineke

Universität des Saarlandes, Saarbrücken, Germany
{rtc,reineke}@cs.uni-saarland.de

Abstract. Analysis of distributed systems with message passing and
dynamic process creation is challenging because of the unboundedness
of the emerging communication topologies and hence the infinite state
space. We model such systems as graph transformation systems and use
abstract interpretation to compute a finite overapproximation of the set
of reachable graphs. To this end, we propose cluster abstraction, which
decomposes graphs into small overlapping clusters of nodes. Using astra,
our implementation of cluster abstraction, we are for the first time able to
prove several safety properties of the merge protocol. The merge protocol
is a coordination mechanism for car platooning where the leader car of
one platoon passes its followers to the leader car of another platoon,
eventually forming one single merged platoon.

Keywords: graph transformation, abstract interpretation, parameter-
ized verification, shape analysis, distributed message-passing systems

1 Introduction

Distributed message-passing systems such as car platoons and drone swarms
consist of an unbounded and dynamically changing number of agents. These
agents act in a coordinated fashion using wireless ad-hoc networks to achieve
common goals. For this purpose, they assume di↵erent roles in a logical com-
munication topology that is established on top of the physical communication
medium. These communication topologies, which consist of unidirectional chan-
nels between pairs of agents, are formed by distributed protocols that all agents
execute concurrently.

The purpose of our analysis is to determine the emerging topologies, which
can then be used to evaluate safety properties, ensuring that the system will
never reach a state with an undesired topology.

We model such systems by graph transformation systems, i.e., graphs mod-
ified by transformation rules. Graph transformation is a lingua franca with a

? This work was partially supported by the German Research Council (DFG) as part
of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS). See http://www.avacs.org/

for more information.

http://www.avacs.org/

broad range of applications in systems modeling, all of which become poten-
tial use cases for our method. Many domain-specific models can be translated
automatically into graph transformation systems.

In the graph transformation framework, we represent agents as labeled nodes
and communication channels and message queues as labeled, directed edges of a
graph. We model the dynamics of the system, like agents sending and receiving
messages, detecting each other’s presence and setting up and closing communi-
cation channels, as transformation rules that are applied to the graphs. Those
rules match subgraph patterns in a graph, optionally restricted by application
conditions, and replace them by modified subgraphs.

The main challenges with respect to the analysis of the systems under con-
sideration are the unboundedness of the graphs, caused by the unboundedness
of the number of agents, and the concurrency of the computations of the par-
ticipating agents. In particular, the state space of such systems is infinite, and
naive state-space exploration cannot be used for our purpose. Instead, we use ab-
stract interpretation, overapproximating the graphs by abstract representations
of bounded size.

To compute this overapproximation, we lift rule application to the abstract
level, reducing the infinite concrete state space to a finite abstract one: We match
the rules on the abstract representation, partly undo the abstraction, just enough
to apply the rule, and restore abstraction on the result. By fixed-point iteration,
we end up with one final abstract topology, an overapproximation of all graphs
the system may produce.

The crucial idea of our abstraction is to decompose graphs into overlapping,
simultaneously evolving clusters, one per node of the graph—cluster abstraction.
Each cluster consists of a core node, corresponding to the specific node under con-
sideration, and peripheral nodes, corresponding to the immediate neighborhood
of the core node, i.e., its adjacent nodes. We keep the edges between peripheral
nodes and the core node, as well as the core node itself, completely concrete. The
neighborhood of a node may be unbounded, e.g., in some protocols a leader may
have an unbounded number of followers. To arrive at a finite abstract domain,
we use approximated counting: two or more neighborhood nodes that are similar
become one summary node in the periphery. By a three-valued abstraction, we
preserve information about the neighborhood edges where possible.

We have implemented cluster abstraction in a tool called astra. In addition
to benchmarks from the literature, ranging from red-black trees to firewalls,
we successfully apply astra to the merge protocol. The merge protocol is a
coordination mechanism for car platooning that could not be fully analyzed
with previous approaches.

Outline. In Section 2, we describe the graph transformation framework our work
is based upon. Section 3 introduces cluster abstraction and the computation
of the corresponding abstract transformer. In Section 4 we present our tool
implementation astra and experimental results. After discussing related work
in Section 5, we conclude the paper in Section 6.

2 Background

2.1 Graph Preliminaries

Our framework is based on directed graphs with edge and node labels. We allow
several edges between the same pair of nodes, but only as long as their direction
or edge label di↵er.

Definition 1 (Graph). Let V be a set of node names, N a set of node labels and

E = {�1, . . . ,�|E|} a set of edge labels. A graph G is a tuple (VG, E
�1

G , . . . , E
�|E|
G , `G)

where VG ✓ V is the set of nodes, `G : VG ! N is the node label assignment and
E�

G ✓ VG ⇥ VG is the set of edges with label � 2 E.

For simplicity, we assume a globally unique set V of node names, plus a globally
unique set of node labels N and edge labels E . Note the di↵erence between node
names and node labels: Nodes may share the same node label and nodes from
di↵erent graphs may share the same node name, but nodes from the same graph
always have di↵erent node names. We use mappings over node names to relate
nodes of di↵erent graphs. We denote the set of graphs as G.

Graph morphisms map the nodes of one graph to the nodes of another graph
such that the node labels agree and all edges are preserved. The existence of a
graph morphism means that one graph is a subgraph of another.

Definition 2 (Partial and total graph morphism, subgraph relation).

Let G and H be graphs. An injective partial function h : VG * VH is a partial
graph morphism i↵ `G \ (def(h)⇥N) = h � `H and for all � 2 E, h(E�

G) ✓ E�
H .

We call h a (total) graph morphism i↵ it is a total function, i.e., h : VG ! VH . If
an injective graph morphism exists, G is a subgraph of H, denoted by G .h H.

For the purpose of abstraction, we will later need to consider spokes between
nodes, not merely individual edges. Spokes represent the configuration of edges,
i.e., direction and edge label of edges between two given nodes.

Definition 3 (Spoke). Let G be a graph and v, v0 2 VG. Then the spoke be-

tween v and v0 in G is the pair SPG(v, v0) := ({� 2 E | (v, v0) 2 E�
G}, {� 2 E |

(v0, v) 2 E�
G}) We denote the set of all spokes 2E ⇥ 2E by SP. An alternative

notation for the empty spoke (;, ;) shall be ;.

2.2 Graph Transformation Systems

Graph transformation systems rewrite graphs according to transformation rules,
starting with some initial graph. Rule application can be restricted via negative
application conditions. In this paper, we consider negative application conditions
specified by partner constraints. A partner constraint prohibits incident edges
with a specific direction and label to an adjacent node with a specific label.

Definition 4 (Partner constraint). A partner constraint is a tuple (d,�, l) 2
PC = {in, out}⇥E⇥N where d is a direction, � an edge label and l a node label.

Transformation rules consist of a left hand side graph matched against the host
graph, a right hand side graph by which the left hand side graph is replaced, and
a mapping that describes node correspondence between the left and the right
hand side graph. Additionally, for each left hand side node, an optional set of
partner constraints can be specified.

Definition 5 (Graph transformation rule). A graph transformation rule is
a tuple (L, h, p,R) where L (the left hand side) and R (the right hand side) are
graphs, h : VL * VR is an injective partial mapping from the left to the right
hand side and p : VL * 2PC specifies the partner constraints.

For simplicity, in the following, we assume one globally unique set of graph
transformation rules R and an initial graph I, which, together with node and
edge labels, form the graph transformation system S := (N , E , I,R). We further
assume for simplicity that in each rule, either all or none of its right hand side
nodes are newly created.

For a rule to match, its left hand side must be a subgraph of the host graph
and all negative application conditions need to be satisfied: We check each part-
ner constraint against the matched node and its neighborhood.

Definition 6 (Match, partner constraint satisfaction). Let r = (L, h, p,R)
be a rule, G a graph and m : VL ! VG. Then m is a match from r to G i↵
L .m G such that the partner constraints p are satisfied: For each v 2 def(p)
and � 2 E, we have p(v) \ E = ;, where

E = {(out ,�, `G(u0)) | (m(v), u0) 2 E�
G}

[{(in,�, `G(u0)) | (u0,m(v)) 2 E�
G})}

Rule application requires that the left hand side matches the host graph. A
result graph is the host graph with labels of matched nodes changed as specified
by h, nodes and edges of the left hand side removed and nodes and edges of the
right hand side added as specified by the rule. Added nodes may be assigned any
unused node name, thus the result is not unique. We obtain a mapping from the
unchanged nodes of the host graph to the result graph as a byproduct. A graph
is directly derived from a host graph according to some rule i↵ there is any way
to apply the rule and obtain this graph as the result.

Definition 7 (Rule application, direct derivation). Let r = (L, h, p,R)
be a rule, G,H graphs, m : VL ! VG an injective graph morphism and D :=
m(VL \ def(h)) the set of deleted nodes. Then H is a result of the application
of r to G with respect to m, written G

r,m H, i↵ there is an injective mapping
m0 : VR \ h(VL \ def(m)) ! VH such that m = h �m0, VH \D = ; and

`H = (`G \ (D ⇥N) [(m0�1 � `R)
VH = (VG \D) [m0(VR)

E�
H = ((E�

G \m(E�
L)) \ (VH ⇥ VH)) [m0(E�

R)

flw

pass ann

ld
r

new
l

flw

pass ann

ack
ldr

flw

pass ann

flw

flw

flw

flw

flw

ld
r

flw
s

new
l

flws

ldr

flw
s

ldr

ldr

bldr ld
rs

flw
s

ldrs

flws

ldrs

flw
s

flw

pass ann

flw

flw

flw

flw

flw

flw
s

ack
ldr

flws

ldr

flw
s

ldr

ldr

bldr ld
rs

flw
s

ldrs

flws

ldrs

flw
s

L R

G H

m m0

h

Fig. 1. An example of rule application: A rule (L, h, ;, R) transforming graph G into
graph H, as it occurs in the merge protocol [1].

The direct derivation relation
r is a relation over G⇥G where G

r H i↵ there

is a match m such that G
r,m H.

In this paper, we are interested in reachability properties, i.e., is a graph with a
particular property reachable or not? Therefore, we define the semantics of the
graph transformation system simply as the set of reachable graphs.

Definition 8 (Graph transformation system semantics). The semantics
of a graph transformation system S is the smallest set such that I 2 JSK and,

if there are graphs G 2 JSK and H and a rule r 2 R such that G
r H, then

H 2 JSK.

2.3 The Merge Protocol

Our main benchmark is a graph transformation system modeling the merge
protocol [2,1]. This protocol is used in car platooning, where autonomous cars
on highways form platoons driving at constant speed and distance to save fuel.
Its purpose is to allow (1) two cars to form a platoon with the car in front
becoming the platoon leader and the other becoming its follower, (2) a car joining
an existing platoon as a new follower and (3) merging of two platoons, with the
leader on the back handing over all its followers to the leader in front, eventually
itself becoming one of the followers.

What makes the merge protocol so di�cult to analyze is the vast range of
topological configurations all present and evolving at the same time, caused by
the protocol’s massively distributed nature. For example, a car may receive at
any time a request to form a platoon, at the same time receive a request to merge
with another platoon, all while being in the middle of any intermediate step of
a merge operation, or sending such a request itself—and this happening with an
arbitrary number of cars in di↵erent contexts at once. This is di↵erent from the

flw

pass ann

flw

flw

flw

flw

flw

ld
r

flw
s

new
l

flws

ldr

flw
s

ldr

ldr

bldr ld
rs

flw
s

ldrs

flws

ldrs

flw
s

pass ann

flw
ld
r

flw
s

ldr

bldr

new
l

hG,PCluster P

Graph G

focal node

neighborhood

summary node

core node

1
2 -constraint

periphery

Fig. 2. An example of local abstraction: Graph G with the pass-labeled node as fo-
cal node is abstracted into cluster P . The periphery of P is an abstraction of the
neighborhood of the focal node in G.

typical setting of shape analysis, i.e., the static analysis of heap-manipulating
programs, where data structures typically have a regular global structure mod-
ified only at some select points, those referenced by pointers from the stack.
On the other hand, shape analyses are often employed to prove global invari-
ants about the heap structure, such as the sortedness of a binary tree, whereas
in the analysis of the merge protocol, our goal is to show that undesired local
configurations never occur.

3 Analysis

3.1 Cluster Abstraction

In the graph transformation systems we consider, unbounded numbers of nodes
may be created dynamically. Thus, the state space of such systems is infinite in
size, making exact analysis by concrete state-space exploration impossible. To
overcome this challenge, we employ a bounded abstraction: each concrete graph
of arbitrary size is represented by an abstract graph of bounded size, reducing
the infinite state space to a finite one.

We apply local abstraction to each node of a given graph, obtaining a bounded
set of clusters. Local abstraction focusses on one specific node in the graph,
henceforth called the focal node. It abstracts from all nodes in the graph except
for the focal node and its immediate neighborhood, referred to as the periphery
in the abstraction. The neighborhood consists of the incident edges and the
adjacent nodes of the focal node. In addition, neighborhood nodes are merged
into summary nodes if they are connected to the focal node by the same spoke
(see Definition 3). Further, edges among neighborhood nodes are abstracted into
three-valued constraints. This yields a cluster, which consists of the core node
and its periphery. The core node shall have the unique name core 2 V. Figure 2
illustrates local abstraction, which is formally defined later.

Local abstraction asymmetrically preserves information about one specific
node and some information about its neighborhood only, none about the rest
of the graph. To capture the structure of the entire graph, we apply local ab-
straction to all of its nodes. As the neighborhoods of nodes are overlapping, this
preserves some information about the global graph structure.

While a concrete graph may contain an arbitrary number of nodes, the set
of distinct clusters is bounded. Thus the abstraction is bounded.

The process described above yields a set of clusters that may contain clusters
that di↵er only with respect to constraints between peripheral nodes. To reduce
analysis complexity, such clusters are merged by loosening the constraints.

Definition 9 (Cluster). A cluster P is a tuple (GP , SP , C
�1

P , . . . , C
�|E|
P) where

GP = (VP , E
�1

P , . . . , E
�|E|
P , `P) is a graph, {core} ✓ VP ✓ {core} [SP ⇥N are

the node names, SP ✓ DP = VP \ {core} is a set of summary nodes, with DP

the set of peripheral nodes, C�
P : ((DP ⇥DP)\{(v, v) | v 2 DP \SP }) ! {0, 1, 1

2}
are the peripheral constraints, E�

P ✓ ({core}⇥VP)[(VP ⇥{core}) for any � 2 E
and SPP (core, v) 6= ; for all v 2 DP . We denote the set of all clusters by P.

Given a graph G and one of its nodes v, local abstraction yields a cluster P with
a core node that corresponds to the focal node v. P has one peripheral node per
uniquely connected neighborhood node of v, that is, with a unique configuration
of neighborhood node label plus non-empty spoke.

The edges connecting the neighborhood nodes are abstracted as follows: If,
in G, there are �-labeled edges from all source nodes V1 to all target nodes V2,
both sets each corresponding to a (possibly summary) node in P , then there
is a peripheral 1-constraint in P that involves two nodes corresponding to V1

and V2. If there are some, but not all such �-labeled edges, we use a 1
2 -constraint

instead. And if there are no such �-labeled edges at all, a 0-constraint. Note
that peripheral constraints do not contain information about self-loops of the
corresponding concrete nodes.

The byproduct of local abstraction is a mapping hG,P . It maps nodes of
G to corresponding nodes in P , if any. hG,P is not necessarily injective: If the
abstraction contains a summary node, then all corresponding concrete nodes will
be mapped to it.

Definition 10 (Local abstraction, induced mapping). The local abstrac-
tion of a graph G with respect to a focal node v 2 VG, denoted by ↵(G, v), is the
cluster P that satisfies the following conditions:

– VP = hG,P (VG)
– E�

P = hG,P (E
�
G \ (({v}⇥ VG) [(VG ⇥ {v})))

– SP = {u 2 DP | |hG,P
�1({u})| � 2}

– C�
P (u1, u2) =

8
><

>:

0 : 8v1 6= v2 : (hG,P (v1), hG,P (v2)) = (u1, u2)) (v1, v2) /2 E�
G

1 : 8v1 6= v2 : (hG,P (v1), hG,P (v2)) = (u1, u2)) (v1, v2) 2 E�
G

1
2 : else

– `P = hG,P
�1 � `G

where hG,P : VG * VP is the induced mapping of concrete nodes from G to
abstract nodes in P , defined as

hG,P = {(v, core)} [{(u, u0) 2 (VG \ {v})⇥ (SP ⇥N) | SPG(v, u) 6= ;
and u0 = (SPG(v, u), `G(u))},

The information order compares the information content of two peripheral con-
straints. It expresses that a 1

2 -constraint is less precise than both a 0 and a 1
constraint.

Definition 11 (Information order). For l1, l2 2 {0, 1, 1
2}, we write l1 v l2 i↵

l1 = l2 or l2 = 1
2 .

Using information order, we define a partial order on clusters P and P 0 that
considers P to be less than or equal to P 0 if P and P 0 are equal except for
peripheral constraints, and each constraint of P is less than or equal (with respect
to the information order) to the corresponding constraint of P 0.

Definition 12 (Cluster order). Let P and P 0 be clusters. We write P v P 0 i↵

GP = GP 0 , SP = SP 0 and C�
P (v, v

0) v C�
P 0(v, v0) for any � 2 E and v, v0 2 VP .

We say that P 0 is an upper bound of P .

Note that both information order and cluster order are partial orders, so the
notion of least upper bounds is applicable to them. A least upper bound exists
for clusters as long as they di↵er in peripheral constraints only. It yields a cluster
with peripheral constraints that are just weak enough to be consistent with both
clusters. In e↵ect, a constraint becomes 1

2 whenever it di↵ers in the two clusters
(or is already 1

2).
Our abstract domain consists of sets of clusters, such that no pair of clusters

is comparable according to the cluster order:

Definition 13 (Abstract topology). An abstract topology is a set S ✓ P,
where for no pair P1 6= P2 2 S there is a mutual upper bound P 0 2 P.

To obtain such an abstract topology from the clusters produced by local abstrac-
tion, we impose an order on sets of clusters, with an induced least upper bound.
Cluster set S is less than or equal to cluster set S0 according to this induced
order i↵ for each cluster P in S, S0 contains a cluster P 0, such that P v P 0

according to the cluster order.

Definition 14 (Cluster set order). Let S, S0 be sets of clusters. We write
S v S0 i↵ for each P 2 S, there is a P 0 2 S0 such that P v P 0.

We split the set of clusters into singleton sets, each containing one of the clusters.
Then we consider the least upper bound over all of those singleton sets. This
means joining any clusters that can be joined and taking the union for those that
cannot. At the end, this yields the abstract topology we were looking for. We call
this abstract topology the topologization of the cluster set under consideration.

Definition 15 (Topologization). The topologization of a set of clusters S ✓
P is the abstract topology

F
S =

F
{{P} | P 2 S}).

For each equivalence class of clusters from S identical except for peripheral con-
straints, topologization yields a single, joined, less precise cluster in the resulting
topology. Note that we overload the

F
operator, denoting topologization if ap-

plied to a set of clusters, and denoting the least upper bound on cluster sets
if applied to sets of sets of clusters. Note further that, given S v S0, we haveF
S v

F
S0 and S v

F
S0, but not necessarily

F
S v S0.

The full abstraction of a graph is the topologization of the set of clusters
obtained by local abstraction of each node of the graph. Each of these nodes
corresponds to the core node of one of the clusters in the resulting abstract
topology. Conversely, we define topology concretization.

Definition 16 (Cluster abstraction and concretization). Let G ✓ G. Then
the cluster abstraction of G is the abstract topology ↵(G) =

F
{↵(G, v) | v 2

VG^G 2 G}. An abstract topology S represents the set of concrete graphs �(S) =
{G 2 G | ↵({G}) v S}.

3.2 Abstract Transformer

Thus far, we considered how to apply rules on concrete graphs and how to
abstract a graph into an abstract topology. Now, we discuss the application of
rules on abstract topologies instead of concrete graphs. We obtain an abstract
topology capturing the graphs we would obtain in the concrete. We sacrifice some
precision in the abstract transformation to allow for a tractable and e�cient
implementation.

Rule application to all graphs from the cluster concretization induces an
abstract derivation relation between clusters for a given rule and abstract topol-
ogy. The relation holds if the core nodes of source and target cluster relate to
corresponding nodes in the respective host and result graph.

Definition 17 (Induced abstract derivation). The induced abstract deriva-
tion is a relation

r,S) ✓ P ⇥ P where P 0r,S)Q i↵ there are graphs G,H, a match
m : VL ! VG from r to G and a node v 2 VG, such that G is in the cluster
concretization of S, P v P 0, G

r,m H and ↵(H, v) = Q, where r = (L, h, p,R),
P = ↵(G, v) with induced mapping hG,P : VG ! VP and m � hG,P 6= ;.

The induced abstract topology is the topology we obtain if we apply full abstrac-
tion to the initial graph and then iteratively compute abstract topologies until
we reach a fixpoint: We apply any rule in any possible way to any graph from
the cluster concretization of the abstract topology from the previous iteration,
add the resulting clusters to those that already existed, and take the least upper
bound on the cluster set thus obtained.

Definition 18 (Induced abstract topology). The induced abstract topology
is the set JSK] = JSK]n where n = min{i 2 N | JSK]i = JSK]i+1} and JSK]i defined
recursively as follows:

– JSK]0 = ↵({I})
– JSK]i =

F
(JSK]i�1 [{Q 2 P | 9P 2 P, r 2 R : P

r,JSK]i�1) Q})

Note that the existence of the induced abstract topology follows from the fact
that JSK]i v JSK]i+1 and the finiteness of the domain.

Proposition 1. The induced abstract topology overapproximates the graph trans-
formation system semantics, i.e., JSK ✓ �(JSK]).

Induced abstract derivation, and, consequently, the induced abstract topol-
ogy involves rule application to an infinite number of graphs. For an implemen-
tation, we need to reduce this to a finite number. That this is possible follows
from the fact that our domain is finite.

We capture the characteristics of a su�cient, yet finite subset using the notion
of abstract matches. While a concrete match relates a left hand side L of a rule
to the nodes of a host graph G, the abstract match relates it to a cluster P . The
core node of P has a corresponding node in a host graph G. This node has a
corresponding focal node in the result graph H. (Recall that we do not permit
node deletion.) Local abstraction on the result graph will yield the relevant
cluster Q. Q primarily depends on P and the node and edge modifications as
stipulated by the rule. Thus, the main components of an abstract match are P
and the relation hL,P between the left hand side and the matched nodes of P .

However, indirectly, and perhaps contrary to intuition, Q also depends on
some nodes and edges of the host graph G that are neither matched nor deter-
mined by P :

– For each match to a summary node, only one concrete instance will be
matched. Thus, Q may depend on the number of additional unmatched in-
stances (captured by mater in the following definition). We need to distin-
guish only the cases of zero, one, and more than one instances, since the
latter will always become a summary node after abstraction.

– A 1
2 -constraint in P may become a 0 and 1 constraint in Q, and sometimes

remain as is: (a) If two matched peripheral nodes have an unmatched 1
2 -

constraint in between, the corresponding concrete edge will be either present
or absent in G, captured by cc. (b) The concrete edge corresponding to a
1
2 -constraint between a pair of unmatched peripheral nodes will be either
present or absent in G. Concrete edges incident to residual materializations
of a summary node v with mater(v) � 1 may be present for all, none or some
of the corresponding concrete node pairs. Both cases are captured by dd . (c)
The same possibilities exist for edges between an unmatched peripheral node
and a matched node. The mapping dc specifies these edges. In this case, the
matched node does not even have to be in P , since it might just be about
to become connected to the focal node through application of the rule.

In addition, the match requires that a closure exists, that is, we have a graph G
from the cluster concretization for which the match holds.

Definition 19 (Abstract match). Let r = (L, h, p,R) be a rule and S be an
abstract topology. An abstract match from r to S is a tuple (P, hL,P ,mater , dc, cd , dd)
where

– P 2 P is the matched cluster,
– hL,P : VL * VP maps the left hand side to the nodes of P ,
– mater : DP ! {0, 1, 2} specifies the residual materialization count of sum-

mary nodes in P ,
– dc : (VL⇥DP ⇥{�1, 1}⇥E) ! {0, 1, 1

2} specifies the materialization of edges
from peripheral to matched nodes and vice versa,

– dd : (DP ⇥DP ⇥ E) ! {0, 1, 1
2} specifies the peripheral edge materialization

– cc : VL ⇥ VL ! 2E specifies the materialization of edges among matched
nodes

and the following conditions are satisfied:

– P v P 0 for some P 0 2 S
– hL,P (VL) 6= ;
– |hL,P

�1(core)| < 2
– the following conditions hold for matched : DP ! N, the induced number of

matches, defined as matched(u) := |hL,P
�1({u})|:

matched(u) = 0) mater(u) =

(
2 if u 2 SP

1 otherwise

matched(u) = 1) mater(u) 2
(
{1, 2} if u 2 SP

{0} otherwise

matched(u) > 1) u 2 SPv

– there is a graph G, a match m : VL ! VG from r to G and a node v 2 VG

such that ↵(G, v) = P with induced mapping hG,P : VG * VP and
• m � hG,P = hL,P ,
• mater(u) = min{|hG,P

�1({u}) \m(VL)|, 2},
• for all u 2 VL \m�1({v}), u0 2 DP , � 2 E, and d 2 {�1, 1},

dc(u, u0, d,�) =

8
><

>:

0 : 8v0 /2 m(VL) : hG,P (v0) = u0) (m(u), v0) 2 (E�
G)

d

1 : 8v0 /2 m(VL) : hG,P (v0) = u0) (m(u), v0) /2 (E�
G)

d

1
2 otherwise,

• for all u, u0 2 DP , for all � 2 E,

dd(u, u0,�) =

8
>>>>>><

>>>>>>:

0 : 8v1 6= v2 /2 m(VL) : (hG,P (v1), hG,P (v2)) = (u, u0)

) (v1, v2) 2 E�
G

1 : 8v1 6= v2 /2 m(VL) : (hG,P (v1), hG,P (v2)) = (u, u0)

) (v1, v2) /2 E�
G

1
2 otherwise,

pass ann

flw
ld
r

flw
s

ldr

bldr

new
l

flw

pass ann

flw

flw
s

ldr

bldr

ack
ldr

fl
w
s

ld
r

flw

pass annflw

flw

ld
r

flw
s

new
l

flws

ldr

fl
w
s

ld
r

ldr

bldr

flw

pass annflw

flw

flw
s

ack
ldrflws

ldr

fl
w
s

ld
r

ldr

bldr

flw

pass ann

ld
r

new
l

flw

pass ann

ack
ldr

L R

h

P 0 = P Q

hG,P

G H

hH,Q

m
m0

�!

Fig. 3. An example of the abstract transformer.

• for all u, u0 2 VL,

(cc(u, u0), cc(u0, u)) = SPG(m(u),m(u0)),

• G 2 �(S), and
• the partner constraints p are satisfied.

Since the number of abstract matches is finite, the definition is constructive and
a computation method directly follows from it, except for the non-trivial closure
check. However, the fact that we are looking for an overapproximation allows us
to weaken this check, including the option to ignore it completely. This includes
the check that partner constraints are satisfied. Note that at least the partner
constraints for hG,P

�1(core) can be checked without knowledge of the entire
graph G.

From the abstract matches, we generate partial concretizations. These are
graphs with focal node and neighborhood, just su�cient to capture all potential
changes to the cluster caused by rule application and local abstraction of the
result. We do not need to consider the full graph, since this is taken care of by
symmetry: The additional nodes it contains will be covered by other abstract
matches with those nodes as the core node of a cluster. Those, in turn, have their
own partial concretizations to account for the impact of the rule application.

Note that edges specified by dd and dc will never be modified by a rule, for
that would require its adjacent nodes both to be matched, which is, by defini-
tion, not the case. The set A, in the following definition, splits the unmatched
peripheral nodes into two subsets such that those in the set will have respective
edges for the 1

2 case and the complementary nodes will not.

Definition 20 (Partial concretization). The partial concretization function
� maps abstract matches (P, hL,P ,mater , dc, dd , cc) to tuples (G,m, hG,P) where
G is a graph, m : VL * VG is an injective partial graph morphism from the left
hand side to this graph and hG,P : VG * VP is a mapping to the abstraction P ,
all defined as follows:

– VG = {core}[(VL \hL,P
�1({core}))[{(u, n) 2 DP ⇥N | 1 n mater(u)}

– hG,P (u) =

8
><

>:

core if u = core

v if u = (v, n)

hL,P (u) if u 2 VL \ hL,P
�1({core})

– m = {(hL,P
�1(core), core)} [{(u, u) | u 2 (VL \ hL,P

�1({core}))}
– E�

G = {(u, u0) 2 A⇥A | dd(hG,P (u), hG,P (u0),�) � 1
2}

[{(u, u0) 2 VG ⇥ VG | dd(hG,P (u), hG,P (u0),�) = 1}
[{(u, u0) 2 m(VL)⇥m(VL) | � 2 cc(m�1(u),m�1(u0))}
[{(u, u0) 2 m(VL)⇥A | dc(m�1(u), hG,P (u0), 1,�) = 1

2}
[{(u, u0) 2 m(VL)⇥ VG | dc(m�1(u), hG,P (u0), 1,�) = 1}
[{(u, u0) 2 A⇥m(VL) | dc(m�1(u0), hG,P (u),�1,�) = 1

2}
[{(u, u0) 2 VG ⇥m(VL) | dc(m�1(u0), hG,P (u),�1,�) = 1}

[hG,P
�1(E�

P)
where A = (DP ⇥ {1}) \ VG

– `G = (m�1 � `L) [(hG,P � `P)

The abstract transformer describes how clusters are a↵ected by rule application.
It presupposes the existence of an abstract match, constructs the corresponding
partial concretization, applies the rule, and constructs the modified cluster by
local abstraction of the focal node. See Figure 3.2 for an example.

Definition 21 (Abstract transformer). Let r = (L, h, p,R) be a rule and S
be an abstract topology. The abstract transformer (or direct derivation) is a rela-
tion

r,S! ✓ P⇥P where P 0r,S!Q i↵ there is a graph H and an abstract match m̂ =
(P, hL,P ,mater , dc, dd , cc) from r to S such that P v P 0, �(m̂) = (G,m, hG,P),
G

r,m H and Q = ↵(H, core)

The graph morphismmmay be partial, i.e., some nodes of the left hand side may
map to none of the nodes in G. Not even the focal node needs to be covered.
In those cases, we waive the totality requirement that rule application puts
on m, thereby modifying only those parts of the partial concretization that are
matched. We obtain an abstract topology that overapproximates the system by
abstracting the start graph and applying the abstract transformer in a fixpoint
iteration.

Definition 22 (Derived abstract topology). The derived abstract topology
is the set [S]] = [S]]n, where n = min{i 2 N | [S]]i = [S]]i+1} and [S]]i is defined
recursively as follows:

– [S]]0 = ↵({I})

– [S]]i =
G

([S]]i�1 [{Q 2 P | 9P 2 [S]]i�1, r 2 R : P
r,[S]]i�1! Q}

[{↵({R}) | (;, ;, ;, R) 2 R})

Note that we assumed the absence of rules with non-empty left hand side that
create new nodes. Because of this, we do not need to take care of new clusters that
occur as a byproduct of the modification of an existing cluster. Instead, for each
rule with empty left hand side, we add the clusters obtained by local abstraction
for each right hand side node. This takes place unconditionally, pointing towards
the equivalence of node creation and initial graphs in our domain.

Theorem 1. The derived abstract topology overapproximates the induced ab-
stract topology, i.e., JSK] v [S]].

Corollary 1 (Soundness). The derived abstract topology overapproximates the
graph transformation system semantics, i.e., JSK ✓ �([S]]).

Proof. This follows immediately from Proposition 1, Theorem 1, and the mono-
tonicity of cluster concretization.

4 Experimental Evaluation

4.1 Implementation

We implemented cluster abstraction in our tool astra 2.0. The implementation
di↵ers from theory in minor respects: (a) Partial concretization materializes clus-
ters over the entire left hand side of a rule at once, exploiting symmetry and
allowing us to properly check all partner constraints. (b) We do a rudimentary
check for the existence of a closure, by checking whether peripheral constraints of
unmatched nodes are satisfiable. (c) To cover cases with unmatched core nodes,
for each match, we iterate over all possibilities in which one additional cluster
can be attached in the periphery. (d) After each iteration, we apply a reduc-
tion step, eliminating any cluster whose existence can be ruled out easily, and
concretizing 1

2 -constraints if more precise information is available. (e) In various
places, we use overapproximation ad hoc in order to improve analysis time.

4.2 Selection of Benchmarks

With astra 1.0, we already succeeded to analyze a part of the merge proto-
col [1] with star abstraction [3], a precursor to the method described in this pa-
per. (In a nutshell, cluster abstraction with all peripheral constraints being 1

2 .)
It was su�cient to analyze platoon formation and car joining, but not platoon
merging, for which state space explosion occurred: Follower handover requires
ternary predicates, while star abstraction only preserves binary predicates. This
causes a cascade of spurious abstract states, with the analysis eventually spend-
ing its time enumerating an intractable number of combinatorial possibilities.
The main goal of astra 2.0 was to analyze the full protocol. We did this for two

Table 1. Benchmark analysis statistics. cl. = clusters, a.r. = active rules, i.e., applied
at least once, m. = abstract matches, rule app. = rule applications, it. = iterations,
vfy. = safety property verified. *safety property not expressible as forbidden subgraphs

Benchmark # cl. # a.r. # m. # rule app. # it. time vfy.
Synchronous merge 873 34 9674 349774 17 0m 14.057s yes

Asynchronous merge 3069 36 44553 36114603 21 14m 27.977s yes

AVL trees 1876 302 114284 2221151967 38 757m 9.273s yes

Firewall 31 4 139 1371 5 0m 0.012s yes

Firewall 2 96 9 786 45525 7 0m 0.330s no
Public/private servers 2 239 26 1633 102250 10 0m 1.030s yes

Dining philosophers 41 8 40 179 7 0m 0.006s no*
Resources 32 7 100 207 4 0m 0.007s yes

Mutual exclusion 308 9 2419 1237361 17 0m 56.060s yes

Red-black trees 263 38 8769 24855500 11 10m 3.145s yes

Singly-linked lists 7 2 15 13 3 0m 0.000s yes

Circular bu↵ers 152 2 798 241234 17 2m 43.441s no*
Euler walks 18 6 47 134 3 0m 0.008s no*

versions. In addition, we analyzed the AVL tree benchmark from [4] and var-
ious other benchmarks from the related work: Firewall, public/private servers,
dining philosophers, resources, mutual exclusion, and red-black trees are bench-
marks from the AUGUR package [5]; singly-linked lists, circular bu↵ers and Euler
walks for GROOVE are from [6].

The AUGUR package comes with additional benchmarks that we did not
analyze: connections, leader election protocol and the Needham–Schroeder pro-
tocol all make use of numerical attributes, which are not yet supported by our
tool. External-internal processes is merely a stripped-down version of public and
private server 2. Public and private server contains a subset of the rules from
public and private server 2. The same holds for the finite-state version of dining
philosophers versus the infinite-state version, which we analyze. Red-black trees
converted is a tweaked version of red-black trees to ease analysis with AUGUR.

We could analyze the GROOVE benchmarks without modifications. The AU-

GUR benchmarks, on the other hand, had to be translated from the tool’s hyper-
edge-based approach to one based on nodes and edges. In addition, we had to
make a structure-preserving change to the public/private server grammar (re-
placing a specific edge with two edges connected by a node) in order to prevent
combinatorial explosion that would otherwise have defied analysis. For red-black
and AVL trees, we manually added invariants about the uniqueness of some la-
bels over the entire graph. These invariants trivially follow from the respective
graph transformation systems and it would in principle be easy to find them au-
tomatically. However, uniqueness is not expressible in our abstraction, because
clusters always represent an arbitrary number of concrete instances.

We checked the safety properties by adding rules specifying respective for-
bidden subgraphs, producing a node with an error label if found. This approach

could not be taken for dining philosophers, circular bu↵ers and Euler walks,
since the respective safety properties quantify over an unbounded number of
nodes and hence cannot be formulated as forbidden subgraphs.

4.3 Analysis Results

astra was able to analyze all benchmarks. See Table 1 for the number of iter-
ations required for reaching the fixed point, the number of clusters in the final
result and the processor time taken. We ran all analyses on an Intel Core 2 Quad
CPU Q9550 (2.83GHz) with 4 GB of memory under Linux 3.15, though only
9 MB were used at the peak for the largest benchmark, asynchronous merge.
Execution time given is the time in user mode as reported by time(1).

In all but one of the cases with safety properties expressible as forbidden
subgraphs, verification succeeded. Verification failed for firewall 2 because the
abstraction was unable to distinguish locations in front of and behind the firewall.

5 Related Work

Petri graphs are unfoldings of graph transformation systems, abstracted by a
cuto↵ after a defined depth [7]. Reachability can be checked with existing tech-
niques for Petri nets. As we have seen, we were able to analyze a subset of their
benchmarks. Once they support negative application conditions (which they cur-
rently list as future work), it will be interesting to investigate whether their tool
AUGUR [8] can analyze our main target, the merge protocol.

Bauer et al.’s partner abstraction [9] considers connected components instead
of overlapping clusters and folds nodes according to neighborhood node and
edge labels. In practice, it requires the system to obey friendliness properties
that hold only for a simplified merge protocol where processes know each other’s
state [4]. Rensink and Distefano [10] consider an abstraction similar in design
and limitations. Ideas from both approaches were combined and extended in
neighborhood abstraction [11]. No friendliness restriction applies, but lacking
Bauer’s decomposition into components, the GROOVE implementation runs out
of memory even on Bauer’s simplified merge protocol [6].

Environment abstraction [12] abstracts a system into one process and its
environment, i.e., the set of states of all the other processes plus relations to
them. Cherem and Rugina [13] propose a local abstraction for shape analysis that
tracks individual heap cells and their immediate neighborhood. Bauer et al.’s
daisy patterns [14] and our star abstraction [3] are graph abstractions based on
the same idea, the former abstracting the transformation rules in addition to
the graph. All these abstractions are less precise than cluster abstraction, since
none of them tracks peripheral node relationships.

Saksena et al. [15] verify graph transformation systems by symbolic back-
ward reachability analysis. Starting with the undesirable configurations, they
compute, by backward rule application in a fixed point iteration, an overapprox-
imation of the set of reachable predecessor configurations, checking whether an
initial configuration is among them. While not guaranteed to terminate, their
method succeeds in proving loop freedom of an ad hoc routing protocol.

Berdine et al. [16] show that shape analysis of concurrent programs via canon-
ical abstraction [17] leads to state-space explosion even for a toy example. The
complexity of expressing cluster abstraction via canonical abstraction confirms
this: at least, one abstraction predicate would be needed for each spoke, which is
exponential in the number of edge labels. Berdine et al.’s own solution allows ef-
ficient analysis of an unbounded number of threads manipulating an unbounded
shared heap. However, their abstraction is unable to express direct relations be-
tween the state of the threads. Manevich et al. [18] decompose the heap into a
bounded number of overlapping components as specified by user-defined loca-
tion selection predicates. In contrast, our method decomposes the graph by local
abstraction of each of the unbounded number of nodes.

Zu↵erey et al. [19] provide an abstraction for depth-bounded systems (sys-
tems with a bound on the longest acyclic path), an expressive class of well-
structured transition systems. Unfortunately, the merge protocol does not belong
to this class unless one uses a simplified version similar to Bauer’s.

6 Conclusions and Future Work

We have seen an abstraction for the analysis of the set of reachable graphs
generated by infinite-state graph transformation systems. Using astra, our im-
plementation of cluster abstraction, we were for the first time able to analyze
the full merge protocol. In addition, our method has proven robust and precise
enough to allow for the analysis of various benchmarks from the literature.

Future work: (1) We are going to check safety properties that cannot be ex-
pressed as forbidden subgraphs, such as quantification over an unbounded num-
ber of nodes. (2) We shall explore suitable approximations for the closure check,
to preserve more of the global graph structure during rule application. (3) We
are going to investigate opportunities to adjust the precision of our analysis. Es-
pecially, structure-preserving changes to the graph transformation system before
the analysis seem to be an interesting way to give direction to the abstraction.
For example, adding edges to the right hand side of rules with a new label that
never occurs on a left hand side can keep nodes in the periphery of some clus-
ters, thereby increasing precision. (4) If some cluster may occur at most once,
we would like to retain this information. (5) We would like to allow integer
values as node and edge attributes, in addition to regular labels. Lifted to the
abstraction, it extends clusters by overapproximated values for those attributes,
based on abstract domains on integers. (6) Based on a suitable fragment of µ-
calculus, we plan to support abstract model checking on an abstract labeled
transition systems of clusters, preserving some non-trivial relationships for the
transitions, such as size invariants on summary nodes. We plan to extend this to
model checking over an abstract labeled transition system, based on a suitable
fragment of µ-calculus.

Acknowledgments. We thank Reinhard Wilhelm for many valuable discus-
sions about this work and the anonymous referees for their useful comments.

References

1. Backes, P., Reineke, J.: A graph transformation case study for the topology anal-
ysis of dynamic communication systems. In: TTC’10. Volume WP10-03 of CTIT
Workshop Proceedings., Enschede, University of Twente (2010) 107–118

2. Hsu, A., Eskafi, F., Sachs, S., Varaiya, P.: Design of platoon maneuver protocols for
IVHS. Technical report, Institute of Transportation Studies, UC Berkeley (1991)

3. Backes, P., Reineke, J.: Abstract topology analysis of the join phase of the merge
protocol [using astra]. In: TTC’10. Volume WP10-03 of CTIT Workshop Proceed-
ings., Enschede, University of Twente (2010) 127–133

4. Backes, P.: Topology analysis of dynamic communication systems. Diploma thesis,
Saarland University (March 2008)

5. Kozyura, V., König, B.: Augur 2—A tool for the analysis of (attributed) graph
transformation systems using approximative unfolding techniques. (April 2008)

6. Zambon, E.: Abstract graph transformation : theory and practice. PhD thesis,
University of Twente (2013)

7. Baldan, P., König, B.: Approximating the behaviour of graph transformation sys-
tems. In Corradini, A., Ehrig, H., Kreowski, H.J., Rozenberg, G., eds.: ICGT’02.
Volume 2505 of LNCS. (January 2002) 14–29

8. König, B., Kozioura, V.: Augur 2—a new version of a tool for the analysis of graph
transformation systems. In Bruni, R., Varró, D., eds.: GT-VMT’06. Volume 2011
of ENTCS. (2008) 201–210

9. Bauer, J., Wilhelm, R.: Static analysis of dynamic communication systems by
partner abstraction. In Nielson, H.R., Filé, G., eds.: SAS’07. Volume 4634 of
LNCS. (2007) 249–264

10. Rensink, A., Distefano, D.: Abstract graph transformation. In: SVV’05. Volume
157 of ENTCS. (May 2006) 39–59

11. Boneva, I., Kreiker, J., Kurbán, M., Rensink, A., Zambon, E.: Graph abstraction
and abstract graph transformations (amended version). Technical Report TR-
CTIT-12-26, University of Twente, Enschede, the Netherlands (October 2012)

12. Clarke, E., Talupur, M., Veith, H.: Environment abstraction for parameterized
verification. In Emerson, E.A., Namjoshi, K.S., eds.: VMCAI’06. Volume 3855 of
LNCS. (2006) 126–141

13. Cherem, S., Rugina, R.: Maintaining doubly-linked list invariants in shape analysis
with local reasoning. In Cook, B., Podelski, A., eds.: VMCAI’07. Volume 4349 of
LNCS. (2007) 234–250

14. Bauer, J., Boneva, I., Rensink, A.: Graph abstraction by daisy patterns. Privately
circulated (May 2009)

15. Saksena, M., Wibling, O., Jonsson, B.: Graph grammar modeling and verification
of ad hoc routing protocols. In Ramakrishnan, C.R., Rehof, J., eds.: TACAS’08.
Volume 4963 of LNCS. (2008) 18–32

16. Berdine, J., Lev-Ami, T., Manevich, R., Ramalingam, G., Sagiv, M.: Thread quan-
tification for concurrent shape analysis. In Gupta, A., Malik, S., eds.: CAV’08.
Volume 5123 of LNCS. (2008) 399–413

17. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
ACM Trans. Program. Lang. Syst. 24(3) (May 2002) 217–298

18. Manevich, R., Lev-Ami, T., Sagiv, M., Ramalingam, G., Berdine, J.: Heap decom-
position for concurrent shape analysis. In Alpuente, M., Vidal, G., eds.: SAS’08.
Volume 5079 of LNCS. (2008) 363–377

19. Zu↵erey, D., Wies, T., Henzinger, T.A.: Ideal abstractions for well-structured
transition systems. In Kuncak, V., Rybalchenko, A., eds.: VMCAI’12. Volume
7148 of LNCS. (January 2012) 445–460

	Analysis of infinite-state graph transformation systems by cluster abstraction

