
A Compiler Optimization to Increase the Efficiency of
WCET Analysis

Mohamed Abdel Maksoud
Compiler Research Group

Saarland University
mohamed@cs.uni-saarland.de

Jan Reineke
Real-Time and Embedded Systems Lab

Saarland University
reineke@cs.uni-saarland.de

ABSTRACT
For complex microprocessors, micro-architectural analysis
and precise path analysis constitute the most expensive steps
in worst-case execution time (WCET) analysis. We intro-
duce a parameterized compiler optimization to reduce anal-
ysis time and memory consumption during the two steps.

The optimization makes use of a synchronization instruc-
tion, which flushes queues in the memory subsystem. By in-
jecting this instruction at selected program points, analysis
uncertainty about the state of the pipeline and the mem-
ory subsystem can be drastically reduced, at the cost of an
increase in execution time. A parameter allows the user to
control the trade-off between increased analysis efficiency
and decreased worst-case performance.

We have developed a prototype implementation of the
optimization for the PowerPC instruction set architecture,
and evaluate it using a version of AbsInt’s WCET analyzer
aiT for the PowerPC 7448, a high-performance micropro-
cessor used in safety-critical real-time systems. On a set of
Mälardalen benchmarks, we observe an analysis speedup of
around 635% at the cost of an increase in the WCET bound
of 6%. Moreover, under a traditional ILP-based path analy-
sis, the WCET bound is decreased by 5% while the analysis
is sped up by 350%.

Categories and Subject Descriptors
B.8.0 [Performance and Reliability]: General

General Terms
Embedded Systems, Program Optimization, Timing Valida-
tion

Keywords
WCET analysis efficiency, analyzability, predictability

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
RTNS 2014 , October 8 - 10 2014, Versailles, France
Copyright 2014 ACM 978-1-4503-2727-5/14/10 ...$15.00.
http://dx.doi.org/10.1145/2659787.2659825.

1. INTRODUCTION
Modern microarchitectures feature numerous mechanisms

to increase performance in the common case. Examples in-
clude multiple levels of caches, dynamic branch predictors,
and pipelines with out-of-order execution facilitated by load-
store units with multiple registers buffering pending loads
and stores.

For soundness and precision, worst-case execution time
(WCET) analysis tools need to determine the possible states
of these features throughout the execution of the program
being analyzed. However, often, the contents of registers or
the cache cannot be precisely determined as they depend on
the program’s inputs or the particular loop iteration. When-
ever the processor’s next state depends upon such missing
information, the analysis performs a so-called split, account-
ing for all possible successor states. For complex microar-
chitectures state-of-the-art analyses often track billions of
possible microarchitectural states, resulting in long analysis
times and high memory consumption.

The increasing complexity of microarchitectures and its ef-
fect on WCET analysis has been observed earlier [28]. This
observation has lead to a body of work on the design of mi-
croarchitectures that aim to reconcile performance with pre-
dictability [21, 29, 19, 18]. So far, this research has had lim-
ited impact on commercially-available microarchitectures.

In this paper, we explore an alternative approach to new
hardware solutions: we propose a compiler optimization that
reduces the cost of WCET analysis for complex commercial
microarchitectures. This is accomplished by inserting a syn-
chronization instruction at selected program points. This
instruction stalls the execution until all pending instruc-
tions execute to completion, effectively flushing queues in
the load-store unit and emptying the pipeline.

This reduces the number of analysis states in two ways.
The immediate effect is that many analysis states become
similar after executing the synchronization instruction, and
hence can be merged. In addition, eliminating uncertainty
about pending memory accesses in the load-store unit, re-
duces the number of splits on subsequent load-store instruc-
tions. The reduced number of analysis states comes at the
cost of an increase in execution time due to the stalling in-
duced by the synchronization instruction on the one hand,
and the increased program size, which may increase the
number of cache misses, on the other hand.

To identify valuable locations to insert synchronization
instructions, our optimization estimates, for each program
point, the loss in terms of execution time and the gain in
analysis efficiency. While the former estimate is based on

Binary
Executable

CFG Re-
construction

Control-flow
Graph

Loop Bound
Analysis

Value
Analysis

Control-flow
Analysis

Annotated
CFG

Basic Block
Timing Info

Micro-
architectural

Analysis
Path Analysis

Legend:

Data

Phase

Figure 1: Main components of a timing-analysis
framework and their interaction.

the loop-nesting level, the latter is computed using annota-
tions obtained by performing a simple static analysis of the
program. These annotations provide rough estimates of how
long each instruction takes and how many splits it induces.

We have developed a prototype implementation of the
optimization for the PowerPC instruction set architecture.
We employ a version of AbsInt’s WCET analyzer aiT for
the PowerPC 7448, a high-performance microprocessor used
in safety-critical real-time systems, on a set of Mälardalen
benchmarks, to evaluate our prototype. Under an expensive
prediction-file based path analysis, we observe an analysis
speedup of around 635% at the cost of an increase in the
WCET bound of 6%. Moreover, under a traditional ILP-
based path analysis, the WCET bound is decreased by 5%
while the analysis is sped-up by 350%.

The rest of the paper is organized as follows: we pro-
vide background on WCET analysis and the PowerPC 7448
architecture in Section 2. In Section 3 we describe the opti-
mization pass, before describing the experimental evaluation
in Section 4. After discussing related work in Section 5, we
conclude the paper in Section 6.

2. BACKGROUND

2.1 WCET Analysis Flow
Over roughly the last decade, a more or less standard

architecture for timing-analysis tools has emerged. Figure 1
gives a general view of this architecture. The following list
presents the individual phases and describes their objectives.

1. Control-flow reconstruction [24] takes a binary exe-
cutable to be analyzed, reconstructs the program’s con-
trol flow and transforms the program into a suitable
intermediate representation. Problems encountered in
this phase are dynamically computed control-flow suc-

cessors, e.g. those stemming from switch statements,
function pointers, etc.

2. Value analysis [3] computes an over-approximation of
the set of possible values in registers and memory loca-
tions by an interval analysis and/or congruence anal-
ysis. The computed information is used for a precise
data-cache analysis and in the subsequent control-flow
analysis. Value analysis is the only one to use an
abstraction of the processor’s arithmetic. A subse-
quent pipeline analysis can therefore work with a sim-
plified pipeline where the arithmetic units are removed.
There, one is not interested in what is computed, but
only in how long it will take.

3. Loop bound analysis [7, 15] identifies loops in the pro-
gram and tries to determine bounds on the number
of loop iterations; information indispensable to bound
the execution time. Problems are the analysis of arith-
metic on loop counters and loop exit conditions, as well
as dependencies in nested loops.

4. Control-flow analysis [7, 23] narrows down the set of
possible paths through the program by eliminating in-
feasible paths or by determining correlations between
the number of executions of different blocks using the
results of value analysis. These constraints will tighten
the obtained timing bounds.

5. Micro-architectural analysis [6, 26, 10, 4] determines
bounds on the execution time of basic blocks by per-
forming an abstract interpretation of the program, co-
mbining analyses of the processor’s pipeline, caches,
and speculation. Static cache analyses determine safe
approximations to the contents of caches at each pro-
gram point. Pipeline analysis analyzes how instruc-
tions pass through the pipeline accounting for occu-
pancy of shared resources like queues, functional units,
etc.

6. Path Analysis [17, 25] finally determines bounds on the
execution times for the whole program by implicit path
enumeration using an integer linear program (ILP).
Bounds of the execution times of basic blocks are com-
bined to compute longest paths through the program.
The control flow is modeled by Kirchhoff’s law. Loop
bounds and infeasible paths are modeled by additional
constraints. The target function weights each basic
block with its time bound. A solution of the ILP max-
imizes the sum of those weights and corresponds to an
upper bound on the execution times. In the following,
we refer to the kind of path analysis described above
as traditional ILP-based analysis.

The commercially available tool aiT by AbsInt, cf. http:
//www.absint.de/wcet.htm, implements this architecture.
It is used in the aeronautics and automotive industries and
has been successfully used to determine precise bounds on
execution times of real-time programs [10, 9, 27, 16].

The ILP-based path analysis in aiT comes in two vari-
ants depending on how micro-architectural state graphs are
constructed [2]:

1. Traditional ILP-based analysis, where an ILP is solved
to find the worst-case path through the program, given

http://www.absint.de/wcet.htm
http://www.absint.de/wcet.htm

MMU

Instruction MMU

Data MMU

Instruction Unit
Instruction
Queue

.

.

.

1
2

Branch
Processing
Unit

Dispatch
Unit

Completion Unit
Completion
Queue

.

.

.

1
6

Load-Store Unit
Finished
Store Queue

.

.

.

3

Committed
Store Queue

.

.

.

5

Load Miss
Queue

.

.

.

3

Integer Units

Vector Units

Floating-Point
Unit

Figure 2: PowerPC 7448 Block Diagram.

worst-case timings of all basic blocks (possibly in var-
ious contexts). In this approach the size of the ILP
formulation is independent of the size of the micro-
architectural state space. The downside is that the
computed WCET bound may be imprecise, because
the worst-case timings of consecutive basic blocks may
not occur simultaneously on a single architectural path
through the program.

2. Prediction-file-based ILP analysis (PF-ILP), where a
global state graph consisting of micro-architectural sta-
tes is constructed, and an ILP is solved to find the
worst-case path through this state graph. This results
in a more precise WCET bound since architecturally-
infeasible paths are excluded. However, it comes at
the cost of a much larger ILP to be solved, whose size
depends on the micro-architectural state space.

2.2 Freescale PowerPC 7448
The PowerPC 7448 is a reduced instruction set computer

(RISC) superscalar processor that implements the 32-bit
portion of the PowerPC architecture and the SIMD instruc-
tion set AltiVec architectural extension. It features a two-
level memory hierarchy with separate L1 data and instruc-
tion caches (Harvard architecture), a unified L2 cache, four
independent integer and four independent vector units for
superscalar execution. It also features static and dynamic
branch prediction, and a sophisticated load-store unit with
long buffers.

“The PowerPC 7448 provides virtual memory support for
up to 4 PB (252) of virtual memory and real memory support
for up to 64 GB (236) of physical memory. It can dispatch
and complete three instructions simultaneously” [12]. It con-
sists of the following execution units, depicted in Figure 2:

• Instruction Unit (IU): the IU provides centralized con-
trol of instruction flow to the execution units. It con-
tains an instruction queue (IQ), a dispatch unit (DU),
and a branch processing unit (BPU). The IQ has 12 en-
tries and loads up to 4 instructions from the instruction
cache in one cycle. The DU checks register dependen-
cies and the availability of a position in the completion
queue (described below), and issues or inhibits subse-
quent instruction dispatching accordingly. The BPU
receives branch instructions from the IQ and executes

them early in the pipeline. If a branch has a depen-
dency that has not yet been resolved, the branch path
is predicted using either architecture-defined static br-
anch prediction or PowerPC 7448-specific dynamic br-
anch prediction.

• Completion Unit (CU): The CU retires an instruction
from the 16-entry completion queue (CQ) when all in-
structions ahead of it have been completed. The CU
coordinates with the IU to ensure that the instructions
are retired in program order.

• Integer, Vector, and Floating-Point Units: the Pow-
erPC 7448 provides nine execution units to support
the execution of integer, fixed point, and AltiVec in-
structions.

• Cache/Memory Subsystem: The PowerPC 7448 mi-
croprocessor contains two separate 32 KB, eight-way
set-associative level 1 (L1) instruction and data caches
(Harvard architecture). The caches implement a pseu-
do least-recently-used (PLRU) replacement policy. In
addition, the PowerPC 7448 features a unified 1 MB
level 2 (L2) cache.

• Load-Store Unit (LSU): The LSU executes all load and
store instructions and provides the data transfer inter-
face between registers and the cache/memory subsys-
tem. The LSU also calculates effective address and
aligns data. This unit is described in detail in the fol-
lowing section.

Load-Store Unit. The LSU provides all the logic required
to calculate effective addresses, handles data alignment to
and from the data cache, and provides sequencing for load-
store string and load-store multiple operations [12]. The
LSU contains a 5-entry load miss queue (LMQ) which main-
tains the load instructions that missed the L1 cache un-
til they can be serviced. This allows the LSU to process
subsequent loads. Unlike loads, stores cannot be executed
speculatively: a store instruction is held in the 3-entry fin-
ished store queue (FSQ) until the completion unit signals
that the store is committed; only then it moves to the 5-
entry committed store queue (CSQ). In order to reduce the
latency of loads dependent on stores, the LSU implements
data forwarding from any entry in the CSQ before the data
is actually written to the cache. When a load misses the
cache, its address is compared to all entries in the CSQ. On
a hit, the data is forwarded from the newest matching entry.
If the address is also found in the FSQ, however, the LSU
stalls since the newest data at this address could be updated
should the store instruction in the FSQ be committed.

Analysis Model of the PowerPC 7448. During static an-
alysis, crucial information on program execution such as
register and cache contents cannot be determined exactly.
When the analysis flow depends on such information, the
analysis has to proceed along all possible ways to ensure
a sound WCET bound in the presence of timing anoma-
lies [20]. When the analysis is to proceed in more than one
path, the analysis state has to be split, increasing the size
of the state space and hence reducing analysis efficiency.

Splits induced by unknown cache contents and conditional
branch outcomes occur independently of the complexity of

the pipeline. Other split types, however, are induced by
the missing or partial information about the state of the
pipeline.

The various queues in the PowerPC 7448 pipeline neces-
sitate keeping track of a significant amount of information,
proportional to the number of instructions the processor can
execute concurrently. Due to analysis uncertainty about
memory addresses, this translates to a significant amount
of splits during microarchitectural analysis.

In the load-store unit, the addresses of different memory
accesses are represented by enclosing intervals, rather than
exact numbers. As described in the previous section, serving
a load that misses the cache involves a number of compar-
isons to the entries in the store queues. Performing these
comparisons on imprecise addresses results in splits when-
ever it cannot be decided whether two addresses alias or not.
The number of comparisons is proportional to the queue oc-
cupancies at the time instants when loads that missed the
cache arrive.

Another source of splits is branch prediction. This is be-
cause conditional branches (whose outcome is potentially
unknown) are predicted and the instructions are executed
speculatively on the predicted path, a split takes place when
deciding whether or not the prediction was correct.

Our previous work in [19] suggests that simplifying the
load-store unit results in a substantial reduction in the num-
ber of splits with little or no change in the WCET bound.

Transforming the program in a way that eliminates or lim-
its the splits induced by such features promises to achieve
similar results. This motivates the optimization pass de-
scribed in the following section.

3. THE OPTIMIZATION PASS

3.1 High-Level Optimization Approach
The mechanism at our disposal are synchronization in-

structions, described in more detail below, which reduce
analysis cost at and after the program point at which they
are inserted. As inserting such instructions does not come
for free—it increases program size and execution times—
blindly inserting synchronization instructions everywhere in
the program is not a viable option.

Instead, we follow a simple incremental approach that al-
ternates between the following two steps, until a user-defined
threshold is reached:

1. A cheap heuristic is used to estimate both the gain in
terms of reduced analysis effort and the loss in terms
of increased execution time for each program point.

2. A synchronization instruction is inserted at the pro-
gram point that maximizes the gain/loss ratio.

Step 1 needs to be repeated in each iteration, because each
insertion changes the gains and losses of other program poin-
ts. Figure 3 illustrates this process, whose steps are de-
scribed in more detail in the following.

3.2 Mechanism: Synchronization Instructions
To eliminate splits due to clashes in the load-store unit,

we need to make sure its queues are cleared by the time a
new load arrives. The semantics of the data-synchronization
instruction (sync) is the closest fit for this purpose. Execut-
ing sync instruction ensures that all preceding instructions

Program

Coarse simulation

Initial timing &
splits annotations

Compute gain & loss

Gain & loss

Insert directives &
update annotations

Modified timing &
splits annotations

Enough directives inserted?

done
opt. parameter

no

yes

Legend:

Data

Phase

Input

Figure 3: The general operation of the optimization
pass.

execute to completion before any subsequent instruction is
initiated [13]. This implies that inserting a sync instruc-
tion ensures the emptiness of the LSU queues and conse-
quently excludes the possibility of comparing imprecise ad-
dresses. Another benefit is that executing the sync instruc-
tion makes micro-architectural analysis states similar. This
fosters merging states and hence reduces the number of sub-
sequent states to be explored. The downside is that insert-
ing syncs increases the program size. A longer program will
most likely feature a longer execution time and a higher
number of splits induced by querying the instruction cache.
Moreover, executing the sync instruction causes a stalling in
the pipeline until all pending operations are completed. This
prohibits executing the instructions that follow concurrently
and hence prolongs the execution time.

We use the term normalization point to refer to a program
point before which inserting a sync could enhance the anal-
ysis efficiency. Normalization points are the points where
one or more splits occur. With this choice, every normal-
ization point corresponds to one or more split types. The
normalization point is said to be realized if a sync is actually
inserted before it.

3.3 Evaluating Normalization Points
Realizing a normalization point induces gain in terms of

the analysis states spared and loss in terms of the increase
in the execution time and hence the WCET bound. The
additional execution time induced by adding one instruction
to a basic block is proportional to how frequently the basic
block is executed. This can be approximated as follows:

loss = Bn

where n is its loop-nesting level and B is a constant signify-
ing the average number of loop iterations. A better approx-
imation of the loss could be computed given information on
the loop bounds.

int main (int argc , char ∗∗ argv)
{

int i , sum = 0 ;
for (i =0; i <10; i++)
{

sum += 1 ;
}
return 0 ;

}

R=1 C=13482

R=2 C=6641

R=20 C=6640

R=80 C=1656R=640 C=26576

R=2560 C=6640

R=640 C=68

R=2560 C=16

R=10240 C=0

t=4#s=2t=4#s=2

t=1#s=2

t=122#s=3

t=100#s=1

t=71#s=0

t=4#s=2

#s=1 t=1

t=1
#s=3

lf = 10→ R = 2× 10C′ = 0

C′ = 16

Figure 4: An example program and its control-flow graph annotated with R(x) and C(x) computation results.

We estimate the number of analysis states spared by re-
alizing a normalization point x as follows:

gain(x) = (R(x)− 1)× C(x)

where:

R(x) := the number of analysis states reaching x,
C(x) := the cumulative number of states explored per

initial state from x to the end of the program.

To compute R(x) and C(x) for each normalization point,
we construct a control-flow graph. Every edge in the graph
is annotated by estimates of the time (in cycles) taken to
execute the source node (t) and the number of splits en-
countered during the execution (#s). These estimates are
computed by performing a coarse simulation of the program.
The simulation keeps track of an approximation of micropro-
cessor state. The state and its evolution is modeled based
on the instruction timings listed in the processor manual.
To simplify and speed up the simulation, every type of non-
determinism in the architecture is avoided by choosing the
locally-worst option: memory accesses are assumed to al-
ways miss and stores are executed at the lowest speed. Fea-
tures like branch prediction and speculative execution are
not modeled. The only type of non-determinism considered
is the one introduced by conditional branches. For such
branches, the pass proceeds over all possible paths in depth-
first manner. To handle loops, every basic block is processed
exactly once per call location.

Furthermore, we make the control-flow graph acyclic to al-
low for quick estimation of the two metrics. This is accom-
plished by finding the feedback edges and removing them
from the graph. Finally, program points where no splits
take place are discarded unless their removal would affect
program structure (e.g. return points).

Computing R(x) proceeds from the program entry point
(where R = 1) in forward breadth-first manner. Every sin-
gle split doubles the number of reaching state. To account
for loops, we multiply the number of states reaching the loop
head by an arbitrary constant (we assume that every iter-
ation introduces an additional state). A loop head is the
program point to which a feedback edge returns. To formal-
ize, R(x) is computed as follows:

R(x) = lf(x)×
∑{

R(p)× 2#s(p,x) : p ∈ predecessors(x)
}

where the loop factor lf is defined as:

lf(x) = B|{e:e∈feedback-edges∧target(e)=x}|.

Similarly, C(x) is computed from the program end point
(where C = 0) in a backward breadth-first manner according
to the following equation:

C(x) =
∑{

2#s(x,s)×
(
t(x, s) + C(s)

)
: s ∈ successors(x)

}
.

Removing feedback-edges leaves the last program point in
a loop with no successors, we call such points loop tails. We
initially set C(x) at loop tails to zero and proceed with the
computation according to the equation above. As a post-
processing step, we propagate the value of C(x) along feed-
back edges, then we update C(x) from the loop tail back-
wards to the program point after the loop condition.

An Example Gain/Loss Computation. Figure 4 shows an
example demonstrating the computation of R(x) and C(x)
on a simple program with B = 10. The graph contains one
feedback edge (dashed), the source point is the loop tail and
the target point is the loop head.

R(x) assumes the value 1 at the program entry point. At
the third program point (which is the target of the feedback
edge), R(x) is computed as 20 rather than 2 since the loop
factor of this point is 10 (i.e. lf(x) = B1).

C(x) assumes the value of 0 at the program end point and
initially at the loop tail. For demonstration purposes, the
initial values of C(x) at the loop points are shown as C′(x)
in italic type. After computing C(x) for all program points,
its value is propagated along the feedback edge (i.e. C(x) is
updated to the value of 6640 at the loop tail), and C(x) is
re-computed for the loop nodes. In this example, only the
loop tail and its predecessors have their C(x) re-computed.

3.4 Putting It All Together
To let the user control the trade-off between execution

time and analysis efficiency, we introduce the aggressiveness
parameter. This parameter determines the proportion of the
normalization points that should be realized.

Given a certain aggressiveness value, the optimization pass
operates in the following phases:

Table 1: The Mälardalen benchmarks and their optimization statistics at 40% aggressiveness.
Benchmark Description # instructions Size increase Time (s)

bsort100 Bubble sort for an 100-integers array. 132 3.03% 0.078
cnt Counts non-negative numbers in a matrix. 226 3.10% 0.078
crc Cyclic redundancy check computation on 40 bytes of data. 314 2.23% 0.396
expint Series expansion for computing an exponential integral function. 187 2.14% 0.184
fac Calculates the factorial function. 61 4.92% 0.044
fdct Fast Discrete Cosine Transform. 657 1.98% 1.393
fibcall Simple iterative Fibonacci calculation, used to calculate fib(30). 54 1.85% 0.022
janne Nested loop program. 72 4.17% 0.065
ludcmp Read ten values, output half to LCD. 471 2.55% 0.936
prime Calculates whether numbers are prime. 146 2.05% 0.086
qurt Root computation of quadratic equations. 234 1.71% 0.164
ud Calculation of matrixes. 415 2.17% 0.519

1. A coarse simulation is performed to compute timing
and split information for each program point.

2. An annotated control-flow graph is constructed in the
way described in Section 3.3.

3. The gain and loss are computed for each unrealized
normalization point. The normalization points are th-
en sorted by the ratio of their gain to their loss and
the point with the maximum ratio is realized and has
its #s updated accordingly.

This phase is repeated until the number of covered
points is equal to or exceeds

aggressiveness× |normalization points| .

In our implementation of the prototype, we use the GCC
compiler [11] (version 4.3.2) as a front-end to compile the C
sources to PowerPC assembly. The assembly is then parsed
to obtain a control-flow graph. Based on this CFG, the op-
timization pass described above is implemented to produce
an optimized assembly file. The assembly parser, simulator
and the optimization pass are implemented in Python [5].
Finally we use the GCC compiler to assemble the binary
executable from the optimized assembly source.

4. EXPERIMENTAL EVALUATION

4.1 Experimental Setup
We used the compiler optimization pass on benchmarks

from the Mälardalen suite [14] and performed WCET anal-
ysis on them using a version of the aiT analyzer [2] for the
PowerPC 7448. We collected the following metrics to quan-
tify the increase in program size, the gain in the analysis
efficiency and the loss in the predicted WCET bound:

• the program size,

• the WCET bound,

• the time taken by the optimization pass, the micro-
architectural analysis, and the path analysis combined,

• the maximum of the memory consumptions by the
micro-architectural analysis and the path analysis.

We aggregate the metrics obtained for individual bench-
marks as follows, where B is the set of all benchmarks,M is

the set of all metrics, mopt.(b) is the metric value for the op-
timized benchmark b, and m¬opt.(b) is the respective value
for the non-optimized benchmark b:

ratiom(b) :=
mopt.(b)

m¬opt.(b)
,

aggregate-ratiom := geometric-mean
∀b∈B

{ratiom(b)} ,

m-increase := aggregate-ratiom − 1,

m-reduction := 1− aggregate-ratiom.

We also refer to the analysis-time-gain metric as the analysis
speedup.

For the first set of results, we configured the aiT analyzer
to use the more precise, yet more expensive prediction-file
based ILP path analysis (with the CLP solver [1]). For the
second set of results, we performed the same analyses using
the computationally-cheaper traditional ILP path analysis.
To account for the relatively small benchmarks, the instruc-
tion cache size was reduced to 1 KB.

The experiment was performed on a virtual machine with
14 64-bit cores, 54 GB RAM with QEMU/KVM on an AMD
Opteron 8360 SE with 16 64-bit cores and 64 GB RAM.
As the WCET analysis is not parallelized, we ran multi-
ple analyses concurrently on this machine. To prevent pag-
ing, the concurrency level was adjusted such that the com-
bined memory consumption by the running analyses never
exceeded the physical memory size.

0%

2%

4%

6%

0% 25% 50% 75% 100%
Aggressiveness

P
ro

g.
 s

iz
e

in
cr

ea
se

Figure 5: Aggregate program size increase for dif-
ferent values of aggressiveness.

Table 2: WCET bounds and performance metrics for benchmarks using PF-ILP path analysis (aggressive-
ness=40%).

WCET Analysis time Memory consumption
in cycles in seconds in MBytes

Benchmark ¬Opt. Opt. Ratio ¬Opt. Opt. Speed-Up ¬Opt. Opt. Ratio

bsort100 567899 592295 1.0430 13404.45 69.36 193.2367 8186 701 0.0856
cnt 21897 25927 1.1840 88487.60 24.41 3623.1884 21594 95 0.0044
crc 353724 357144 1.0097 24.12 18.54 1.3012 207 179 0.8647
expint 12716 12824 1.0085 2.41 2.67 0.9043 59 66 1.1186
fac 3404 4021 1.1813 0.93 0.46 2.0022 58 0 0.0000
fdct 33637 35158 1.0452 146.50 17.11 8.5626 849 75 0.0883
fibcall 3387 3356 0.9908 0.48 0.39 1.2220 0 0 1.0000
janne 1793 2083 1.1617 0.86 1.1306 0.8845 58 57 0.9828
ludcmp 17750 18986 1.0696 16.99 2.88 5.9061 101 67 0.6634
prime 6801 6911 1.0162 6.25 1.92 3.2551 75 58 0.7733
qurt 18900 18496 0.9786 271.20 69.18 3.9202 822 294 0.3577
ud 14867 15835 1.0651 11.73 3.94 2.9787 83 67 0.8072

geometric mean 1.0605 6.3600 0.1440
geometric mean excl. cnt 1.0500 3.5723 0.1978

4.2 Experimental Results

Optimization Results. Table 1 describes the benchmarks
used in the experiment along with the percentage increase in
program size and time taken by the optimization pass with
the aggressiveness parameter set to 40%. The time taken
by the optimization is negligible in comparison to the time
taken by the value analysis or the micro-architectural anal-
ysis as we shall see in the following section. The aggregate
increase in program size for different values of aggressiveness
is plotted in Figure 5. As expected, the aggregate increase
is proportional to the aggressiveness value.

WCET Analysis Results. For each benchmark, the value
of the metric is shown for the non-optimized and the opti-
mized versions, along with the ratio between the two values.

First, we consider the metrics collected using the more
precise path analysis PF-ILP. The metrics obtained at 40%
aggressiveness are presented in Table 2. The WCET bound
is slightly higher in most of the optimized versions, with an
aggregate increase of 6.05%. An increase in the execution
time is expected due to the additional sync statements that

need to be fetched and the stalling in the pipeline it causes.
On the other hand, the analysis has a substantial aggregate
speedup of approximately 636% and its memory consump-
tion was reduced by about 85%.

Surprisingly, some benchmarks, i.e., fibcall and qurt

show a decrease in the WCET bound. This decrease could
be attributed to the change in the memory access pattern.
Alternating the execution of code and data accesses induces
less overhead than executing the accesses of each type in
chunks. The benchmark fac and janne were harmed most
by the optimization, with a significant increase in the WCET
bound without achieving a proportional speedup. This im-
plies that the gain/loss ratio of one or more normalization
points was over-estimated.

The benchmark cnt suffers a large increase in the WCET
bound too, yet it displays the highest analysis speedup and
memory-consumption reduction. Examining the detailed
analysis statistics, we found that analyzing the non-optimi-
zed version of this benchmark encountered over 16 million
splits due to clashes in the load-store unit. The optimiza-
tion pass with 40% aggressiveness reduced this number to
a 40 thousand. This explains the huge gains achieved for

0%

2%

4%

6%

8%

10%

12%

14%

16%

100% 200% 300% 400% 500% 600% 700% 800% 900% 1,000%
Speed−Up

W
C

E
T

 b
ou

nd
 in

cr
ea

se

a=0%

a=10%

a=20%

a=30%

a=40%

a=50%

a=60%

a=70%

a=80%

a=90%

a=100%

0%

2%

4%

6%

8%

10%

12%

14%

16%

0% 20% 40% 60% 80% 100%
Memory reduction

W
C

E
T

 b
ou

nd
 in

cr
ea

se

a=0%

a=10%

a=20%

a=30%

a=40%

a=50%

a=60%

a=70%

a=80%

a=90%

a=100%

Figure 6: WCET increase vs. speedup for several aggressiveness values using PF-ILP path analysis.

Table 3: WCET bounds and performance metrics for benchmarks using ILP path analysis (aggressive-
ness=40%).

WCET Analysis time Memory consumption
in cycles in seconds in MBytes

Benchmark ¬Opt. Opt. Ratio ¬Opt. Opt. Speed-Up ¬Opt. Opt. Ratio

bsort100 683942 767803 1.1226 832.81 40.87 20.3782 6873 702 0.1021
cnt 40422 28654 0.7089 9596.36 17.70 542.2993 3340 90 0.0269
crc 361219 358287 0.9919 15.65 10.34 1.5135 211 178 0.8436
expint 13543 13343 0.9852 1.99 1.51 1.3164 58 58 1.0000
fac 4357 4277 0.9816 0.72 0.42 1.7102 58 0 0.0000
fdct 36459 37420 1.0264 21.86 11.50 1.9010 98 74 0.7551
fibcall 3793 3648 0.9618 0.42 0.35 1.1780 0 0 1.0000
janne 2313 2339 1.0112 0.60 0.57 1.0615 57 57 1.0000
ludcmp 21945 20798 0.9477 6.16 1.84 3.3476 98 66 0.6735
prime 8354 7435 0.8900 3.58 1.30 2.7629 74 58 0.7838
qurt 27935 23604 0.8450 45.72 14.02 3.2614 266 130 0.4887
ud 18660 18162 0.9733 4.97 2.92 1.6986 82 58 0.7073

geometric mean 0.9483 3.5902 0.2048
geometric mean excl. cnt 0.9737 2.2752 0.2462

this benchmark. Excluding cnt from the aggregate values
reduces the analysis speedup and memory-consumption re-
duction while it improves the increase in the WCET bound.

The second-best speedup and memory-consumption re-
duction is seen in the benchmark bsort100. We can see a
pattern here: the benchmarks involving significant number
of iterations over large arrays benefit most from the opti-
mization.

To examine the effect of the aggressiveness value, we com-
puted the aggregate WCET increase versus the analysis spe-
edup and memory-consumption reduction for several values
of the parameter, the results are shown in Figure 6. The
WCET bound increases proportionally with the aggressive-
ness peaking around 17%. The speedup also increases pro-
portionally with the aggressiveness up to the value of 90%,
peaking close to 900%. The memory-consumption reduc-
tion increases proportionally with the aggressiveness up to
40%, spikes at 70% aggressiveness to around 95% and then
declines to around 88% for greater aggressiveness values. A
possible explanation of this observation is that there are two
factors which affect the memory-consumption reduction: the
number of analysis states spared by inserting sync instruc-

tions and the number of splits induced by the additional
queries to the the instruction cache.

Next, we consider the metrics collected using the tradi-
tional ILP-based path analysis. The results are shown in
Table 3 and Figure 7. While the speedup and memory-
consumption reduction are not as significant as they are in
the PF-ILP case (approximately 450% and 90% at maxi-
mum, respectively), the aggregate WCET increase is consis-
tently negative for all aggressiveness values below 70%. The
reduced speedup is attributed to the fact that the ILP path
analysis does not depend on the complexity of the micro-
architectural analysis. The path analysis therefore does not
benefit from the reduced size of the state-space in terms of
performance. It does benefit though in terms of precision.
Realizing a normalization point in a basic block forces the
processor to execute all pending operations within the same
basic block. Localizing such operations within basic blocks
reduces the infeasible combinations of events that the tra-
ditional ILP-based path analysis considers to compute the
global bound. The noticable reduction in the WCET bound
can therefore be explained by this precision enhancement.

−5%

−4%

−3%

−2%

−1%

0%

1%

2%

3%

100% 200% 300% 400% 500%
Speed−Up

W
C

E
T

 b
ou

nd
 in

cr
ea

se

a=0%

a=10%

a=20%

a=30%

a=40%

a=50%

a=60%

a=70%

a=80%

a=90%

a=100%
−5%

−4%

−3%

−2%

−1%

0%

1%

2%

3%

0% 20% 40% 60% 80% 100%
Memory reduction

W
C

E
T

 b
ou

nd
 in

cr
ea

se

a=0%

a=10%

a=20%

a=30%

a=40%

a=50%

a=60%

a=70%

a=80%

a=90%

a=100%

Figure 7: WCET increase vs. speedup for several aggressiveness values using ILP path analysis.

5. RELATED WORK
Recently, significant efforts have been undertaken to de-

velop timing-predictable microarchitectures. The goal of
such efforts is to develop microarchitectures that have good
worst-case performance and permit sound, precise, and effi-
cient timing analysis.

Wilhelm et al. [29] recommend using compositional pipeli-
nes and separate level-1 caches for code and data with the
least-recently-used replacement policy. The recommenda-
tion of using the less-sophisticated compositional pipelines
is motivated by the fact that the execution time is often
dominated by memory-access times. The optimization we
present here is inspired by this observation: we alter the
program at specific points to render the stall-on-accident
behavior characteristic to compositional architectures. The
Java-Optimized Processor [22] by Schoeberl was designed
to be WCET friendly. Beside featuring constant instruc-
tion execution times, the processor design prevents inter-
leaving instruction fetches with data accesses by loading
whole methods on invocation and return into the instruction
cache. Rochange et al. [21] propose an execution mode of a
superscalar microprocessor which excludes interferences be-
tween consecutive basic blocks. While this method achieves
significant reduction in the analysis complexity, it causes a
large slow-down of the system. This approach would roughly
correspond to inserting synchronization instructions at the
beginning of each basic block. Liu et al. [18] present the
PTARM, a PRET (precision-timed) architecture implement-
ing a subset of the ARM instruction set architecture. The
architecture features a thread-interleaved pipeline which ex-
ploits thread-level parallelism to combine high throughput
with the compositional way instructions are executed within
each thread.

Our previous work [19] suggests that shortening queues in
the load-store-unit of the PowerPC 7448 causes little or no
increase in execution times while speeding up WCET anal-
ysis significantly. We observe a similar speedup in WCET
analysis in the present compiler-based approach as was ob-
served for the hardware modifications suggested in [19]. Ho-
wever, in contrast to the present paper, the hardware ap-
proach did not incur an increase in the WCET bound. The
main reason for the difference is that synchronization in-
structions stall the pipeline.

The compiler optimizations in the WCET domain we are
aware of aim at improving the WCET bound rather than
WCET analysis efficiency. Falk et al. [8] propose a vari-
ety of techniques in this direction. Some of the mechanisms
used to achieve the reduction are reducing the number of
calling contexts for each procedure (and hence improving
the precision of the value analysis), implementing a better
loop-bound analysis, and reducing the frequency of jumps
(and consequently their performance penalty). The first two
mechanisms likely reduce analysis time as well. However,
these particular optimizations are targeting software rather
than hardware aspects of WCET analysis, and are thus or-
thogonal to the optimization we present in this work.

6. CONCLUSIONS
We have presented a parameterized compiler optimiza-

tion pass to increase WCET analysis efficiency. Experimen-
tal results confirm that the pass achieves significant anal-
ysis speedup at the cost of a small increase in the WCET

bound. The optimization also enables the use of traditional
ILP-based path analysis with greater precision. Having a
parameter to control the aggressiveness of the optimization
enables the user to control the trade-off between system per-
formance and analyzability. In contrast to approaches that
rely on custom predictable hardware, our compiler-based ap-
proach is readily applicable to existing commercial microar-
chitectures.

In future work, the optimization pass could be improved
by using the results of a loop-bound analysis to better esti-
mate the increase in execution time due to synchronization
instructions.

7. ACKNOWLEDGMENTS
We would like to thank Reinhard Wilhelm and Markus

Pister for insightful input and constructive discussions, and
AbsInt for supporting our experimental evaluation.

8. REFERENCES
[1] COIN-OR Linear Programming.

http://www.coin-or.org/Clp

[2] AbsInt Angewandte Informatik GmbH. AbsInt
Advanced Analyzer for PowerPC MPC7448 (Simple
Memory Model): User Documentation.
http://www.absint.com/ait/mpc7448.htm

[3] P. Cousot and R. Cousot. Abstract interpretation: A
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In
Proceedings of the 4th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages,
pages 238–252, New York, NY, USA, 1977. ACM
Press. http://dx.doi.org/10.1145/512950.512973

[4] C. Cullmann. Cache persistence analysis: Theory and
practice. ACM Trans. Embed. Comput. Syst.,
12(1s):40:1–40:25, 2013.
http://dx.doi.org/10.1145/2435227.2435236

[5] F. L. Drake and G. Rossum. The Python Language
Reference Manual. Network theory Ltd., 2011.
http://www.worldcat.org/isbn/9781906966140

[6] J. Engblom. Processor Pipelines and Static
Worst-Case Execution Time Analysis. PhD thesis,
Uppsala University, Sweden, 2002. http:

//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.5355

[7] A. Ermedahl and J. Gustafsson. Deriving annotations
for tight calculation of execution time. In Euro-Par,
pages 1298–1307, 1997.
http://dx.doi.org/10.1007/BFb0002886

[8] H. Falk and P. Lokuciejewski. A compiler framework
for the reduction of worst-case execution times.
Journal on Real-Time Systems, 46(2):251–300, 2010.
http://dx.doi.org/10.1007/s11241-010-9101-x

[9] C. Ferdinand, R. Heckmann, M. Langenbach,
F. Martin, M. Schmidt, H. Theiling, S. Thesing, and
R. Wilhelm. Reliable and precise WCET
determination for a real-life processor. In International
Conference on Embedded Software, volume 2211 of
LNCS, pages 469–485, 2001.
http://dx.doi.org/10.1007/3-540-45449-7_32

[10] C. Ferdinand and R. Wilhelm. Efficient and precise
cache behavior prediction for real-time systems.
Real-Time Sys., 17(2-3):131–181, 1999

http://www.coin-or.org/Clp
http://www.absint.com/ait/mpc7448.htm
http://dx.doi.org/10.1145/512950.512973
http://dx.doi.org/10.1145/2435227.2435236
http://www.worldcat.org/isbn/9781906966140
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.5355
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.5355
http://dx.doi.org/10.1007/BFb0002886
http://dx.doi.org/10.1007/s11241-010-9101-x
http://dx.doi.org/10.1007/3-540-45449-7_32

[11] Free Software Foundation. GNU GCC Manual, 2005.
http://gcc.gnu.org/onlinedocs/gcc-4.0.0/gcc/

[12] Freescale Semiconductor. MPC7450 RISC
Microprocessor Family Reference Manual

[13] Freescale Semiconductor. Programming Environments
Manual for 32-Bit Implementations of the
PowerPCTM Architecture, 2005.
http://www.freescale.com/files/product/doc/MPCFPE32B.pdf

[14] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper.
The Mälardalen WCET benchmarks – past, present
and future. pages 137–147, Brussels, Belgium, July
2010. OCG. http://dx.doi.org/10.4230/OASIcs.WCET.2010.136

[15] C. Healy, M. Sjödin, V. Rustagi, D. Whalley, and
R. van Engelen. Supporting timing analysis by
automatic bounding of loop iterations. Real-Time
Sys., pages 129–156, 2000.
http://dx.doi.org/10.1023/A:1008189014032

[16] R. Heckmann, M. Langenbach, S. Thesing, and
R. Wilhelm. The influence of processor architecture on
the design and the results of WCET tools. Proceedings
of the IEEE, 91(7):1038–1054, July 2003.
http://dx.doi.org/10.1109/JPROC.2003.814618

[17] Y.-T. S. Li and S. Malik. Performance analysis of
embedded software using implicit path enumeration.
In Proceedings of the 32nd ACM/IEEE Design
Automation Conference, pages 456–461, 1995.
http://dx.doi.org/10.1145/217474.217570

[18] I. Liu, J. Reineke, D. Broman, M. Zimmer, and E. A.
Lee. A PRET microarchitecture implementation with
repeatable timing and competitive performance. In
Proceedings of the 30th IEEE International
Conference on Computer Design (ICCD 2012),
October 2012. http://dx.doi.org/10.1109/ICCD.2012.6378622

[19] M. A. Maksoud and J. Reineke. An empirical
evaluation of the influence of the load-store unit on
WCET analysis. In T. Vardanega, editor, 12th
International Workshop on Worst-Case Execution
Time Analysis, volume 23 of OpenAccess Series in
Informatics (OASIcs), pages 13–24, Dagstuhl,
Germany, 2012. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik.
http://dx.doi.org/10.4230/OASIcs.WCET.2012.13

[20] J. Reineke, B. Wachter, S. Thesing, R. Wilhelm,
I. Polian, J. Eisinger, and B. Becker. A definition and
classification of timing anomalies. In Proceedings of
6th International Workshop on Worst-Case Execution
Time (WCET) Analysis, July 2006.
http://dx.doi.org/10.1.1.165.9737

[21] C. Rochange and P. Sainrat. A time-predictable
execution mode for superscalar pipelines with
instruction prescheduling. In Proceedings of the 2nd
Conference on Computing Frontiers, CF ’05, pages
307–314, New York, NY, USA, 2005. ACM.
http://dx.doi.org/10.1145/1062261.1062312

[22] M. Schoeberl. JOP: A Java optimized processor. In
On the Move to Meaningful Internet Systems 2003:
Workshop on Java Technologies for Real-Time and
Embedded Systems (JTRES 2003), volume 2889, pages
346–359. Springer, 2003. http://dx.doi.org/10.1007/b94345

[23] I. Stein and F. Martin. Analysis of path exclusion at
the machine code level. In C. Rochange, editor, 7th
International Workshop on Worst-Case Execution

Time Analysis (WCET’07), volume 6 of OpenAccess
Series in Informatics (OASIcs), Dagstuhl, Germany,
2007. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.
http://dx.doi.org/10.4230/OASIcs.WCET.2007.1196

[24] H. Theiling. Control-Flow Graphs For Real-Time
Systems Analysis. PhD thesis, Saarland University,
Saarbrücken, Germany, 2002.
http://scidok.sulb.uni-saarland.de/volltexte/2004/297/

[25] H. Theiling. ILP-based interprocedural path analysis.
In International Conference on Embedded Software,
volume 2491 of LNCS, pages 349–363. Springer, 2002.
http://dx.doi.org/10.1007/3-540-45828-X_26

[26] S. Thesing. Safe and Precise WCET Determinations
by Abstract Interpretation of Pipeline Models. PhD
thesis, Saarland University, Saarbrücken, Germany,
2004.
http://scidok.sulb.uni-saarland.de/volltexte/2005/466/

[27] S. Thesing, J. Souyris, R. Heckmann,
F. Randimbivololona, M. Langenbach, R. Wilhelm,
and C. Ferdinand. An abstract interpretation-based
timing validation of hard real-time avionics software.
In Dependable Systems and Networks, 2003.
Proceedings. 2003 International Conference on, pages
625–632, June 2003.
http://dx.doi.org/10.1109/DSN.2003.1209972

[28] L. Thiele and R. Wilhelm. Design for timing
predictability. Real-Time Systems, 28:157–177, 2004.
http://dx.doi.org/10.1023/B:TIME.0000045316.66276.6e

[29] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling,
M. Pister, and C. Ferdinand. Memory hierarchies,
pipelines, and buses for future architectures in
time-critical embedded systems. IEEE Transactions
on CAD of Integrated Circuits and Systems,
28(7):966–978, 2009.
http://dx.doi.org/10.1109/TCAD.2009.2013287

http://gcc.gnu.org/onlinedocs/gcc-4.0.0/gcc/
http://www.freescale.com/files/product/doc/MPCFPE32B.pdf
http://dx.doi.org/10.4230/OASIcs.WCET.2010.136
http://dx.doi.org/10.1023/A:1008189014032
http://dx.doi.org/10.1109/JPROC.2003.814618
http://dx.doi.org/10.1145/217474.217570
http://dx.doi.org/10.1109/ICCD.2012.6378622
http://dx.doi.org/10.4230/OASIcs.WCET.2012.13
http://dx.doi.org/10.1.1.165.9737
http://dx.doi.org/10.1145/1062261.1062312
http://dx.doi.org/10.1007/b94345
http://dx.doi.org/10.4230/OASIcs.WCET.2007.1196
http://scidok.sulb.uni-saarland.de/volltexte/2004/297/
http://dx.doi.org/10.1007/3-540-45828-X_26
http://scidok.sulb.uni-saarland.de/volltexte/2005/466/
http://dx.doi.org/10.1109/DSN.2003.1209972
http://dx.doi.org/10.1023/B:TIME.0000045316.66276.6e
http://dx.doi.org/10.1109/TCAD.2009.2013287

	Introduction
	Background
	WCET Analysis Flow
	Freescale PowerPC 7448

	The Optimization Pass
	High-Level Optimization Approach
	Mechanism: Synchronization Instructions
	Evaluating Normalization Points
	Putting It All Together

	Experimental Evaluation
	Experimental Setup
	Experimental Results

	Related Work
	Conclusions
	Acknowledgments
	References

