
Timing Predictability and
How to Achieve It

Jan Reineke @

Dagstuhl Seminar
“Adaptive Isolation for Predictability and Security”

October 31, 2016

computer science

saarland
university

Jan Reineke, Saarland 2

The Timing Analysis Problem

Set of Software Tasks

Timing Requirements
?	

Microarchitecture

+	
Our Vision: PRET Machines

PREcision-Timed processors: Performance & Predicability

+ = PRET

(Image: John Harrison’s H4, first clock to solve longitude problem)

Precision-Timed (PRET) Machines – p. 11/19

Jan Reineke, Saarland 3

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Simple
CPU

Memory

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

What does the execution time depend on?

¢  The input, determining which path is taken
through the program.

Jan Reineke, Saarland 4

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Simple
CPU

Memory

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Complex CPU
(out-of-order
execution,

branch
prediction, etc.)

Main
Memory

L1
Cache

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

What does the execution time depend on?

¢  The input, determining which path is taken
through the program.

¢  The state of the hardware platform:
l  Due to caches, pipelining, speculation, etc.

Jan Reineke, Saarland 5

Example of Influence of
Microarchitectural State

PowerPC 755

Reineke et al., Berkeley 5

Example of Influence of

Microarchitectural State computer science

saarland
universityAccess Time

x=a+b;
LOAD r2, _a
LOAD r1, _b
ADD r3,r2,r1

MPC5xx PPC755

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 5 / 63

computer science

saarland
universityAccess Time

x=a+b;
LOAD r2, _a
LOAD r1, _b
ADD r3,r2,r1

MPC5xx PPC755

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 5 / 63

Motorola PowerPC 755

Courtesy of Reinhard Wilhelm.

Reineke et al., Berkeley 5

Example of Influence of

Microarchitectural State computer science

saarland
universityAccess Time

x=a+b;
LOAD r2, _a
LOAD r1, _b
ADD r3,r2,r1

MPC5xx PPC755

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 5 / 63

computer science

saarland
universityAccess Time

x=a+b;
LOAD r2, _a
LOAD r1, _b
ADD r3,r2,r1

MPC5xx PPC755

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 5 / 63

Motorola PowerPC 755

Courtesy of Reinhard Wilhelm.

Jan Reineke, Saarland 6

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Simple
CPU

Memory

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Complex CPU
(out-of-order
execution,

branch
prediction, etc.)

Main
Memory

L1
Cache

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Complex
CPU

L1
Cache

Complex
CPU

L1
Cache

...
L2

Cache
Main

Memory

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

What does the execution time depend on?

¢  The input, determining which path is taken
through the program.

¢  The state of the hardware platform:
l  Due to caches, pipelining, speculation, etc.

¢  Interference from the environment:
l  External interference as seen from the analyzed

task on shared busses, caches, memory.

Jan Reineke, Saarland 7

Example of Influence of
Corunning Tasks in Multicores

Radojkovic et al. (ACM TACO, 2012) on Intel Atom
and Intel Core 2 Quad:

 up to 14x slow-down due to interference
 on shared L2 cache and memory controller

Jan Reineke, Saarland 8

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Simple
CPU

Memory

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Complex CPU
(out-of-order
execution,

branch
prediction, etc.)

Main
Memory

L1
Cache

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Complex
CPU

L1
Cache

Complex
CPU

L1
Cache

...
L2

Cache
Main

Memory

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

What does the execution time depend on?

¢  The input, determining which path is taken
through the program.

¢  The state of the hardware platform:
l  Due to caches, pipelining, speculation, etc.

¢  Interference from the environment:
l  External interference as seen from the analyzed

task on shared busses, caches, memory.

Jan Reineke, Saarland 9

The Need for Models

Predictions about the future behavior of a system
are always based on models of the system.

All models are wrong, but some are useful.

George Box (Statistiker)

Our Vision: PRET Machines

PREcision-Timed processors: Performance & Predicability

+ = PRET

(Image: John Harrison’s H4, first clock to solve longitude problem)

Precision-Timed (PRET) Machines – p. 11/19

Timing
Model

Micro-
architecture

?	
Model

Jan Reineke, Saarland 10

The Need for Timing Models

The ISA partially defines the behavior of
microarchitectures: it abstracts from timing.

How to obtain timing models?
¢  Hardware manuals
¢  Manually devised microbenchmarks
¢  Machine learning

Challenge: Introduce HW/SW contract to
capture timing behavior of microarchitectures.

Jan Reineke, Saarland 11

Desirable Properties of Systems and their
Timing Models

¢  Predictability
¢  Analyzability

Jan Reineke, Saarland 12

Predictability

Assuming a deterministic timing model and
known initial conditions, can perfectly predict
execution time.

But: initial state, inputs, and interference unknown.

How precisely can programs‘ execution times
on a particular microarchitecture be predicted?

Jan Reineke, Saarland 13

Timing Predictability
f
r
e
q
u
e
n
c
y

execution

time

BCET WCET

possible execution times

f
r
e
q
u
e
n
c
y

execution

time

BCET WCET

analysis

guaranteed
upper bound

possible execution times

overestimation

f
r
e
q
u
e
n
c
y

execution

time

BCET WCET

possible execution times

f
r
e
q
u
e
n
c
y

execution

time

BCET WCET

possible execution times

f
r
e
q
u
e
n
c
y

execution

time

BCET WCET

analysis

guaranteed
upper bound

possible execution times

overestimation

f
r
e
q
u
e
n
c
y

execution

time

BCET WCET

possible execution times

Jan Reineke, Saarland 14

How to Increase Predictability?

1. Eliminate stateful components:
Cache à Scratchpad memory
Regular Pipeline à Thread-interleaved pipeline
Out-of-order execution à VLIW

 Challenge: Efficient static allocation of resources.

Jan Reineke, Saarland 15

How to Increase Predictability?

2. Eliminate interference: „temporal isolation“
Partition resources:
¢  TDMA bus/NoC arbitration,
¢  SW scheduling (e.g. PREM)

¢  shared cache: in HW or SW
¢  SRAM banks (e.g. Kalray MPPA)
¢  DRAM banks (e.g. PRET DRAM, PALLOC)

Challenge:
Determine efficient partitioning of resources.

in time

in space

Question: What‘s the performance impact?

Jan Reineke, Saarland 16

How to Increase Predictability?

3. Choose „forgetful“/„insensitive“ components:
FIFO, PLRU replacement à LRU replacement

 [Real-Time Systems 2007, WAOA 2015]

Open Problems:
•  Is there a systematic way to design

„forgetful“ microarchitectural components?
•  Can randomization help?

Jan Reineke, Saarland 17

Analyzability

How efficiently can programs‘ WCETs on a
particular microarchitecture be bounded?

WCET analysis needs to consider all inputs,
initial HW states, interference scenarios...

...explicitly or implicitly.

Jan Reineke, Saarland 18

How to Increase Analyzability?

1.  Eliminate stateful resources:
Fewer states to consider

2.  Eliminate interference: „temporal isolation“:
Can focus analysis on one partition

3.  Choose „forgetful“/“insensitive“ components:
Different analysis states will quickly converge

4.  Enable efficient implicit treatment of states:
- Monotonicity / Freedom from Timing Anomalies
- Timing Compositionality

Jan Reineke, Saarland 19

Timing Anomalies

computer science

saarland
universityState-of-the-art: Integrated WCET Analysis

Drawback Efficiency

Timing Anomalies hinder state space reduction

Sebastian Hahn Timing Compositionality 19 June 2013 6 / 19

Cache Miss
= Local Worst Case Cache Hit

Global Worst Case

leads to

Nondeterminism due
to uncertainty about
hardware state

Timing Anomalies in Dynamically Scheduled Microprocessors
T. Lundqvist, P. Stenström – RTSS 1999

Jan Reineke, Saarland 20

Timing Anomalies: Example

Scheduling Anomaly

A

A

Resource 1

Resource 2

Resource 1

Resource 2

C

B C

B

D E

D E

C ready

Bounds on multiprocessing timing anomalies
RL Graham - SIAM Journal on Applied Mathematics, 1969 – SIAM
(http://epubs.siam.org/doi/abs/10.1137/0117039)

Jan Reineke, Saarland 21

Timing Compositionality: By Example computer science

saarland
universityMulti-Core Processors [Schranzhofer et al.]

Response Time of Task on Core 1

Core 1exec

max

1 Core 2 Core 3 Core 4

Shared Memoryµmax

1 · a

Shared BusB

1 Worst-case execution time without bus accesses: exec

max

1

2 Number of bus accesses in the worst case: µmax

1

3 Worst-case bus blocking time: B (depends on exec

max

i

and µmax

i

)

) R1 exec

max

1 + µmax

1 · a + B

Jan Reineke Timing Compositionality AVACS meets InvasIC 10 / 20

Timing Compositionality =
Ability to simply sum up timing contributions by different components

Implicitly or explicitly assumed by (almost) all approaches to timing
analysis for multi cores and cache-related preemption delays (CRPD).

Jan Reineke, Saarland 22

Timing Compositionality: Benefit
computer science

saarland
universityHow does compositionality help?

Efficiency of microarchitectural analysis

Integrated Compositional

) Uncertainty does not multiply

Jan Reineke Timing Compositionality AVACS meets InvasIC 15 / 20

Jan Reineke, Saarland 23

Conventional Wisdom

Simple in-order pipeline + LRU caches
 à no timing anomalies
à timing-compositional

Jan Reineke, Saarland 24

Bad News I: Timing Anomalies

We show such a pipeline has timing anomalies:

Toward Compact Abstractions for Processor Pipelines
S. Hahn, J. Reineke, and R. Wilhelm. In Correct System Design, 2015.

computer science

saarland
universityMicroarchitecture

An Example

Pipeline processes instructions in program order

Caches buffer recently accessed memory blocks

Fetch (IF)
Decode (ID)
Execute (EX)

Memory (MEM)
Write-back (WB)

I-cache

D-cache

Memory

Reinhard Wilhelm Abstractable Pipelines August 13, 2015 5 / 22

Jan Reineke, Saarland 25

A Timing Anomaly
computer science

saarland
universityTiming Anomaly

load ...

nop

load r1, ...

div ..., r1

ret

(load r1, 0)

(load, 0)

load H IF ret load r1 M EX div

load M load r1 M IF ret

EX div

Hit case

Instruction fetch starts before second load becomes ready

Second load is prioritized over instruction fetch

Loading before fetching suits subsequent execution

) Progress in the pipeline influences the arbitration of code fetch and
data access

Reinhard Wilhelm Abstractable Pipelines August 13, 2015 10 / 22

computer science

saarland
universityTiming Anomaly

load ...

nop

load r1, ...

div ..., r1

ret

(load r1, 0)

(load, 0)

load H IF ret load r1 M EX div

load M load r1 M IF ret

EX div

Hit case

Instruction fetch starts before second load becomes ready

Second load is prioritized over instruction fetch

Loading before fetching suits subsequent execution

) Progress in the pipeline influences the arbitration of code fetch and
data access

Reinhard Wilhelm Abstractable Pipelines August 13, 2015 10 / 22

computer science

saarland
universityTiming Anomaly

load ...

nop

load r1, ...

div ..., r1

ret

(load r1, 0)

(load, 0)

load H IF ret load r1 M EX div

load M load r1 M IF ret

EX div

Miss case

Second load can catch up during first load missing the cache

Second load is prioritized over instruction fetch

Loading before fetching suits subsequent execution

) Progress in the pipeline influences the arbitration of code fetch and
data access

Reinhard Wilhelm Abstractable Pipelines August 13, 2015 10 / 22

Hit case:
•  Instruction fetch starts before second load becomes ready
•  Stalls second load, which misses the cache

Miss case:
•  Second load can catch up during first load missing the cache
•  Second load is prioritized over instruction fetch
•  Loading before fetching suits subsequent execution

Intuitive Reason:
Progress in the pipeline influences order of
instruction fetch and data access

Jan Reineke, Saarland 26

Bad News II: Timing Compositionality

Maximal cost of an additional cache miss?

Intuitively: main memory latency

Unfortunately: ~ 2 times main memory latency
 - ongoing instruction fetch may block load
 - ongoing load may block instruction fetch

Jan Reineke, Saarland 27

Good News

Two approaches to solve problem:
1.  Stall entire processor upon „timing accidents“
2.  Strictly in-order pipeline

Jan Reineke, Saarland 28

Strictly In-Order Pipelines: Definition

Definition (Strictly In-Order):
We call a pipeline strictly in-order if each resource
processes the instructions in program order.

•  Enforce memory operations (instructions and
data) in-order (common memory as resource)

•  Block instruction fetch until no potential data
accesses in the pipeline

Jan Reineke, Saarland 29

Strictly In-Order Pipelines: Properties

Theorem 1 (Monotonicity):
In the strictly in-order pipeline progress of an
instruction is monotone in the progress of other
instructions.

≤

In the blue state,
each instruction has
the same or more
progress than in the
red state.

∃

≤

∀

Jan Reineke, Saarland 30

Strictly In-Order Pipelines: Properties

Theorem 2 (Timing Anomalies):
The strictly in-order pipeline is free of timing
anomalies.

local
best case

local
worst case

≤

...

≤
≤

by monotonicity

Jan Reineke, Saarland 31

Strictly In-Order Pipelines: Properties

Theorem 3 (Timing Compositionality):
The strictly in-order pipeline admits „compositional
analysis with intuitive penalties.“

≤

local
best case

local
worst case

≤
≥after

„natural“
penalty Open Question: What‘s the performance impact

of being strictly in-order?

Jan Reineke, Saarland 32

Conclusions

¢  Need faithful timing models
¢  Various approaches to achieve predictability

l  Achieving efficiency is hard
¢  How to convince industry to build and to buy

predictable processors?

Thank you for your attention!

Jan Reineke, Saarland 33

Some References

Enabling Compositionality for Multicore Timing Analysis
S. Hahn, M. Jacobs, and J. Reineke. In RTNS, 2016.

MIRROR: Symmetric Timing Analysis for Real-Time Tasks on Multicore Platforms with Shared Resources
W.-H. Huang, J.-J. Chen, and J. Reineke. In DAC, 2016.

A Generic and Compositional Framework for Multicore Response Time Analysis
S. Altmeyer, R.I. Davis, L.S. Indrusiak, C. Maiza, V. Nelis, and J. Reineke. In RTNS, 2015.

On the Smoothness of Paging Algorithms
J. Reineke and A. Salinger. In WAOA, 2015.

Toward Compact Abstractions for Processor Pipelines
S. Hahn, J. Reineke, and R. Wilhelm. In Correct System Design, 2015.

Architecture-Parametric Timing Analysis
J. Reineke and J. Doerfert. In RTAS, 2014.

Selfish-LRU: Preemption-Aware Caching for Predictability and Performance
J. Reineke, S. Altmeyer, D. Grund, S. Hahn, C. Maiza. In RTAS, 2014.

Towards Compositionality in Execution Time Analysis - Definition and Challenges
S. Hahn, J. Reineke, and R. Wilhelm. In CRTS, 2013.

Measurement-based Modeling of the Cache Replacement Policy
A. Abel and J. Reineke. In RTAS, 2013.

PRET DRAM Controller: Bank Privatization for Predictability and Temporal Isolation
J. Reineke, I. Liu, H.D. Patel, S. Kim, and E.A. Lee. In CODES+ISSS, 2011.

Timing Predictability of Cache Replacement Policies
J. Reineke, D. Grund, C. Berg, and R. Wilhelm. In Real-Time Systems, 2007.

