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High-level language
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No guarantees  
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Impossible to program securely 
  cryptographic algorithms? 
  sandboxing untrusted code?
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“For every multiplication the second operand leaks and 
for every memory access the memory address leaks.” 

Composition of 
Contract Atoms

Condition on 
ISA State

Leakage of Part  
of ISA State
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Contract Atom
Condition based on 

Instruction Type
Applicable 

Leakage Sourcesx

=

Several hundred contract atoms for RISC-V I+M



Outline

13

2. Synthesis Goals and Methodology

3. Some Experimental Results

1. Contracts and Contract Templates



Contract Synthesis: Goals

14



Contract Synthesis: Goals

14

For a given processor, find contract from template s.t.:



Contract Synthesis: Goals

14

For a given processor, find contract from template s.t.:

1. Processor satisfies contract 



Contract Synthesis: Goals

14

For a given processor, find contract from template s.t.:

1. Processor satisfies contract 

2. Contract is as precise as possible



Contract Synthesis: Goals

14

For a given processor, find contract from template s.t.:

1. Processor satisfies contract 

2. Contract is as precise as possible

For any pair of programs and inputs (P1, I1) and (P2, I2):



Contract Synthesis: Goals

14

For a given processor, find contract from template s.t.:

1. Processor satisfies contract 

2. Contract is as precise as possible

For any pair of programs and inputs (P1, I1) and (P2, I2):
(P1, I1) ≠ (P2, I2)



Contract Synthesis: Goals

14

For a given processor, find contract from template s.t.:

1. Processor satisfies contract 

2. Contract is as precise as possible

For any pair of programs and inputs (P1, I1) and (P2, I2):
(P1, I1) ≠ (P2, I2) ⟹ (P1, I1)≠ (P2, I2)



Contract Synthesis: Goals

14

For a given processor, find contract from template s.t.:

1. Processor satisfies contract 

2. Contract is as precise as possible

For any pair of programs and inputs (P1, I1) and (P2, I2):
(P1, I1) ≠ (P2, I2) ⟹ (P1, I1)≠ (P2, I2)

As few programs and inputs (P, I) as possible s.t.:



Contract Synthesis: Goals

14

For a given processor, find contract from template s.t.:

1. Processor satisfies contract 

2. Contract is as precise as possible

For any pair of programs and inputs (P1, I1) and (P2, I2):
(P1, I1) ≠ (P2, I2) ⟹ (P1, I1)≠ (P2, I2)

As few programs and inputs (P, I) as possible s.t.:
(P1, I1)≠ (P2, I2)



Contract Synthesis: Goals

14

For a given processor, find contract from template s.t.:

1. Processor satisfies contract 

2. Contract is as precise as possible

For any pair of programs and inputs (P1, I1) and (P2, I2):
(P1, I1) ≠ (P2, I2) ⟹ (P1, I1)≠ (P2, I2)

As few programs and inputs (P, I) as possible s.t.:
(P1, I1)≠ (P2, I2) (P1, I1) = (P2, I2)∧



Contract Synthesis: Methodology (1/2)

15



Contract Synthesis: Methodology (1/2)

15

Use test cases as proxy for contract satisfaction

Test case =  
  Pair (P1, I1), (P2, I2)



Contract Synthesis: Methodology (1/2)

15

Use test cases as proxy for contract satisfaction

Test case =  
  Pair (P1, I1), (P2, I2) Simulation

A
B

C
Contract template



Contract Synthesis: Methodology (1/2)

15

Use test cases as proxy for contract satisfaction

Test case =  
  Pair (P1, I1), (P2, I2) Simulation

(P1, I1) ≠ (P2, I2)

Attacker distinguishability
?

A
B

C
Contract template



Contract Synthesis: Methodology (1/2)

15

Use test cases as proxy for contract satisfaction

Test case =  
  Pair (P1, I1), (P2, I2) Simulation

(P1, I1) ≠ (P2, I2)

Attacker distinguishability
?

(P1, I1)≠ (P2, I2)

For each atom X: 
Atom distinguishability

X X
?A

B

C
Contract template



Contract Synthesis: Methodology (2/2)

16

SimulationSimulation
(P1, I1)≠ (P2, I2)

(P1, I1)≠X
(P1, I1)

X

For each atom X:

?

?
A

B

C



Contract Synthesis: Methodology (2/2)

16

SimulationSimulation
(P1, I1)≠ (P2, I2)

(P1, I1)≠X
(P1, I1)

X

For each atom X:

?

?
Integer 

Linear Program

Contract

A
B

C



Contract Synthesis: Methodology (2/2)

16

SimulationSimulation
(P1, I1)≠ (P2, I2)

(P1, I1)≠X
(P1, I1)

X

For each atom X:

?

?
Integer 

Linear Program

Contract

A
B

C

A
B

C
False-positive test cases 
+ Responsible Atoms



Contract Synthesis: Methodology (2/2)

16

SimulationSimulation
(P1, I1)≠ (P2, I2)

(P1, I1)≠X
(P1, I1)

X

For each atom X:

?

?
Integer 

Linear Program

Contract

A
B

C

A
B

C
False-positive test cases 
+ Responsible Atoms

Refinement 
of Template



Outline

17

2. Synthesis Goals and Methodology

3. Some Experimental Results

1. Contracts and Contract Templates



Experimental Evaluation

18

Implemented using Icarus Verilog, Google OR-Tools, and RISC-V Formal Interface



Experimental Evaluation

18

Implemented using Icarus Verilog, Google OR-Tools, and RISC-V Formal Interface

“Ibex is a production-quality open-
source 32-bit RISC-V CPU core”



Experimental Evaluation

18

Implemented using Icarus Verilog, Google OR-Tools, and RISC-V Formal Interface

“Ibex is a production-quality open-
source 32-bit RISC-V CPU core”

“CVA6 is an application-class 6-stage 
RISC-V CPU capable of booting Linux”
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Final precision: 
18.95%
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True Positives

True Positives + False Positives
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li a0, 0x100    a0 ← 0x100 

lw a1, 0(a0)    a1 ← mem[a0]

Program 1 

li a0, 0x102    a0 ← 0x102 

lw a1, 0(a0)    a1 ← mem[a0]

Program 2 

Slower!
Address is not aligned

Refinement of template to capture: 
• alignment of accesses 
• branch outcomes 
• data dependencies
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Precision w.r.t. a set of 2,000,000 test cases 

Final precision: 
72.11%

Precision =
True Positives

True Positives + False Positives
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Read the paper (to appear at DATE 2024): 
https://arxiv.org/abs/2401.09383 

Play with the artifact: 
https://github.com/hw-sw-contracts/riscv-
contract-synthesis 
https://zenodo.org/records/10491534

https://arxiv.org/abs/2401.09383
https://github.com/hw-sw-contracts/riscv-contract-synthesis
https://github.com/hw-sw-contracts/riscv-contract-synthesis
https://zenodo.org/records/10491534

