
Synthesizing HW-SW Leakage Contracts
for RISC-V Open-Source Processors

Jan Reineke @

This work has received funding from an Intel Strategic Research Alliance (ISRA) and the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 101020415)”

Joint work with
Gideon Mohr @ Universität des Saarlandes
Marco Guarnieri @ IMDEA Software

(to appear at DATE 2024)

1

The Need for New HW/SW Contracts

2

High-level language

Microarchitecture

Instruction set architecture (ISA)

3

Instruction Set Architectures (ISAs): Benefits

High-level language

Microarchitecture

Instruction set architecture (ISA)

Can program independently of
microarchitecture

3

Instruction Set Architectures (ISAs): Benefits

High-level language

Microarchitecture

Instruction set architecture (ISA)

Can program independently of
microarchitecture

Can implement arbitrary
optimizations as long as
ISA semantics are obeyed

3

Instruction Set Architectures (ISAs): Benefits

High-level language

Microarchitecture

Instruction set architecture (ISA)

4

Inadequacy of ISAs: Side Channels

High-level language

Microarchitecture

Instruction set architecture (ISA) No guarantees
about side channels

4

Inadequacy of ISAs: Side Channels

High-level language

Microarchitecture

Instruction set architecture (ISA)

Can implement arbitrary insecure
optimizations as long as
ISA is implemented correctly

No guarantees
about side channels

4

Inadequacy of ISAs: Side Channels

High-level language

Microarchitecture

Instruction set architecture (ISA)

Can implement arbitrary insecure
optimizations as long as
ISA is implemented correctly

No guarantees
about side channels

4

Inadequacy of ISAs: Side Channels

High-level language

Microarchitecture

Instruction set architecture (ISA)

Can implement arbitrary insecure
optimizations as long as
ISA is implemented correctly

No guarantees
about side channels

Impossible to program securely
 cryptographic algorithms?
 sandboxing untrusted code?

4

Inadequacy of ISAs: Side Channels

HW/SW Leakage contract =
ISA + Leakage specification

5

A Way Forward: HW/SW Leakage Contracts

Can program securely on top of contract
independently of microarchitecture

HW/SW Leakage contract =
ISA + Leakage specification

5

A Way Forward: HW/SW Leakage Contracts

Can program securely on top of contract
independently of microarchitecture

Can implement arbitrary insecure optimizations
as long as contract is obeyed

HW/SW Leakage contract =
ISA + Leakage specification

5

A Way Forward: HW/SW Leakage Contracts

Can program securely on top of contract
independently of microarchitecture

Can implement arbitrary insecure optimizations
as long as contract is obeyed

HW/SW Leakage contract =
ISA + Leakage specification

Captures possible leakage
at ISA level

5

A Way Forward: HW/SW Leakage Contracts

M. Guarnieri, B. Köpf, J. Reineke, and P. Vila
Hardware-Software Contracts for Secure Speculation
S&P (Oakland) 2021

Z. Wang, G. Mohr, K. v. Gleissenthall, J. Reineke, M. Guarnieri
Specification and Verification of Side-channel Security for
Open-source Processors via Leakage Contracts
CCS (2023)

6

Our prior work in this context

Synthesizing Leakage Contracts

Can program securely on top of contract
independently of microarchitecture

HW/SW leakage contract =
ISA + Leakage specification

Captures possible leakage
at ISA level

7

Synthesizing Leakage Contracts

Can program securely on top of contract
independently of microarchitecture

HW/SW leakage contract =
ISA + Leakage specification

Captures possible leakage
at ISA level

7

Can implement arbitrary insecure optimizations
as long as contract is obeyed

Synthesizing Leakage Contracts

Can program securely on top of contract
independently of microarchitecture

HW/SW leakage contract =
ISA + Leakage specification

Captures possible leakage
at ISA level

RISC-V Open-Source Cores
Ibex CVA6 7

Can implement arbitrary insecure optimizations
as long as contract is obeyed

Synthesizing Leakage Contracts

Can program securely on top of contract
independently of microarchitecture

HW/SW leakage contract =
ISA + Leakage specification

Captures possible leakage
at ISA level

RISC-V Open-Source Cores
Ibex CVA6 7

Synthesizing Leakage Contracts

Can program securely on top of contract
independently of microarchitecture

HW/SW leakage contract =
ISA + Leakage specification

Captures possible leakage
at ISA level

RISC-V Open-Source Cores
Ibex CVA6 7

Contract Synthesis

Outline

8

1. Contracts and Contract Templates

2. Synthesis Goals and Methodology

3. Some Experimental Results

Outline

9

2. Synthesis Goals and Methodology

3. Some Experimental Results

1. Contracts and Contract Templates

An Example Contract

10

“For every multiplication the second operand leaks and
for every memory access the memory address leaks.”

An Example Contract

10

“For every multiplication the second operand leaks and
for every memory access the memory address leaks.”

Composition of
Contract Atoms

An Example Contract

10

“For every multiplication the second operand leaks and
for every memory access the memory address leaks.”

Composition of
Contract Atoms

Condition on
ISA State

An Example Contract

10

“For every multiplication the second operand leaks and
for every memory access the memory address leaks.”

Composition of
Contract Atoms

Condition on
ISA State

Leakage of Part
of ISA State

Contract Atoms -
What could possibly leak (non-speculatively)?

11

mul a0, t0, t1 a0 ← t0 * t1

Leakage sources:

Contract Atoms -
What could possibly leak (non-speculatively)?

11

mul a0, t0, t1 a0 ← t0 * t1

Instruction type
• Instruction type
Leakage sources:

Contract Atoms -
What could possibly leak (non-speculatively)?

11

mul a0, t0, t1 a0 ← t0 * t1

• Instruction type
Register names

and values
• Register names
• Register values

Leakage sources:

Contract Atoms -
What could possibly leak (non-speculatively)?

11

mul a0, t0, t1 a0 ← t0 * t1

lw a1, -4(t2) a1 ← mem[t2 + (-4)]

• Instruction type
• Register names
• Register values

Leakage sources:

Contract Atoms -
What could possibly leak (non-speculatively)?

11

mul a0, t0, t1 a0 ← t0 * t1

lw a1, -4(t2) a1 ← mem[t2 + (-4)]

• Instruction type
• Register names
• Register values
• Immediate values

Immediate values

Leakage sources:

Contract Atoms -
What could possibly leak (non-speculatively)?

11

mul a0, t0, t1 a0 ← t0 * t1

lw a1, -4(t2) a1 ← mem[t2 + (-4)]

• Instruction type
• Register names
• Register values
• Immediate values
• Memory addresses
• Memory valuesMemory addresses

and values

Leakage sources:

Contract Atoms -
What could possibly leak (non-speculatively)?

11

mul a0, t0, t1 a0 ← t0 * t1

lw a1, -4(t2) a1 ← mem[t2 + (-4)]

• Instruction type
• Register names
• Register values
• Immediate values
• Memory addresses
• Memory values

Leakage sources:

Contract Atoms -
What could possibly leak (non-speculatively)?

12

Contract Atom =

Contract Atoms -
What could possibly leak (non-speculatively)?

12

Contract Atom
Condition based on

Instruction Type

=

Contract Atoms -
What could possibly leak (non-speculatively)?

12

Contract Atom
Condition based on

Instruction Type
Applicable

Leakage Sourcesx

=

Contract Atoms -
What could possibly leak (non-speculatively)?

12

Contract Atom
Condition based on

Instruction Type
Applicable

Leakage Sourcesx

=

Several hundred contract atoms for RISC-V I+M

Outline

13

2. Synthesis Goals and Methodology

3. Some Experimental Results

1. Contracts and Contract Templates

Contract Synthesis: Goals

14

Contract Synthesis: Goals

14

For a given processor, find contract from template s.t.:

Contract Synthesis: Goals

14

For a given processor, find contract from template s.t.:

1. Processor satisfies contract

Contract Synthesis: Goals

14

For a given processor, find contract from template s.t.:

1. Processor satisfies contract

2. Contract is as precise as possible

Contract Synthesis: Goals

14

For a given processor, find contract from template s.t.:

1. Processor satisfies contract

2. Contract is as precise as possible

For any pair of programs and inputs (P1, I1) and (P2, I2):

Contract Synthesis: Goals

14

For a given processor, find contract from template s.t.:

1. Processor satisfies contract

2. Contract is as precise as possible

For any pair of programs and inputs (P1, I1) and (P2, I2):
(P1, I1) ≠ (P2, I2)

Contract Synthesis: Goals

14

For a given processor, find contract from template s.t.:

1. Processor satisfies contract

2. Contract is as precise as possible

For any pair of programs and inputs (P1, I1) and (P2, I2):
(P1, I1) ≠ (P2, I2) ⟹ (P1, I1)≠ (P2, I2)

Contract Synthesis: Goals

14

For a given processor, find contract from template s.t.:

1. Processor satisfies contract

2. Contract is as precise as possible

For any pair of programs and inputs (P1, I1) and (P2, I2):
(P1, I1) ≠ (P2, I2) ⟹ (P1, I1)≠ (P2, I2)

As few programs and inputs (P, I) as possible s.t.:

Contract Synthesis: Goals

14

For a given processor, find contract from template s.t.:

1. Processor satisfies contract

2. Contract is as precise as possible

For any pair of programs and inputs (P1, I1) and (P2, I2):
(P1, I1) ≠ (P2, I2) ⟹ (P1, I1)≠ (P2, I2)

As few programs and inputs (P, I) as possible s.t.:
(P1, I1)≠ (P2, I2)

Contract Synthesis: Goals

14

For a given processor, find contract from template s.t.:

1. Processor satisfies contract

2. Contract is as precise as possible

For any pair of programs and inputs (P1, I1) and (P2, I2):
(P1, I1) ≠ (P2, I2) ⟹ (P1, I1)≠ (P2, I2)

As few programs and inputs (P, I) as possible s.t.:
(P1, I1)≠ (P2, I2) (P1, I1) = (P2, I2)∧

Contract Synthesis: Methodology (1/2)

15

Contract Synthesis: Methodology (1/2)

15

Use test cases as proxy for contract satisfaction

Test case =
 Pair (P1, I1), (P2, I2)

Contract Synthesis: Methodology (1/2)

15

Use test cases as proxy for contract satisfaction

Test case =
 Pair (P1, I1), (P2, I2) Simulation

A
B

C
Contract template

Contract Synthesis: Methodology (1/2)

15

Use test cases as proxy for contract satisfaction

Test case =
 Pair (P1, I1), (P2, I2) Simulation

(P1, I1) ≠ (P2, I2)

Attacker distinguishability
?

A
B

C
Contract template

Contract Synthesis: Methodology (1/2)

15

Use test cases as proxy for contract satisfaction

Test case =
 Pair (P1, I1), (P2, I2) Simulation

(P1, I1) ≠ (P2, I2)

Attacker distinguishability
?

(P1, I1)≠ (P2, I2)

For each atom X:
Atom distinguishability

X X
?A

B

C
Contract template

Contract Synthesis: Methodology (2/2)

16

SimulationSimulation
(P1, I1)≠ (P2, I2)

(P1, I1)≠X
(P1, I1)

X

For each atom X:

?

?
A

B

C

Contract Synthesis: Methodology (2/2)

16

SimulationSimulation
(P1, I1)≠ (P2, I2)

(P1, I1)≠X
(P1, I1)

X

For each atom X:

?

?
Integer

Linear Program

Contract

A
B

C

Contract Synthesis: Methodology (2/2)

16

SimulationSimulation
(P1, I1)≠ (P2, I2)

(P1, I1)≠X
(P1, I1)

X

For each atom X:

?

?
Integer

Linear Program

Contract

A
B

C

A
B

C
False-positive test cases
+ Responsible Atoms

Contract Synthesis: Methodology (2/2)

16

SimulationSimulation
(P1, I1)≠ (P2, I2)

(P1, I1)≠X
(P1, I1)

X

For each atom X:

?

?
Integer

Linear Program

Contract

A
B

C

A
B

C
False-positive test cases
+ Responsible Atoms

Refinement
of Template

Outline

17

2. Synthesis Goals and Methodology

3. Some Experimental Results

1. Contracts and Contract Templates

Experimental Evaluation

18

Implemented using Icarus Verilog, Google OR-Tools, and RISC-V Formal Interface

Experimental Evaluation

18

Implemented using Icarus Verilog, Google OR-Tools, and RISC-V Formal Interface

“Ibex is a production-quality open-
source 32-bit RISC-V CPU core”

Experimental Evaluation

18

Implemented using Icarus Verilog, Google OR-Tools, and RISC-V Formal Interface

“Ibex is a production-quality open-
source 32-bit RISC-V CPU core”

“CVA6 is an application-class 6-stage
RISC-V CPU capable of booting Linux”

Performance on Ibex - Sensitivity

19

Sensitivity w.r.t. a set of 2,000,000 test cases

Sensitivity =
True Positives

True Positives + False Negatives

Performance on Ibex - Sensitivity

19

Sensitivity w.r.t. a set of 2,000,000 test cases

Final sensitivity:
99.94%

Sensitivity =
True Positives

True Positives + False Negatives

Performance on Ibex - Precision

20
Precision w.r.t. a set of 2,000,000 test cases

Precision =
True Positives

True Positives + False Positives

Performance on Ibex - Precision

20
Precision w.r.t. a set of 2,000,000 test cases

Final precision:
18.95%

Precision =
True Positives

True Positives + False Positives

Refining Contract Template - Ibex Memory Interface

21

li a0, 0x100 a0 ← 0x100

lw a1, 0(a0) a1 ← mem[a0]

Program 1

li a0, 0x102 a0 ← 0x102

lw a1, 0(a0) a1 ← mem[a0]

Program 2

Refining Contract Template - Ibex Memory Interface

21

li a0, 0x100 a0 ← 0x100

lw a1, 0(a0) a1 ← mem[a0]

Program 1

li a0, 0x102 a0 ← 0x102

lw a1, 0(a0) a1 ← mem[a0]

Program 2

Slower!

Refining Contract Template - Ibex Memory Interface

21

li a0, 0x100 a0 ← 0x100

lw a1, 0(a0) a1 ← mem[a0]

Program 1

li a0, 0x102 a0 ← 0x102

lw a1, 0(a0) a1 ← mem[a0]

Program 2

Slower!
Address is not aligned

Refining Contract Template - Ibex Memory Interface

21

li a0, 0x100 a0 ← 0x100

lw a1, 0(a0) a1 ← mem[a0]

Program 1

li a0, 0x102 a0 ← 0x102

lw a1, 0(a0) a1 ← mem[a0]

Program 2

Slower!
Address is not aligned

Refinement of template to capture:
• alignment of accesses
• branch outcomes
• data dependencies

Refined Contract Template - Precision

22
Precision w.r.t. a set of 2,000,000 test cases

Final precision:
72.11%

Precision =
True Positives

True Positives + False Positives

Thank you for your aDenEon!

23

Read the paper (to appear at DATE 2024):
https://arxiv.org/abs/2401.09383

Play with the artifact:
https://github.com/hw-sw-contracts/riscv-
contract-synthesis
https://zenodo.org/records/10491534

https://arxiv.org/abs/2401.09383
https://github.com/hw-sw-contracts/riscv-contract-synthesis
https://github.com/hw-sw-contracts/riscv-contract-synthesis
https://zenodo.org/records/10491534

