
saarland-informatics-campus.de

Leveraging LLVM’s ScalarEvolution for
Symbolic Data Cache Analysis

Valentin Touzeau
Jan Reineke

This work has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No 101020415)”

Cache Analysis is Important

2

Cache Analysis is Important
*�+?2b �`2 AKTQ`i�Mi

t 4 � Y #c
GP�. `k- n�
GP�. `R- n#
�.. `j- `k- `R

⇒ ⇒

0

100

200

300

1t
2+

Xh
BK

2
U*

HQ
+F

*v
+H2

bV

JQiQ`QH� SQr2`S* d88

"2bi *�b2 qQ`bi *�b2

R

2

*�+?2b �`2 AKTQ`i�Mi

t 4 � Y #c
GP�. `k- n�
GP�. `R- n#
�.. `j- `k- `R

⇒ ⇒

0

100

200

300

1t
2+

Xh
BK

2
U*

HQ
+F

*v
+H2

bV

JQiQ`QH� SQr2`S* d88

"2bi *�b2 qQ`bi *�b2

R

Cache Analysis is Important
*�+?2b �`2 AKTQ`i�Mi

t 4 � Y #c
GP�. `k- n�
GP�. `R- n#
�.. `j- `k- `R

⇒ ⇒

0

100

200

300

1t
2+

Xh
BK

2
U*

HQ
+F

*v
+H2

bV

JQiQ`QH� SQr2`S* d88

"2bi *�b2 qQ`bi *�b2

R

*�+?2b �`2 AKTQ`i�Mi

t 4 � Y #c
GP�. `k- n�
GP�. `R- n#
�.. `j- `k- `R

⇒ ⇒

0

100

200

300

1t
2+

Xh
BK

2
U*

HQ
+F

*v
+H2

bV

JQiQ`QH� SQr2`S* d88

"2bi *�b2 qQ`bi *�b2

R
2

*�+?2b �`2 AKTQ`i�Mi

t 4 � Y #c
GP�. `k- n�
GP�. `R- n#
�.. `j- `k- `R

⇒ ⇒

0

100

200

300

1t
2+

Xh
BK

2
U*

HQ
+F

*v
+H2

bV

JQiQ`QH� SQr2`S* d88

"2bi *�b2 qQ`bi *�b2

R

Instruction Cache Analysis
Source program

while (x < 10) {
x++; //a
if (x < 5)

x++; //b
else

y--; //c
}

3

Instruction Cache Analysis
Source program

while (x < 10) {
x++; //a
if (x < 5)

x++; //b
else

y--; //c
}

Binary program

LLVM

3

Instruction Cache Analysis*QMi`QH@6HQr :`�T?b

*QMi`QH@6HQr :`�T?b U*6:V
� +QMi`QH@~Qr ;`�T? G = (o,1, B) Bb �M �#bi`�+iBQM Q7 � T`Q;`�KX

R BMi �- #- +c
k
j 7Q` UBMi B 4 yc B I Ryyc BYYV &
9 B7 U� W kV &
8 #YYc
e ' 2Hb2 &
d +@@c
3 '
N '

�

+

k

Control-flow
graph

Abstraction

Source program
while (x < 10) {

x++; //a
if (x < 5)

x++; //b
else

y--; //c
}

Binary program

LLVM

3

Instruction Cache Analysis*QMi`QH@6HQr :`�T?b

*QMi`QH@6HQr :`�T?b U*6:V
� +QMi`QH@~Qr ;`�T? G = (o,1, B) Bb �M �#bi`�+iBQM Q7 � T`Q;`�KX

R BMi �- #- +c
k
j 7Q` UBMi B 4 yc B I Ryyc BYYV &
9 B7 U� W kV &
8 #YYc
e ' 2Hb2 &
d +@@c
3 '
N '

�

+

k

Control-flow
graph

Abstraction

Classification:
“always hit”
“always miss”
“unknown”

Instruction
Cache Analysis

Source program
while (x < 10) {

x++; //a
if (x < 5)

x++; //b
else

y--; //c
}

Binary program

LLVM

3

Challenges in Data Cache Analysis I

4

int A[100];
for (int x = 0; x < 100; x++)

sum += A[x]
for (int y = 99; y >= 0; y--)

sum -= A[y]

Source program

Challenges in Data Cache Analysis I

4

int A[100];
for (int x = 0; x < 100; x++)

sum += A[x]
for (int y = 99; y >= 0; y--)

sum -= A[y] LLVM+ Abstraction

Control-flow graph

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei
entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal
to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
memory blocks, it associates these bounds with symbolic
memory blocks. A peculiar consequence of this abstraction is
that symbolic cache states also need to be updated when the
value of a loop variable changes. For example, if the back edge
of the first loop is taken to move from iteration 15 (17, 19, . . .)
to iteration 16 (18, . . .), then the symbolic cache state needs to

Source program

Challenges in Data Cache Analysis I

4

int A[100];
for (int x = 0; x < 100; x++)

sum += A[x]
for (int y = 99; y >= 0; y--)

sum -= A[y] LLVM+ Abstraction

Control-flow graph

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei
entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal
to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
memory blocks, it associates these bounds with symbolic
memory blocks. A peculiar consequence of this abstraction is
that symbolic cache states also need to be updated when the
value of a loop variable changes. For example, if the back edge
of the first loop is taken to move from iteration 15 (17, 19, . . .)
to iteration 16 (18, . . .), then the symbolic cache state needs to

Addresses depend
on loop iteration

Source program

Challenges in Data Cache Analysis I

4

int A[100];
for (int x = 0; x < 100; x++)

sum += A[x]
for (int y = 99; y >= 0; y--)

sum -= A[y] LLVM+ Abstraction

Control-flow graph

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei
entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal
to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
memory blocks, it associates these bounds with symbolic
memory blocks. A peculiar consequence of this abstraction is
that symbolic cache states also need to be updated when the
value of a loop variable changes. For example, if the back edge
of the first loop is taken to move from iteration 15 (17, 19, . . .)
to iteration 16 (18, . . .), then the symbolic cache state needs to

Addresses depend
on loop iteration

Cannot express dependence
of addresses on iteration!

Source program

int A[100];
for (int x = 0; x < 100; x++)

sum += A[x]
for (int y = 99; y >= 0; y--)

sum -= A[y]

First Contribution:
Symbolic Control-Flow Graphs

5

Addresses depend
on loop iteration

Source program

int A[100];
for (int x = 0; x < 100; x++)

sum += A[x]
for (int y = 99; y >= 0; y--)

sum -= A[y]

First Contribution:
Symbolic Control-Flow Graphs

5

LLVM+ Abstraction

Symbolic CFG

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis

a) Symbolic Control-Flow Graphs: We have seen that
the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

Addresses depend
on loop iteration

Source program

int A[100];
for (int x = 0; x < 100; x++)

sum += A[x]
for (int y = 99; y >= 0; y--)

sum -= A[y]

First Contribution:
Symbolic Control-Flow Graphs

5

Captures dependence of
addresses on loop iteration!

LLVM+ Abstraction

Symbolic CFG

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis

a) Symbolic Control-Flow Graphs: We have seen that
the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

Addresses depend
on loop iteration

Source program

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

Symbolic CFG

6

Semantics

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

Symbolic CFG

6

Loop variables capture iteration counts, here i and j.

Semantics

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

Symbolic CFG

6

Loop variables capture iteration counts, here i and j.

Three ways to manipulate variables:

Semantics

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

Symbolic CFG

6

Loop variables capture iteration counts, here i and j.

Three ways to manipulate variables:

reset variable i to 0

Semantics

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

Symbolic CFG

6

Loop variables capture iteration counts, here i and j.

Three ways to manipulate variables:

reset variable i to 0

increment variable i

Semantics

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

Symbolic CFG

6

Loop variables capture iteration counts, here i and j.

Three ways to manipulate variables:

reset variable i to 0

increment variable i

can only take edge if variable i
is equal to expression e

Semantics

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

Symbolic CFG

6

Loop variables capture iteration counts, here i and j.

Three ways to manipulate variables:

reset variable i to 0

increment variable i

can only take edge if variable i
is equal to expression e

Addresses of memory accesses captured as
polynomial expressions of loop variables.

Semantics

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

Symbolic CFG

6

Loop variables capture iteration counts, here i and j.

Three ways to manipulate variables:

reset variable i to 0

increment variable i

can only take edge if variable i
is equal to expression e

Addresses of memory accesses captured as
polynomial expressions of loop variables.

Obtained from LLVM’s ScalarEvolution Analysis Pass

Semantics

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

Symbolic CFG

7

Example

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

Symbolic CFG

7

Example

First loop:

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

Symbolic CFG

7

Example

First loop:
i = 0, A[0]

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

Symbolic CFG

7

Example

First loop:
i = 0, A[0] i = 1, A[1]

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

Symbolic CFG

7

Example

First loop:
i = 0, A[0] i = 1, A[1] … i = 99, A[99]

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

Symbolic CFG

7

Example

First loop:
i = 0, A[0] i = 1, A[1] … i = 99, A[99]

Second loop:

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

Symbolic CFG

7

Example

First loop:
i = 0, A[0] i = 1, A[1] … i = 99, A[99]

Second loop:
j = 0, A[99]

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

Symbolic CFG

7

Example

First loop:
i = 0, A[0] i = 1, A[1] … i = 99, A[99]

Second loop:
j = 0, A[99] j = 1, A[98]

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

Symbolic CFG

7

Example

First loop:
i = 0, A[0] i = 1, A[1] … i = 99, A[99]

Second loop:
j = 0, A[99] j = 1, A[98] … j = 99, A[0]

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

8

Cache Analysis: Intuitively

Assumptions:
- fully-associative cache
- associativity 2
- least-recently-used
- 2 array cells per cache line

Symbolic CFG

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

8

Cache Analysis: Intuitively

Assumptions:
- fully-associative cache
- associativity 2
- least-recently-used
- 2 array cells per cache line

i = 0, A[0] i = 1, A[1] i = 3, A[3]i = 2, A[2] …

Symbolic CFG

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

8

Cache Analysis: Intuitively
-
-

Assumptions:
- fully-associative cache
- associativity 2
- least-recently-used
- 2 array cells per cache line

i = 0, A[0] i = 1, A[1] i = 3, A[3]i = 2, A[2] …

Symbolic CFG

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

8

Cache Analysis: Intuitively
-
-

A[0]
-

Assumptions:
- fully-associative cache
- associativity 2
- least-recently-used
- 2 array cells per cache line

i = 0, A[0] i = 1, A[1] i = 3, A[3]i = 2, A[2] …

Symbolic CFG

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

8

Cache Analysis: Intuitively
-
-

A[0]
-

A[0]
-

Assumptions:
- fully-associative cache
- associativity 2
- least-recently-used
- 2 array cells per cache line

i = 0, A[0] i = 1, A[1] i = 3, A[3]i = 2, A[2] …

Symbolic CFG

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

8

Cache Analysis: Intuitively
-
-

A[0]
-

A[0]
-

Assumptions:
- fully-associative cache
- associativity 2
- least-recently-used
- 2 array cells per cache line

i = 0, A[0] i = 1, A[1] i = 3, A[3]i = 2, A[2] …

Cache Hit
Spatial
Locality

Symbolic CFG

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

8

Cache Analysis: Intuitively
-
-

A[0]
-

A[0]
-

A[0]
-

Assumptions:
- fully-associative cache
- associativity 2
- least-recently-used
- 2 array cells per cache line

i = 0, A[0] i = 1, A[1] i = 3, A[3]i = 2, A[2] …

Cache Hit
Spatial
Locality

Symbolic CFG

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

8

Cache Analysis: Intuitively
-
-

A[0]
-

A[0]
-

A[0]
-

Assumptions:
- fully-associative cache
- associativity 2
- least-recently-used
- 2 array cells per cache line

i = 0, A[0] i = 1, A[1] i = 3, A[3]i = 2, A[2] …

Symbolic CFG

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

8

Cache Analysis: Intuitively
-
-

A[0]
-

A[0]
-

A[0]
-

Assumptions:
- fully-associative cache
- associativity 2
- least-recently-used
- 2 array cells per cache line

A[0]
-

i = 0, A[0] i = 1, A[1] i = 3, A[3]i = 2, A[2] …

Symbolic CFG

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

8

Cache Analysis: Intuitively
-
-

A[0]
-

A[0]
-

A[0]
-

Assumptions:
- fully-associative cache
- associativity 2
- least-recently-used
- 2 array cells per cache line

A[0]
-

A[2]
A[0]

i = 0, A[0] i = 1, A[1] i = 3, A[3]i = 2, A[2] …

Symbolic CFG

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

8

Cache Analysis: Intuitively
-
-

A[0]
-

A[0]
-

A[0]
-

Assumptions:
- fully-associative cache
- associativity 2
- least-recently-used
- 2 array cells per cache line

A[0]
-

A[2]
A[0]

A[2]
A[0]

i = 0, A[0] i = 1, A[1] i = 3, A[3]i = 2, A[2] …

Symbolic CFG

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

8

Cache Analysis: Intuitively
-
-

A[0]
-

A[0]
-

A[0]
-

Assumptions:
- fully-associative cache
- associativity 2
- least-recently-used
- 2 array cells per cache line

A[0]
-

A[2]
A[0]

A[2]
A[0]

i = 0, A[0] i = 1, A[1] i = 3, A[3]i = 2, A[2] …

Cache Hit
Spatial
Locality

Symbolic CFG

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

8

Cache Analysis: Intuitively
-
-

A[0]
-

A[0]
-

A[0]
-

Assumptions:
- fully-associative cache
- associativity 2
- least-recently-used
- 2 array cells per cache line

A[0]
-

A[2]
A[0]

A[2]
A[0]

A[2]
A[0]

i = 0, A[0] i = 1, A[1] i = 3, A[3]i = 2, A[2] …

Cache Hit
Spatial
Locality

Symbolic CFG

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

8

Cache Analysis: Intuitively
-
-

A[0]
-

A[0]
-

A[0]
-

Assumptions:
- fully-associative cache
- associativity 2
- least-recently-used
- 2 array cells per cache line

A[0]
-

A[2]
A[0]

A[2]
A[0]

A[2]
A[0]

i = 0, A[0] i = 1, A[1] i = 3, A[3]i = 2, A[2] …

Symbolic CFG

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

8

Cache Analysis: Intuitively
-
-

A[0]
-

A[0]
-

A[0]
-

Assumptions:
- fully-associative cache
- associativity 2
- least-recently-used
- 2 array cells per cache line

A[0]
-

A[2]
A[0]

A[2]
A[0]

A[2]
A[0]

j = 0, A[99] j = 1, A[98] j = 99, A[0]j = 98, A[1]…

i = 0, A[0] i = 1, A[1] i = 3, A[3]i = 2, A[2] …

Symbolic CFG

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

8

Cache Analysis: Intuitively
-
-

A[0]
-

A[0]
-

A[0]
-

Assumptions:
- fully-associative cache
- associativity 2
- least-recently-used
- 2 array cells per cache line

A[0]
-

A[2]
A[0]

A[2]
A[0]

A[2]
A[0]

A[98]
A[96]

j = 0, A[99] j = 1, A[98] j = 99, A[0]j = 98, A[1]…

i = 0, A[0] i = 1, A[1] i = 3, A[3]i = 2, A[2] …

Symbolic CFG

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

8

Cache Analysis: Intuitively
-
-

A[0]
-

A[0]
-

A[0]
-

Assumptions:
- fully-associative cache
- associativity 2
- least-recently-used
- 2 array cells per cache line

A[0]
-

A[2]
A[0]

A[2]
A[0]

A[2]
A[0]

A[98]
A[96]

j = 0, A[99] j = 1, A[98] j = 99, A[0]j = 98, A[1]…

i = 0, A[0] i = 1, A[1] i = 3, A[3]i = 2, A[2] …

Cache Hit
Temporal
Locality

Symbolic CFG

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

8

Cache Analysis: Intuitively
-
-

A[0]
-

A[0]
-

A[0]
-

Assumptions:
- fully-associative cache
- associativity 2
- least-recently-used
- 2 array cells per cache line

A[0]
-

A[2]
A[0]

A[2]
A[0]

A[2]
A[0]

A[98]
A[96]

A[98]
A[96]

j = 0, A[99] j = 1, A[98] j = 99, A[0]j = 98, A[1]…

i = 0, A[0] i = 1, A[1] i = 3, A[3]i = 2, A[2] …

Cache Hit
Temporal
Locality

Symbolic CFG

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

8

Cache Analysis: Intuitively
-
-

A[0]
-

A[0]
-

A[0]
-

Assumptions:
- fully-associative cache
- associativity 2
- least-recently-used
- 2 array cells per cache line

A[0]
-

A[2]
A[0]

A[2]
A[0]

A[2]
A[0]

A[98]
A[96]

A[98]
A[96]

j = 0, A[99] j = 1, A[98] j = 99, A[0]j = 98, A[1]…

i = 0, A[0] i = 1, A[1] i = 3, A[3]i = 2, A[2] …

Symbolic CFG

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

8

Cache Analysis: Intuitively
-
-

A[0]
-

A[0]
-

A[0]
-

Assumptions:
- fully-associative cache
- associativity 2
- least-recently-used
- 2 array cells per cache line

A[0]
-

A[2]
A[0]

A[2]
A[0]

A[2]
A[0]

A[98]
A[96]

A[98]
A[96]

A[98]
A[96]

j = 0, A[99] j = 1, A[98] j = 99, A[0]j = 98, A[1]…

i = 0, A[0] i = 1, A[1] i = 3, A[3]i = 2, A[2] …

Symbolic CFG

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

8

Cache Analysis: Intuitively
-
-

A[0]
-

A[0]
-

A[0]
-

Assumptions:
- fully-associative cache
- associativity 2
- least-recently-used
- 2 array cells per cache line

A[0]
-

A[2]
A[0]

A[2]
A[0]

A[2]
A[0]

A[98]
A[96]

A[98]
A[96]

A[98]
A[96]

j = 0, A[99] j = 1, A[98] j = 99, A[0]j = 98, A[1]…

i = 0, A[0] i = 1, A[1] i = 3, A[3]i = 2, A[2] …

Symbolic CFG

Cache Hit
Temporal
Locality

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

8

Cache Analysis: Intuitively
-
-

A[0]
-

A[0]
-

A[0]
-

Assumptions:
- fully-associative cache
- associativity 2
- least-recently-used
- 2 array cells per cache line

A[0]
-

A[2]
A[0]

A[2]
A[0]

A[2]
A[0]

A[98]
A[96]

A[98]
A[96]

A[98]
A[96]

A[98]
A[96]

j = 0, A[99] j = 1, A[98] j = 99, A[0]j = 98, A[1]…

i = 0, A[0] i = 1, A[1] i = 3, A[3]i = 2, A[2] …

Symbolic CFG

Cache Hit
Temporal
Locality

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

8

Cache Analysis: Intuitively
-
-

A[0]
-

A[0]
-

A[0]
-

Assumptions:
- fully-associative cache
- associativity 2
- least-recently-used
- 2 array cells per cache line

A[0]
-

A[2]
A[0]

A[2]
A[0]

A[2]
A[0]

A[98]
A[96]

A[98]
A[96]

A[98]
A[96]

A[98]
A[96]

j = 0, A[99] j = 1, A[98] j = 99, A[0]j = 98, A[1]…

i = 0, A[0] i = 1, A[1] i = 3, A[3]i = 2, A[2] …

Symbolic CFG

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

8

Cache Analysis: Intuitively
-
-

A[0]
-

A[0]
-

A[0]
-

Assumptions:
- fully-associative cache
- associativity 2
- least-recently-used
- 2 array cells per cache line

A[0]
-

A[2]
A[0]

A[2]
A[0]

A[2]
A[0]

A[98]
A[96]

A[98]
A[96]

A[98]
A[96]

A[98]
A[96]

A[2]
A[4]

j = 0, A[99] j = 1, A[98] j = 99, A[0]j = 98, A[1]…

i = 0, A[0] i = 1, A[1] i = 3, A[3]i = 2, A[2] …

Symbolic CFG

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

8

Cache Analysis: Intuitively
-
-

A[0]
-

A[0]
-

A[0]
-

Assumptions:
- fully-associative cache
- associativity 2
- least-recently-used
- 2 array cells per cache line

A[0]
-

A[2]
A[0]

A[2]
A[0]

A[2]
A[0]

A[98]
A[96]

A[98]
A[96]

A[98]
A[96]

A[98]
A[96]

A[2]
A[4]

A[0]
A[2]

j = 0, A[99] j = 1, A[98] j = 99, A[0]j = 98, A[1]…

i = 0, A[0] i = 1, A[1] i = 3, A[3]i = 2, A[2] …

Symbolic CFG

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

8

Cache Analysis: Intuitively
-
-

A[0]
-

A[0]
-

A[0]
-

Assumptions:
- fully-associative cache
- associativity 2
- least-recently-used
- 2 array cells per cache line

A[0]
-

A[2]
A[0]

A[2]
A[0]

A[2]
A[0]

A[98]
A[96]

A[98]
A[96]

A[98]
A[96]

A[98]
A[96]

A[2]
A[4]

A[0]
A[2]

A[0]
A[2]

j = 0, A[99] j = 1, A[98] j = 99, A[0]j = 98, A[1]…

i = 0, A[0] i = 1, A[1] i = 3, A[3]i = 2, A[2] …

Symbolic CFG

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

8

Cache Analysis: Intuitively
-
-

A[0]
-

A[0]
-

A[0]
-

Assumptions:
- fully-associative cache
- associativity 2
- least-recently-used
- 2 array cells per cache line

A[0]
-

A[2]
A[0]

A[2]
A[0]

A[2]
A[0]

A[98]
A[96]

A[98]
A[96]

A[98]
A[96]

A[98]
A[96]

A[2]
A[4]

A[0]
A[2]

A[0]
A[2]

j = 0, A[99] j = 1, A[98] j = 99, A[0]j = 98, A[1]…

i = 0, A[0] i = 1, A[1] i = 3, A[3]i = 2, A[2] …

Cache Hit
Spatial
Locality

Symbolic CFG

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

8

Cache Analysis: Intuitively
-
-

A[0]
-

A[0]
-

A[0]
-

Assumptions:
- fully-associative cache
- associativity 2
- least-recently-used
- 2 array cells per cache line

A[0]
-

A[2]
A[0]

A[2]
A[0]

A[2]
A[0]

A[98]
A[96]

A[98]
A[96]

A[98]
A[96]

A[98]
A[96]

A[2]
A[4]

A[0]
A[2]

A[0]
A[2]

A[0]
A[2]

j = 0, A[99] j = 1, A[98] j = 99, A[0]j = 98, A[1]…

i = 0, A[0] i = 1, A[1] i = 3, A[3]i = 2, A[2] …

Cache Hit
Spatial
Locality

Symbolic CFG

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

8

Cache Analysis: Intuitively
-
-

A[0]
-

A[0]
-

A[0]
-

Assumptions:
- fully-associative cache
- associativity 2
- least-recently-used
- 2 array cells per cache line

A[0]
-

A[2]
A[0]

A[2]
A[0]

A[2]
A[0]

A[98]
A[96]

A[98]
A[96]

A[98]
A[96]

A[98]
A[96]

A[2]
A[4]

A[0]
A[2]

A[0]
A[2]

A[0]
A[2]

j = 0, A[99] j = 1, A[98] j = 99, A[0]j = 98, A[1]…

i = 0, A[0] i = 1, A[1] i = 3, A[3]i = 2, A[2] …

Symbolic CFG

Challenges in
Data Cache Analysis II

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

Assumptions:
- fully-associative cache
- associativity 2
- least-recently-used
- 2 array cells per cache line

Symbolic CFG

Challenges in
Data Cache Analysis II

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

Assumptions:
- fully-associative cache
- associativity 2
- least-recently-used
- 2 array cells per cache line

1. Cache states depend on loop iteration

Symbolic CFG

Challenges in
Data Cache Analysis II

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

Assumptions:
- fully-associative cache
- associativity 2
- least-recently-used
- 2 array cells per cache line

1. Cache states depend on loop iteration

Contribution: Symbolic Cache States

Symbolic CFG

Challenges in
Data Cache Analysis II

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

Assumptions:
- fully-associative cache
- associativity 2
- least-recently-used
- 2 array cells per cache line

2. Behavior is phase dependent:
• Warm-up phase:

hits/misses depending on initial state
• Steady-state phase:

repetitive patterns

1. Cache states depend on loop iteration

Contribution: Symbolic Cache States

Symbolic CFG

Challenges in
Data Cache Analysis II

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

Assumptions:
- fully-associative cache
- associativity 2
- least-recently-used
- 2 array cells per cache line

2. Behavior is phase dependent:
• Warm-up phase:

hits/misses depending on initial state
• Steady-state phase:

repetitive patterns

1. Cache states depend on loop iteration

Contribution: Symbolic Cache States

Contribution: Context-sensitive Analysis

Symbolic CFG

Symbolic Cache States

67

Symbolic Cache States

First loop:

68

Symbolic Cache States

First loop: i = 0, A[i] i = 1, A[i] i = 3, A[i]i = 2, A[i] … i = 100

69

Symbolic Cache States
-
-

First loop: i = 0, A[i] i = 1, A[i] i = 3, A[i]i = 2, A[i] … i = 100

70

Symbolic Cache States
-
-

A[i]
-

First loop: i = 0, A[i] i = 1, A[i] i = 3, A[i]i = 2, A[i] … i = 100

71

Symbolic Cache States
-
-

A[i]
-

A[i-1]
-

First loop: i = 0, A[i] i = 1, A[i] i = 3, A[i]i = 2, A[i] … i = 100

72

Symbolic Cache States
-
-

A[i]
-

A[i-1]
-

Cache Hit
Spatial
Locality

First loop: i = 0, A[i] i = 1, A[i] i = 3, A[i]i = 2, A[i] … i = 100

73

Symbolic Cache States
-
-

A[i]
-

A[i-1]
-

A[i-1]
- Cache Hit

Spatial
Locality

First loop: i = 0, A[i] i = 1, A[i] i = 3, A[i]i = 2, A[i] … i = 100

74

Symbolic Cache States
-
-

A[i]
-

A[i-1]
-

A[i-1]
-

First loop: i = 0, A[i] i = 1, A[i] i = 3, A[i]i = 2, A[i] … i = 100

75

Symbolic Cache States
-
-

A[i]
-

A[i-1]
-

A[i-1]
-

A[i-2]
-

First loop: i = 0, A[i] i = 1, A[i] i = 3, A[i]i = 2, A[i] … i = 100

76

Symbolic Cache States
-
-

A[i]
-

A[i-1]
-

A[i-1]
-

A[i-2]
-

A[i]
A[i-2]

First loop: i = 0, A[i] i = 1, A[i] i = 3, A[i]i = 2, A[i] … i = 100

77

Symbolic Cache States
-
-

A[i]
-

A[i-1]
-

A[i-1]
-

A[i-2]
-

A[i]
A[i-2]

A[i-1]
A[i-3]

First loop: i = 0, A[i] i = 1, A[i] i = 3, A[i]i = 2, A[i] … i = 100

78

Symbolic Cache States
-
-

A[i]
-

A[i-1]
-

A[i-1]
-

A[i-2]
-

A[i]
A[i-2]

A[i-1]
A[i-3]

Cache Hit
Spatial
Locality

First loop: i = 0, A[i] i = 1, A[i] i = 3, A[i]i = 2, A[i] … i = 100

79

Symbolic Cache States
-
-

A[i]
-

A[i-1]
-

A[i-1]
-

A[i-2]
-

A[i]
A[i-2]

A[i-1]
A[i-3]

A[i-1]
A[i-3]Cache Hit

Spatial
Locality

First loop: i = 0, A[i] i = 1, A[i] i = 3, A[i]i = 2, A[i] … i = 100

80

Symbolic Cache States
-
-

A[i]
-

A[i-1]
-

A[i-1]
-

A[i-2]
-

A[i]
A[i-2]

A[i-1]
A[i-3]

A[i-1]
A[i-3]

First loop: i = 0, A[i] i = 1, A[i] i = 3, A[i]i = 2, A[i] … i = 100

81

Symbolic Cache States
-
-

A[i]
-

A[i-1]
-

A[i-1]
-

A[i-2]
-

A[i]
A[i-2]

A[i-1]
A[i-3]

A[i-1]
A[i-3]

First loop: i = 0, A[i] i = 1, A[i] i = 3, A[i]i = 2, A[i] … i = 100

A[i-2]
A[i-4]

82

Symbolic Cache States
-
-

A[i]
-

A[i-1]
-

A[i-1]
-

A[i-2]
-

A[i]
A[i-2]

A[i-1]
A[i-3]

A[i-1]
A[i-3]

First loop:

Second loop:

i = 0, A[i] i = 1, A[i] i = 3, A[i]i = 2, A[i] … i = 100

A[i-2]
A[i-4]

83

Symbolic Cache States
-
-

A[i]
-

A[i-1]
-

A[i-1]
-

A[i-2]
-

A[i]
A[i-2]

A[i-1]
A[i-3]

A[i-1]
A[i-3]

j = 0, A[99-j] j = 1, A[99-j] j = 99, A[99-j]j = 98, A[99-j]…

First loop:

Second loop:

i = 0, A[i] i = 1, A[i] i = 3, A[i]i = 2, A[i] … i = 100

A[i-2]
A[i-4]

84

Symbolic Cache States
-
-

A[i]
-

A[i-1]
-

A[i-1]
-

A[i-2]
-

A[i]
A[i-2]

A[i-1]
A[i-3]

A[i-1]
A[i-3]

A[98]
A[96]

j = 0, A[99-j] j = 1, A[99-j] j = 99, A[99-j]j = 98, A[99-j]…

First loop:

Second loop:

i = 0, A[i] i = 1, A[i] i = 3, A[i]i = 2, A[i] … i = 100

A[i-2]
A[i-4]

85

Symbolic Cache States
-
-

A[i]
-

A[i-1]
-

A[i-1]
-

A[i-2]
-

A[i]
A[i-2]

A[i-1]
A[i-3]

A[i-1]
A[i-3]

A[98]
A[96]

j = 0, A[99-j] j = 1, A[99-j] j = 99, A[99-j]j = 98, A[99-j]…

First loop:

Second loop:

i = 0, A[i] i = 1, A[i] i = 3, A[i]i = 2, A[i] … i = 100

A[i-2]
A[i-4]

86

Symbolic Cache States
-
-

A[i]
-

A[i-1]
-

A[i-1]
-

A[i-2]
-

A[i]
A[i-2]

A[i-1]
A[i-3]

A[i-1]
A[i-3]

A[98]
A[96]

j = 0, A[99-j] j = 1, A[99-j] j = 99, A[99-j]j = 98, A[99-j]…

Cache Hit
Temporal
Locality

First loop:

Second loop:

i = 0, A[i] i = 1, A[i] i = 3, A[i]i = 2, A[i] … i = 100

A[i-2]
A[i-4]

87

Symbolic Cache States
-
-

A[i]
-

A[i-1]
-

A[i-1]
-

A[i-2]
-

A[i]
A[i-2]

A[i-1]
A[i-3]

A[i-1]
A[i-3]

A[98]
A[96]

A[98]
A[96]

j = 0, A[99-j] j = 1, A[99-j] j = 99, A[99-j]j = 98, A[99-j]…

Cache Hit
Temporal
Locality

First loop:

Second loop:

i = 0, A[i] i = 1, A[i] i = 3, A[i]i = 2, A[i] … i = 100

A[i-2]
A[i-4]

88

Symbolic Cache States
-
-

A[i]
-

A[i-1]
-

A[i-1]
-

A[i-2]
-

A[i]
A[i-2]

A[i-1]
A[i-3]

A[i-1]
A[i-3]

A[98]
A[96]

A[98]
A[96]

j = 0, A[99-j] j = 1, A[99-j] j = 99, A[99-j]j = 98, A[99-j]…

First loop:

Second loop:

i = 0, A[i] i = 1, A[i] i = 3, A[i]i = 2, A[i] … i = 100

A[i-2]
A[i-4]

89

Symbolic Cache States
-
-

A[i]
-

A[i-1]
-

A[i-1]
-

A[i-2]
-

A[i]
A[i-2]

A[i-1]
A[i-3]

A[i-1]
A[i-3]

A[98]
A[96]

A[98]
A[96]

A[98]
A[96]

j = 0, A[99-j] j = 1, A[99-j] j = 99, A[99-j]j = 98, A[99-j]…

First loop:

Second loop:

i = 0, A[i] i = 1, A[i] i = 3, A[i]i = 2, A[i] … i = 100

A[i-2]
A[i-4]

90

Symbolic Cache States
-
-

A[i]
-

A[i-1]
-

A[i-1]
-

A[i-2]
-

A[i]
A[i-2]

A[i-1]
A[i-3]

A[i-1]
A[i-3]

A[98]
A[96]

A[98]
A[96]

A[98]
A[96]

j = 0, A[99-j] j = 1, A[99-j] j = 99, A[99-j]j = 98, A[99-j]…

First loop:

Second loop:

i = 0, A[i] i = 1, A[i] i = 3, A[i]i = 2, A[i] … i = 100

A[i-2]
A[i-4]

Cache Hit
Temporal
Locality

91

Symbolic Cache States
-
-

A[i]
-

A[i-1]
-

A[i-1]
-

A[i-2]
-

A[i]
A[i-2]

A[i-1]
A[i-3]

A[i-1]
A[i-3]

A[98]
A[96]

A[98]
A[96]

A[98]
A[96]

A[98]
A[96]

j = 0, A[99-j] j = 1, A[99-j] j = 99, A[99-j]j = 98, A[99-j]…

First loop:

Second loop:

i = 0, A[i] i = 1, A[i] i = 3, A[i]i = 2, A[i] … i = 100

A[i-2]
A[i-4]

Cache Hit
Temporal
Locality

92

Symbolic Cache States
-
-

A[i]
-

A[i-1]
-

A[i-1]
-

A[i-2]
-

A[i]
A[i-2]

A[i-1]
A[i-3]

A[i-1]
A[i-3]

A[98]
A[96]

A[98]
A[96]

A[98]
A[96]

A[98]
A[96]

j = 0, A[99-j] j = 1, A[99-j] j = 99, A[99-j]j = 98, A[99-j]…

First loop:

Second loop:

i = 0, A[i] i = 1, A[i] i = 3, A[i]i = 2, A[i] … i = 100

A[i-2]
A[i-4]

93

Symbolic Cache States
-
-

A[i]
-

A[i-1]
-

A[i-1]
-

A[i-2]
-

A[i]
A[i-2]

A[i-1]
A[i-3]

A[i-1]
A[i-3]

A[98]
A[96]

A[98]
A[96]

A[98]
A[96]

A[98]
A[96]

A[100-j]
A[102-j]

j = 0, A[99-j] j = 1, A[99-j] j = 99, A[99-j]j = 98, A[99-j]…

First loop:

Second loop:

i = 0, A[i] i = 1, A[i] i = 3, A[i]i = 2, A[i] … i = 100

A[i-2]
A[i-4]

94

Symbolic Cache States
-
-

A[i]
-

A[i-1]
-

A[i-1]
-

A[i-2]
-

A[i]
A[i-2]

A[i-1]
A[i-3]

A[i-1]
A[i-3]

A[98]
A[96]

A[98]
A[96]

A[98]
A[96]

A[98]
A[96]

A[100-j]
A[102-j]

A[98-j]
A[100-j]

j = 0, A[99-j] j = 1, A[99-j] j = 99, A[99-j]j = 98, A[99-j]…

First loop:

Second loop:

i = 0, A[i] i = 1, A[i] i = 3, A[i]i = 2, A[i] … i = 100

A[i-2]
A[i-4]

95

Symbolic Cache States
-
-

A[i]
-

A[i-1]
-

A[i-1]
-

A[i-2]
-

A[i]
A[i-2]

A[i-1]
A[i-3]

A[i-1]
A[i-3]

A[98]
A[96]

A[98]
A[96]

A[98]
A[96]

A[98]
A[96]

A[100-j]
A[102-j]

A[98-j]
A[100-j]

A[99-j]
A[101-j]

j = 0, A[99-j] j = 1, A[99-j] j = 99, A[99-j]j = 98, A[99-j]…

First loop:

Second loop:

i = 0, A[i] i = 1, A[i] i = 3, A[i]i = 2, A[i] … i = 100

A[i-2]
A[i-4]

96

Symbolic Cache States
-
-

A[i]
-

A[i-1]
-

A[i-1]
-

A[i-2]
-

A[i]
A[i-2]

A[i-1]
A[i-3]

A[i-1]
A[i-3]

A[98]
A[96]

A[98]
A[96]

A[98]
A[96]

A[98]
A[96]

A[100-j]
A[102-j]

A[98-j]
A[100-j]

A[99-j]
A[101-j]

j = 0, A[99-j] j = 1, A[99-j] j = 99, A[99-j]j = 98, A[99-j]…

Cache Hit
Spatial
Locality

First loop:

Second loop:

i = 0, A[i] i = 1, A[i] i = 3, A[i]i = 2, A[i] … i = 100

A[i-2]
A[i-4]

97

Symbolic Cache States
-
-

A[i]
-

A[i-1]
-

A[i-1]
-

A[i-2]
-

A[i]
A[i-2]

A[i-1]
A[i-3]

A[i-1]
A[i-3]

A[98]
A[96]

A[98]
A[96]

A[98]
A[96]

A[98]
A[96]

A[100-j]
A[102-j]

A[98-j]
A[100-j]

A[99-j]
A[101-j]

A[99-j]
A[101-j]

j = 0, A[99-j] j = 1, A[99-j] j = 99, A[99-j]j = 98, A[99-j]…

Cache Hit
Spatial
Locality

First loop:

Second loop:

i = 0, A[i] i = 1, A[i] i = 3, A[i]i = 2, A[i] … i = 100

A[i-2]
A[i-4]

98

Symbolic Cache States
-
-

A[i]
-

A[i-1]
-

A[i-1]
-

A[i-2]
-

A[i]
A[i-2]

A[i-1]
A[i-3]

A[i-1]
A[i-3]

A[98]
A[96]

A[98]
A[96]

A[98]
A[96]

A[98]
A[96]

A[100-j]
A[102-j]

A[98-j]
A[100-j]

A[99-j]
A[101-j]

A[99-j]
A[101-j]

j = 0, A[99-j] j = 1, A[99-j] j = 99, A[99-j]j = 98, A[99-j]…

First loop:

Second loop:

i = 0, A[i] i = 1, A[i] i = 3, A[i]i = 2, A[i] … i = 100

A[i-2]
A[i-4]

99

Context-sensitive Analysis

11

peel0

{0}Loop iterations:

Contexts:
peel1

{1}

peel2

{2}

peel3

{3}

unroll0

{4, 6, 8, . . . }

unroll1

{5, 7, 9, . . . }

Fig. 4: Peeling and unrolling contexts and their corresponding loop iterations.

VI. LOOP PEELING AND UNROLLING

A common problem that cache analyses by abstract inter-
pretation suffer from is the loss of precision due to joins at
the entry of loops. Indeed, the memory blocks loaded before
a loop and within a loop usually differ. As a consequence the
abstract cache states entering the loop and upon back edges
from within the loop often have few, if any, memory blocks in
common. A sound analysis can thus not conclude any blocks
to be cached at the beginning of the loop body. One can avoid
this issue by loop peeling, where the analysis distinguishes
the first few iterations of the loop from the rest of the loop
and maintains separate analysis information for each of these
iterations. This allows the analysis to capture the “warm-up
effect” commonly observed in loops iterating across arrays.
The example in Figure 4 shows a loop for which the first
16 loop iterations are peeled, which is the optimal amount of
peeling for our example from Section III.

Another problem that the basic analysis described in
Section V suffers from is the lack of alignment information
when establishing the alias relations between MCRs. For
example, one cannot tell whether A[i] and A[i + 1] map to
the same block if no information about the alignment of A[i]
is available. Indeed, it can happen that A[i] and A[i + 1] are
separated by a block boundary when A[i] mod BS = BS �1.
The necessary alignment information can be obtained by
unrolling loops, i.e. distinguishing consecutive loop iterations
from each other. In the example in Figure 4 the loop is
unrolled twice, distinguishing even from odd loop iterations.
In our example from Section III we assumed a block size of
8 bytes and array cells of size 4 bytes. Provided knowledge
about the base address of the array A, with loop unrolling,
the alignment of accesses to A[i] is fully determined.

A. Context-Sensitive Analysis

Given peeling and unrolling depths MaxPeel � 0 and
MaxUnroll > 0, we define the following set of tags:

Tags := {peelx | 0 x < MaxPeel} [
{unrollx | 0 x < MaxUnroll}

These correspond to the nodes in the graph in Figure 4. We
then define contexts as functions that associate a tag with each
loop variable, i.e., Ctxts = LoopVar ! Tags . Then, peelx
means that the loop variable has value x, and unrollx means
that value of the loop variable is in {MaxPeel +MaxUnroll ·
n+ x | n 2 N}.

To avoid the precision loss at joins we lift our abstract do-
main to a context-sensitive domain \SymCaches that associates
a symbolic cache state with each context:

\SymCaches = Ctxts ,! \SymCache

These abstract states are updated as follows upon statements:

\updateS(b�, entry i) := �ctx 2 Ctxts.
(F

t2Tags
\updateS(b�(ctx [i 7! t]), entry i) if ctx (i) = peel0

? otherwise

Entering loop i corresponds to setting the loop variable i to
zero. Thus, independently, of the previous tag for i, the new
tag for i will be peel0. The abstract value for this context
is obtained by merging the values of all predecessor contexts,
where i may be arbitrary (first case). Contexts in which the tag
for i is not peel0 are unreachable via entry edges (second case).

To define the update upon back edges we first capture the
structure of the graph in Figure 4 via its set of edges E :

E := {(peelx, peelx+1) | 0 x < MaxPeel � 1}
[{(peelMaxPeel�1, unroll0)}
[{(unrollx, unrollx+1) | 0 x < MaxUnroll � 1}
[{(unrollMaxUnroll�1, unroll0)}

The set E captures how contexts evolve when taking back
edges. Based on E we define \updateS(b�, backedgei):

\updateS(b�, backedgei) := �ctx 2 Ctxts.
G

ctx(i)=t0

(t,t0)2E

\updateS(b�(ctx [i 7! t]), backedgei)

Assume statements and memory accesses do not modify
loop variables. Thus, the update is simply applied pointwise
to each context.

B. Refining Alias Relations using Context Information

Contexts provide information about the values of loop vari-
ables, which can be used to deduce the alignment of MCRs.
To do so, we rely on an auxiliary function eval mod (e, ctx)
that partially evaluates an MCR e in context ctx obtaining one
of the following results:

• Exact(n), if the MCR is known to be exactly equal to n
in context ctx .

• Mod(n, p), if the MCR is known to be equal to n
modulo p in context ctx .

• Unknown if no such statement can be deduced.

Loop peeling

Context-sensitive Analysis

11

peel0

{0}Loop iterations:

Contexts:
peel1

{1}

peel2

{2}

peel3

{3}

unroll0

{4, 6, 8, . . . }

unroll1

{5, 7, 9, . . . }

Fig. 4: Peeling and unrolling contexts and their corresponding loop iterations.

VI. LOOP PEELING AND UNROLLING

A common problem that cache analyses by abstract inter-
pretation suffer from is the loss of precision due to joins at
the entry of loops. Indeed, the memory blocks loaded before
a loop and within a loop usually differ. As a consequence the
abstract cache states entering the loop and upon back edges
from within the loop often have few, if any, memory blocks in
common. A sound analysis can thus not conclude any blocks
to be cached at the beginning of the loop body. One can avoid
this issue by loop peeling, where the analysis distinguishes
the first few iterations of the loop from the rest of the loop
and maintains separate analysis information for each of these
iterations. This allows the analysis to capture the “warm-up
effect” commonly observed in loops iterating across arrays.
The example in Figure 4 shows a loop for which the first
16 loop iterations are peeled, which is the optimal amount of
peeling for our example from Section III.

Another problem that the basic analysis described in
Section V suffers from is the lack of alignment information
when establishing the alias relations between MCRs. For
example, one cannot tell whether A[i] and A[i + 1] map to
the same block if no information about the alignment of A[i]
is available. Indeed, it can happen that A[i] and A[i + 1] are
separated by a block boundary when A[i] mod BS = BS �1.
The necessary alignment information can be obtained by
unrolling loops, i.e. distinguishing consecutive loop iterations
from each other. In the example in Figure 4 the loop is
unrolled twice, distinguishing even from odd loop iterations.
In our example from Section III we assumed a block size of
8 bytes and array cells of size 4 bytes. Provided knowledge
about the base address of the array A, with loop unrolling,
the alignment of accesses to A[i] is fully determined.

A. Context-Sensitive Analysis

Given peeling and unrolling depths MaxPeel � 0 and
MaxUnroll > 0, we define the following set of tags:

Tags := {peelx | 0 x < MaxPeel} [
{unrollx | 0 x < MaxUnroll}

These correspond to the nodes in the graph in Figure 4. We
then define contexts as functions that associate a tag with each
loop variable, i.e., Ctxts = LoopVar ! Tags . Then, peelx
means that the loop variable has value x, and unrollx means
that value of the loop variable is in {MaxPeel +MaxUnroll ·
n+ x | n 2 N}.

To avoid the precision loss at joins we lift our abstract do-
main to a context-sensitive domain \SymCaches that associates
a symbolic cache state with each context:

\SymCaches = Ctxts ,! \SymCache

These abstract states are updated as follows upon statements:

\updateS(b�, entry i) := �ctx 2 Ctxts.
(F

t2Tags
\updateS(b�(ctx [i 7! t]), entry i) if ctx (i) = peel0

? otherwise

Entering loop i corresponds to setting the loop variable i to
zero. Thus, independently, of the previous tag for i, the new
tag for i will be peel0. The abstract value for this context
is obtained by merging the values of all predecessor contexts,
where i may be arbitrary (first case). Contexts in which the tag
for i is not peel0 are unreachable via entry edges (second case).

To define the update upon back edges we first capture the
structure of the graph in Figure 4 via its set of edges E :

E := {(peelx, peelx+1) | 0 x < MaxPeel � 1}
[{(peelMaxPeel�1, unroll0)}
[{(unrollx, unrollx+1) | 0 x < MaxUnroll � 1}
[{(unrollMaxUnroll�1, unroll0)}

The set E captures how contexts evolve when taking back
edges. Based on E we define \updateS(b�, backedgei):

\updateS(b�, backedgei) := �ctx 2 Ctxts.
G

ctx(i)=t0

(t,t0)2E

\updateS(b�(ctx [i 7! t]), backedgei)

Assume statements and memory accesses do not modify
loop variables. Thus, the update is simply applied pointwise
to each context.

B. Refining Alias Relations using Context Information

Contexts provide information about the values of loop vari-
ables, which can be used to deduce the alignment of MCRs.
To do so, we rely on an auxiliary function eval mod (e, ctx)
that partially evaluates an MCR e in context ctx obtaining one
of the following results:

• Exact(n), if the MCR is known to be exactly equal to n
in context ctx .

• Mod(n, p), if the MCR is known to be equal to n
modulo p in context ctx .

• Unknown if no such statement can be deduced.

Loop peeling

Loop unrolling

Context-sensitive Analysis

11

peel0

{0}Loop iterations:

Contexts:
peel1

{1}

peel2

{2}

peel3

{3}

unroll0

{4, 6, 8, . . . }

unroll1

{5, 7, 9, . . . }

Fig. 4: Peeling and unrolling contexts and their corresponding loop iterations.

VI. LOOP PEELING AND UNROLLING

A common problem that cache analyses by abstract inter-
pretation suffer from is the loss of precision due to joins at
the entry of loops. Indeed, the memory blocks loaded before
a loop and within a loop usually differ. As a consequence the
abstract cache states entering the loop and upon back edges
from within the loop often have few, if any, memory blocks in
common. A sound analysis can thus not conclude any blocks
to be cached at the beginning of the loop body. One can avoid
this issue by loop peeling, where the analysis distinguishes
the first few iterations of the loop from the rest of the loop
and maintains separate analysis information for each of these
iterations. This allows the analysis to capture the “warm-up
effect” commonly observed in loops iterating across arrays.
The example in Figure 4 shows a loop for which the first
16 loop iterations are peeled, which is the optimal amount of
peeling for our example from Section III.

Another problem that the basic analysis described in
Section V suffers from is the lack of alignment information
when establishing the alias relations between MCRs. For
example, one cannot tell whether A[i] and A[i + 1] map to
the same block if no information about the alignment of A[i]
is available. Indeed, it can happen that A[i] and A[i + 1] are
separated by a block boundary when A[i] mod BS = BS �1.
The necessary alignment information can be obtained by
unrolling loops, i.e. distinguishing consecutive loop iterations
from each other. In the example in Figure 4 the loop is
unrolled twice, distinguishing even from odd loop iterations.
In our example from Section III we assumed a block size of
8 bytes and array cells of size 4 bytes. Provided knowledge
about the base address of the array A, with loop unrolling,
the alignment of accesses to A[i] is fully determined.

A. Context-Sensitive Analysis

Given peeling and unrolling depths MaxPeel � 0 and
MaxUnroll > 0, we define the following set of tags:

Tags := {peelx | 0 x < MaxPeel} [
{unrollx | 0 x < MaxUnroll}

These correspond to the nodes in the graph in Figure 4. We
then define contexts as functions that associate a tag with each
loop variable, i.e., Ctxts = LoopVar ! Tags . Then, peelx
means that the loop variable has value x, and unrollx means
that value of the loop variable is in {MaxPeel +MaxUnroll ·
n+ x | n 2 N}.

To avoid the precision loss at joins we lift our abstract do-
main to a context-sensitive domain \SymCaches that associates
a symbolic cache state with each context:

\SymCaches = Ctxts ,! \SymCache

These abstract states are updated as follows upon statements:

\updateS(b�, entry i) := �ctx 2 Ctxts.
(F

t2Tags
\updateS(b�(ctx [i 7! t]), entry i) if ctx (i) = peel0

? otherwise

Entering loop i corresponds to setting the loop variable i to
zero. Thus, independently, of the previous tag for i, the new
tag for i will be peel0. The abstract value for this context
is obtained by merging the values of all predecessor contexts,
where i may be arbitrary (first case). Contexts in which the tag
for i is not peel0 are unreachable via entry edges (second case).

To define the update upon back edges we first capture the
structure of the graph in Figure 4 via its set of edges E :

E := {(peelx, peelx+1) | 0 x < MaxPeel � 1}
[{(peelMaxPeel�1, unroll0)}
[{(unrollx, unrollx+1) | 0 x < MaxUnroll � 1}
[{(unrollMaxUnroll�1, unroll0)}

The set E captures how contexts evolve when taking back
edges. Based on E we define \updateS(b�, backedgei):

\updateS(b�, backedgei) := �ctx 2 Ctxts.
G

ctx(i)=t0

(t,t0)2E

\updateS(b�(ctx [i 7! t]), backedgei)

Assume statements and memory accesses do not modify
loop variables. Thus, the update is simply applied pointwise
to each context.

B. Refining Alias Relations using Context Information

Contexts provide information about the values of loop vari-
ables, which can be used to deduce the alignment of MCRs.
To do so, we rely on an auxiliary function eval mod (e, ctx)
that partially evaluates an MCR e in context ctx obtaining one
of the following results:

• Exact(n), if the MCR is known to be exactly equal to n
in context ctx .

• Mod(n, p), if the MCR is known to be equal to n
modulo p in context ctx .

• Unknown if no such statement can be deduced.

Loop peeling

Loop unrolling

Context-sensitive Analysis

Peeling and unrolling parameters
• influence analysis accuracy + cost
• chosen heuristically based on cache geometry + loop structure

11

peel0

{0}Loop iterations:

Contexts:
peel1

{1}

peel2

{2}

peel3

{3}

unroll0

{4, 6, 8, . . . }

unroll1

{5, 7, 9, . . . }

Fig. 4: Peeling and unrolling contexts and their corresponding loop iterations.

VI. LOOP PEELING AND UNROLLING

A common problem that cache analyses by abstract inter-
pretation suffer from is the loss of precision due to joins at
the entry of loops. Indeed, the memory blocks loaded before
a loop and within a loop usually differ. As a consequence the
abstract cache states entering the loop and upon back edges
from within the loop often have few, if any, memory blocks in
common. A sound analysis can thus not conclude any blocks
to be cached at the beginning of the loop body. One can avoid
this issue by loop peeling, where the analysis distinguishes
the first few iterations of the loop from the rest of the loop
and maintains separate analysis information for each of these
iterations. This allows the analysis to capture the “warm-up
effect” commonly observed in loops iterating across arrays.
The example in Figure 4 shows a loop for which the first
16 loop iterations are peeled, which is the optimal amount of
peeling for our example from Section III.

Another problem that the basic analysis described in
Section V suffers from is the lack of alignment information
when establishing the alias relations between MCRs. For
example, one cannot tell whether A[i] and A[i + 1] map to
the same block if no information about the alignment of A[i]
is available. Indeed, it can happen that A[i] and A[i + 1] are
separated by a block boundary when A[i] mod BS = BS �1.
The necessary alignment information can be obtained by
unrolling loops, i.e. distinguishing consecutive loop iterations
from each other. In the example in Figure 4 the loop is
unrolled twice, distinguishing even from odd loop iterations.
In our example from Section III we assumed a block size of
8 bytes and array cells of size 4 bytes. Provided knowledge
about the base address of the array A, with loop unrolling,
the alignment of accesses to A[i] is fully determined.

A. Context-Sensitive Analysis

Given peeling and unrolling depths MaxPeel � 0 and
MaxUnroll > 0, we define the following set of tags:

Tags := {peelx | 0 x < MaxPeel} [
{unrollx | 0 x < MaxUnroll}

These correspond to the nodes in the graph in Figure 4. We
then define contexts as functions that associate a tag with each
loop variable, i.e., Ctxts = LoopVar ! Tags . Then, peelx
means that the loop variable has value x, and unrollx means
that value of the loop variable is in {MaxPeel +MaxUnroll ·
n+ x | n 2 N}.

To avoid the precision loss at joins we lift our abstract do-
main to a context-sensitive domain \SymCaches that associates
a symbolic cache state with each context:

\SymCaches = Ctxts ,! \SymCache

These abstract states are updated as follows upon statements:

\updateS(b�, entry i) := �ctx 2 Ctxts.
(F

t2Tags
\updateS(b�(ctx [i 7! t]), entry i) if ctx (i) = peel0

? otherwise

Entering loop i corresponds to setting the loop variable i to
zero. Thus, independently, of the previous tag for i, the new
tag for i will be peel0. The abstract value for this context
is obtained by merging the values of all predecessor contexts,
where i may be arbitrary (first case). Contexts in which the tag
for i is not peel0 are unreachable via entry edges (second case).

To define the update upon back edges we first capture the
structure of the graph in Figure 4 via its set of edges E :

E := {(peelx, peelx+1) | 0 x < MaxPeel � 1}
[{(peelMaxPeel�1, unroll0)}
[{(unrollx, unrollx+1) | 0 x < MaxUnroll � 1}
[{(unrollMaxUnroll�1, unroll0)}

The set E captures how contexts evolve when taking back
edges. Based on E we define \updateS(b�, backedgei):

\updateS(b�, backedgei) := �ctx 2 Ctxts.
G

ctx(i)=t0

(t,t0)2E

\updateS(b�(ctx [i 7! t]), backedgei)

Assume statements and memory accesses do not modify
loop variables. Thus, the update is simply applied pointwise
to each context.

B. Refining Alias Relations using Context Information

Contexts provide information about the values of loop vari-
ables, which can be used to deduce the alignment of MCRs.
To do so, we rely on an auxiliary function eval mod (e, ctx)
that partially evaluates an MCR e in context ctx obtaining one
of the following results:

• Exact(n), if the MCR is known to be exactly equal to n
in context ctx .

• Mod(n, p), if the MCR is known to be equal to n
modulo p in context ctx .

• Unknown if no such statement can be deduced.

12

Does it work?

12

Does it work?

Accuracy: Does symbolic analysis improve
bounds on cache misses?

12

Does it work?

Accuracy: Does symbolic analysis improve
bounds on cache misses?

Scalability: How does symbolic analysis runtime
scale with program loop bounds?

Accuracy

13

Accuracy

13

#old misses
#new misses

Accuracy

13

#old misses
#new misses

time limit
= 1 hour

Accuracy

13

#old misses
#new misses

time limit
= 1 hour

PolyBench = Polyhedral Benchmark Suite

1

3

10

30

nu
ssi

no
v

de
ric

he

ge
su

mmv

se
ide

l-2
d mvt

he
at-

3d
du

rbi
n

lud
cm

p

flo
yd

-w
ars

ha
ll ad

i
ata

x

ch
ole

sk
y

do
itg

en bic
g

ge
mve

r
ge

mm syr
k
2m

m
trm

m lu

co
va

ria
nc

e
3m

m

gra
msch

midt

jac
ob

i-2
d
sym

m
syr

2k

fdt
d-2

d
tris

olv

co
rre

lat
ion

jac
ob

i-1
d

Benchmark

M
is

se
s

fa
ct

or

Accuracy

13

#old misses
#new misses

time limit
= 1 hour

PolyBench = Polyhedral Benchmark Suite

Scalability

14

Analysis time
(seconds)

PolyBench = Polyhedral Benchmark Suite

Data size
XS to XL

Scalability

14

1

10

100

1000

du
rbi

n

jac
ob

i-1
d ad

i
tris

olv

jac
ob

i-2
d

fdt
d-2

d

se
ide

l-2
d

nu
ssi

no
v

he
at-

3d
sym

m

flo
yd

-w
ars

ha
ll

co
va

ria
nc

e
trm

m lu

ch
ole

sk
y

lud
cm

p

de
ric

he

gra
msch

midtata
x

co
rre

lat
ion

ge
mve

r

do
itg

en bic
g mvt

syr
2k

ge
su

mmv
ge

mm
2m

m
3m

m syr
k

Benchmark

An
al

ys
is

 ru
nt

im
e

(in
 s

)
Analysis time

(seconds)

PolyBench = Polyhedral Benchmark Suite

Data size
XS to XL

• Formalization as Abstract Interpretation
• Multivariate chains of recurrences to

represent symbolic expressions
• Implementation on top of LLVM
• Discussion of related work

In our paper

• Formalization as Abstract Interpretation
• Multivariate chains of recurrences to

represent symbolic expressions
• Implementation on top of LLVM
• Discussion of related work

In our paper

• Formalization as Abstract Interpretation
• Multivariate chains of recurrences to

represent symbolic expressions
• Implementation on top of LLVM
• Discussion of related work

In our paper

• Formalization as Abstract Interpretation
• Multivariate chains of recurrences to

represent symbolic expressions
• Implementation on top of LLVM
• Discussion of related work

In our paper

• Formalization as Abstract Interpretation
• Multivariate chains of recurrences to

represent symbolic expressions
• Implementation on top of LLVM
• Discussion of related work

In our paper

• Formalization as Abstract Interpretation
• Multivariate chains of recurrences to

represent symbolic expressions
• Implementation on top of LLVM
• Discussion of related work

Questions?

In our paper

