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Instruction Cache Analysis
Source program

while (x < 10) {
x++; //a
if (x < 5)

x++; //b
else

y--; //c
}
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int A[100]; 
for (int x = 0; x < 100; x++) 

sum += A[x] 
for (int y = 99; y >= 0; y--) 

sum -= A[y] 
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int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei
entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal
to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
memory blocks, it associates these bounds with symbolic
memory blocks. A peculiar consequence of this abstraction is
that symbolic cache states also need to be updated when the
value of a loop variable changes. For example, if the back edge
of the first loop is taken to move from iteration 15 (17, 19, . . . )
to iteration 16 (18, . . . ), then the symbolic cache state needs to

Source program
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program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal
to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
memory blocks, it associates these bounds with symbolic
memory blocks. A peculiar consequence of this abstraction is
that symbolic cache states also need to be updated when the
value of a loop variable changes. For example, if the back edge
of the first loop is taken to move from iteration 15 (17, 19, . . . )
to iteration 16 (18, . . . ), then the symbolic cache state needs to
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program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal
to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
memory blocks, it associates these bounds with symbolic
memory blocks. A peculiar consequence of this abstraction is
that symbolic cache states also need to be updated when the
value of a loop variable changes. For example, if the back edge
of the first loop is taken to move from iteration 15 (17, 19, . . . )
to iteration 16 (18, . . . ), then the symbolic cache state needs to
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Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis

a) Symbolic Control-Flow Graphs: We have seen that
the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis

a) Symbolic Control-Flow Graphs: We have seen that
the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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for (int x = 0; x < 100; x++)
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for (int y = 99; y >= 0; y--)
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Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

Symbolic CFG

6

Loop variables capture iteration counts, here i and j.

Semantics



int A[100];
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Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.
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assumei,100

entryj
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(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]
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{A[0], A[1], A[2], . . . }
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(b) Plain control-flow-graph abstraction.
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entryj
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(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]
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Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

8

Cache Analysis: Intuitively
-
-

A[0]
-

A[0]
-

A[0]
-

Assumptions:
- fully-associative cache
- associativity 2
- least-recently-used
- 2 array cells per cache line

A[0]
-

A[2]
A[0]

A[2]
A[0]

A[2]
A[0]

j = 0, A[99] j = 1, A[98] j = 99, A[0]j = 98, A[1]…

i = 0, A[0] i = 1, A[1] i = 3, A[3]i = 2, A[2] …

Symbolic CFG



int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]
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Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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for (int x = 0; x < 100; x++)
sum += A[x]
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Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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for (int x = 0; x < 100; x++)
sum += A[x]
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Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.
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Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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for (int y = 99; y >= 0; y--)
sum -= A[y]
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Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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- fully-associative cache
- associativity 2
- least-recently-used
- 2 array cells per cache line

1. Cache states depend on loop iteration

Symbolic CFG



Challenges in 
Data Cache Analysis II

int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete

Assumptions:
- fully-associative cache
- associativity 2
- least-recently-used
- 2 array cells per cache line

2. Behavior is phase dependent:
• Warm-up phase:

hits/misses depending on initial state
• Steady-state phase:

repetitive patterns 

1. Cache states depend on loop iteration
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int A[100];

for (int x = 0; x < 100; x++)
sum += A[x]

for (int y = 99; y >= 0; y--)
sum -= A[y]

(a) Iteration-dependent data accesses.

{A[0], A[1], A[2], . . . }

{A[0], A[1], A[2], . . . }

(b) Plain control-flow-graph abstraction.

A[i]

backedgei

entry i

assumei,100

entryj
A[99� j]

backedgej

assumej,100

(c) Symbolic control-flow-graph abstraction.

Fig. 1: Simple program and its plain and symbolic control-flow-graph abstractions.

program. While this abstraction is adequate for instruction
cache analysis as the same instructions are accessed in each
loop iteration, it is inadequate for data cache analysis, as the
link between the loop iteration and the accessed address is
lost. As a consequence, it is impossible to predict any of the
memory accesses in the program to be cache hits or misses.

If the entire set of memory blocks that can potentially be
accessed fits into the cache, then persistence analysis [16],
[17], [18], [19], [15] may deduce that each of these blocks
results in at most one cache miss. However, in our example,
the array A does not fully fit into the cache, and so persistence
analysis is of no use here.

C. Symbolic Control-Flow Graphs and Cache Analysis
a) Symbolic Control-Flow Graphs: We have seen that

the plain CFG abstraction is inadequate for data cache anal-
ysis, because the link between loop iterations and accessed
memory blocks is lost. Thus, our first step towards accurate
data cache analysis is to employ what we coin symbolic CFGs,
a simple yet powerful program representation that concisely
captures the link between loop iterations and accessed data.
Symbolic CFGs are our formalization of the output of LLVM’s
ScalarEvolution Analysis [6], [7].

Figure 1c shows a symbolic CFG for our example
program. In a symbolic CFG—where possible—the addresses
of memory accesses are expressed in terms of the loop
iterations of their enclosing loops. To this end, symbolic
CFGs make it explicit when a loop is entered and when a
new loop iteration begins. These transitions are indicated
by annotating edges with entry i and backedgei, where i
is the identifier of a loop. Consider the edge annotated
with A[99 � j]. This is to be interpreted as follows: In an
execution of the program, let �(j) be the number of times
that backedgej has been traversed since the last time entryj

has been taken. Then, the accessed address is A[99� �(j)].
For some loops, ScalarEvolution is also able to derive the

exact number of times that a loop’s back edges are taken from
entry to exit. To express such information, symbolic CFGs may
contain assumei,e statements, where e is an expression that
may refer to loop variables other than i itself. An edge anno-
tated with assumei,e can only be taken if the value of i is equal

to the value of expression e. In our example, the back edges of
both loops are taken exactly 100 times, and so the exit edges of
both loops are annotated accordingly with assume statements.

We define symbolic CFGs in Section IV. There we also
discuss multivariate chains of recurrences [8], [9], [20], which
are used to represent access expressions and loop bounds.

b) Symbolic Cache Analysis: Symbolic CFGs are useful
for data cache analysis as they capture a program’s memory
access behavior more precisely than plain CFGs. In fact, in our
example, the symbolic CFG perfectly captures the sequence
of memory accesses generated by the program.

It remains to define a static analysis that can efficiently
exploit this information. Simply applying Ferdinand’s must
analysis would not be fruitful as the underlying abstraction
does not capture the relation between loop iterations and
cache states. A relatively straightforward approach would be to
virtually unroll the loops for the sake of the analysis, resulting
in an exploded plain CFG in which each edge could once more
be annotated with a concrete memory access. Ferdinand’s must
analysis could then be employed successfully on this exploded
plain CFG. However, this approach would be very costly, in
particular for programs with large loop bounds. We are thus
seeking a precise analysis whose runtime is independent of
the loop bounds of the program.

To this end, our first basic idea are symbolic cache states that
capture how cache states depend on the loop iteration. To moti-
vate symbolic cache states, consider Figures 2a and 2b, which
show the concrete cache states at the ends of iterations 15 and
17 of the first loop from our example program. As we assume
cache lines of size 8 bytes, each line contains two cells of the
array. We represent each memory block by the first array cell
mapping to that block. Our idea is to represent memory blocks
symbolically in terms of the values of loop variables. For
example, A[14] can be expressed as A[i�1] if i’s value is 15.
If we represent the states from Figures 2a and 2b in this way
we arrive at the symbolic cache state depicted in Figure 2c.
Furthermore, the same symbolic state will be reached at the
end of each odd loop iteration, starting from iteration 15.

Like Ferdinand’s must analysis our symbolic data cache
analysis determines upper bounds on the ages of memory
blocks. However, instead of associating bounds with concrete
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- least-recently-used
- 2 array cells per cache line
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VI. LOOP PEELING AND UNROLLING

A common problem that cache analyses by abstract inter-
pretation suffer from is the loss of precision due to joins at
the entry of loops. Indeed, the memory blocks loaded before
a loop and within a loop usually differ. As a consequence the
abstract cache states entering the loop and upon back edges
from within the loop often have few, if any, memory blocks in
common. A sound analysis can thus not conclude any blocks
to be cached at the beginning of the loop body. One can avoid
this issue by loop peeling, where the analysis distinguishes
the first few iterations of the loop from the rest of the loop
and maintains separate analysis information for each of these
iterations. This allows the analysis to capture the “warm-up
effect” commonly observed in loops iterating across arrays.
The example in Figure 4 shows a loop for which the first
16 loop iterations are peeled, which is the optimal amount of
peeling for our example from Section III.

Another problem that the basic analysis described in
Section V suffers from is the lack of alignment information
when establishing the alias relations between MCRs. For
example, one cannot tell whether A[i] and A[i + 1] map to
the same block if no information about the alignment of A[i]
is available. Indeed, it can happen that A[i] and A[i + 1] are
separated by a block boundary when A[i] mod BS = BS �1.
The necessary alignment information can be obtained by
unrolling loops, i.e. distinguishing consecutive loop iterations
from each other. In the example in Figure 4 the loop is
unrolled twice, distinguishing even from odd loop iterations.
In our example from Section III we assumed a block size of
8 bytes and array cells of size 4 bytes. Provided knowledge
about the base address of the array A, with loop unrolling,
the alignment of accesses to A[i] is fully determined.

A. Context-Sensitive Analysis

Given peeling and unrolling depths MaxPeel � 0 and
MaxUnroll > 0, we define the following set of tags:

Tags := {peelx | 0  x < MaxPeel} [
{unrollx | 0  x < MaxUnroll}

These correspond to the nodes in the graph in Figure 4. We
then define contexts as functions that associate a tag with each
loop variable, i.e., Ctxts = LoopVar ! Tags . Then, peelx
means that the loop variable has value x, and unrollx means
that value of the loop variable is in {MaxPeel +MaxUnroll ·
n+ x | n 2 N}.

To avoid the precision loss at joins we lift our abstract do-
main to a context-sensitive domain \SymCaches that associates
a symbolic cache state with each context:

\SymCaches = Ctxts ,! \SymCache

These abstract states are updated as follows upon statements:

\updateS(b�, entry i) := �ctx 2 Ctxts.
(F

t2Tags
\updateS(b�(ctx [i 7! t]), entry i) if ctx (i) = peel0

? otherwise

Entering loop i corresponds to setting the loop variable i to
zero. Thus, independently, of the previous tag for i, the new
tag for i will be peel0. The abstract value for this context
is obtained by merging the values of all predecessor contexts,
where i may be arbitrary (first case). Contexts in which the tag
for i is not peel0 are unreachable via entry edges (second case).

To define the update upon back edges we first capture the
structure of the graph in Figure 4 via its set of edges E :

E := {(peelx, peelx+1) | 0  x < MaxPeel � 1}
[ {(peelMaxPeel�1, unroll0)}
[ {(unrollx, unrollx+1) | 0  x < MaxUnroll � 1}
[ {(unrollMaxUnroll�1, unroll0)}

The set E captures how contexts evolve when taking back
edges. Based on E we define \updateS(b�, backedgei):

\updateS(b�, backedgei) := �ctx 2 Ctxts.
G

ctx(i)=t0

(t,t0)2E

\updateS(b�(ctx [i 7! t]), backedgei)

Assume statements and memory accesses do not modify
loop variables. Thus, the update is simply applied pointwise
to each context.

B. Refining Alias Relations using Context Information

Contexts provide information about the values of loop vari-
ables, which can be used to deduce the alignment of MCRs.
To do so, we rely on an auxiliary function eval mod (e, ctx )
that partially evaluates an MCR e in context ctx obtaining one
of the following results:

• Exact(n), if the MCR is known to be exactly equal to n
in context ctx .

• Mod(n, p), if the MCR is known to be equal to n
modulo p in context ctx .

• Unknown if no such statement can be deduced.
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? otherwise

Entering loop i corresponds to setting the loop variable i to
zero. Thus, independently, of the previous tag for i, the new
tag for i will be peel0. The abstract value for this context
is obtained by merging the values of all predecessor contexts,
where i may be arbitrary (first case). Contexts in which the tag
for i is not peel0 are unreachable via entry edges (second case).

To define the update upon back edges we first capture the
structure of the graph in Figure 4 via its set of edges E :

E := {(peelx, peelx+1) | 0  x < MaxPeel � 1}
[ {(peelMaxPeel�1, unroll0)}
[ {(unrollx, unrollx+1) | 0  x < MaxUnroll � 1}
[ {(unrollMaxUnroll�1, unroll0)}

The set E captures how contexts evolve when taking back
edges. Based on E we define \updateS(b�, backedgei):

\updateS(b�, backedgei) := �ctx 2 Ctxts.
G

ctx(i)=t0
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Assume statements and memory accesses do not modify
loop variables. Thus, the update is simply applied pointwise
to each context.

B. Refining Alias Relations using Context Information

Contexts provide information about the values of loop vari-
ables, which can be used to deduce the alignment of MCRs.
To do so, we rely on an auxiliary function eval mod (e, ctx )
that partially evaluates an MCR e in context ctx obtaining one
of the following results:

• Exact(n), if the MCR is known to be exactly equal to n
in context ctx .
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the entry of loops. Indeed, the memory blocks loaded before
a loop and within a loop usually differ. As a consequence the
abstract cache states entering the loop and upon back edges
from within the loop often have few, if any, memory blocks in
common. A sound analysis can thus not conclude any blocks
to be cached at the beginning of the loop body. One can avoid
this issue by loop peeling, where the analysis distinguishes
the first few iterations of the loop from the rest of the loop
and maintains separate analysis information for each of these
iterations. This allows the analysis to capture the “warm-up
effect” commonly observed in loops iterating across arrays.
The example in Figure 4 shows a loop for which the first
16 loop iterations are peeled, which is the optimal amount of
peeling for our example from Section III.

Another problem that the basic analysis described in
Section V suffers from is the lack of alignment information
when establishing the alias relations between MCRs. For
example, one cannot tell whether A[i] and A[i + 1] map to
the same block if no information about the alignment of A[i]
is available. Indeed, it can happen that A[i] and A[i + 1] are
separated by a block boundary when A[i] mod BS = BS �1.
The necessary alignment information can be obtained by
unrolling loops, i.e. distinguishing consecutive loop iterations
from each other. In the example in Figure 4 the loop is
unrolled twice, distinguishing even from odd loop iterations.
In our example from Section III we assumed a block size of
8 bytes and array cells of size 4 bytes. Provided knowledge
about the base address of the array A, with loop unrolling,
the alignment of accesses to A[i] is fully determined.

A. Context-Sensitive Analysis

Given peeling and unrolling depths MaxPeel � 0 and
MaxUnroll > 0, we define the following set of tags:

Tags := {peelx | 0  x < MaxPeel} [
{unrollx | 0  x < MaxUnroll}

These correspond to the nodes in the graph in Figure 4. We
then define contexts as functions that associate a tag with each
loop variable, i.e., Ctxts = LoopVar ! Tags . Then, peelx
means that the loop variable has value x, and unrollx means
that value of the loop variable is in {MaxPeel +MaxUnroll ·
n+ x | n 2 N}.

To avoid the precision loss at joins we lift our abstract do-
main to a context-sensitive domain \SymCaches that associates
a symbolic cache state with each context:

\SymCaches = Ctxts ,! \SymCache

These abstract states are updated as follows upon statements:

\updateS(b�, entry i) := �ctx 2 Ctxts.
(F

t2Tags
\updateS(b�(ctx [i 7! t]), entry i) if ctx (i) = peel0

? otherwise

Entering loop i corresponds to setting the loop variable i to
zero. Thus, independently, of the previous tag for i, the new
tag for i will be peel0. The abstract value for this context
is obtained by merging the values of all predecessor contexts,
where i may be arbitrary (first case). Contexts in which the tag
for i is not peel0 are unreachable via entry edges (second case).

To define the update upon back edges we first capture the
structure of the graph in Figure 4 via its set of edges E :

E := {(peelx, peelx+1) | 0  x < MaxPeel � 1}
[ {(peelMaxPeel�1, unroll0)}
[ {(unrollx, unrollx+1) | 0  x < MaxUnroll � 1}
[ {(unrollMaxUnroll�1, unroll0)}

The set E captures how contexts evolve when taking back
edges. Based on E we define \updateS(b�, backedgei):

\updateS(b�, backedgei) := �ctx 2 Ctxts.
G

ctx(i)=t0

(t,t0)2E

\updateS(b�(ctx [i 7! t]), backedgei)

Assume statements and memory accesses do not modify
loop variables. Thus, the update is simply applied pointwise
to each context.

B. Refining Alias Relations using Context Information

Contexts provide information about the values of loop vari-
ables, which can be used to deduce the alignment of MCRs.
To do so, we rely on an auxiliary function eval mod (e, ctx )
that partially evaluates an MCR e in context ctx obtaining one
of the following results:

• Exact(n), if the MCR is known to be exactly equal to n
in context ctx .

• Mod(n, p), if the MCR is known to be equal to n
modulo p in context ctx .

• Unknown if no such statement can be deduced.
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from within the loop often have few, if any, memory blocks in
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separated by a block boundary when A[i] mod BS = BS �1.
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unrolled twice, distinguishing even from odd loop iterations.
In our example from Section III we assumed a block size of
8 bytes and array cells of size 4 bytes. Provided knowledge
about the base address of the array A, with loop unrolling,
the alignment of accesses to A[i] is fully determined.
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MaxUnroll > 0, we define the following set of tags:
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then define contexts as functions that associate a tag with each
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means that the loop variable has value x, and unrollx means
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n+ x | n 2 N}.

To avoid the precision loss at joins we lift our abstract do-
main to a context-sensitive domain \SymCaches that associates
a symbolic cache state with each context:
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These abstract states are updated as follows upon statements:

\updateS(b�, entry i) := �ctx 2 Ctxts.
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? otherwise

Entering loop i corresponds to setting the loop variable i to
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ables, which can be used to deduce the alignment of MCRs.
To do so, we rely on an auxiliary function eval mod (e, ctx )
that partially evaluates an MCR e in context ctx obtaining one
of the following results:
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