
Spectector: Principled detection
of speculative information flows

Jan Reineke @

Joint work with
Marco Guarnieri, Jose Morales, Andres Sanchez @ IMDEA Software, Madrid
Boris Köpf @ Microsoft Research, Cambridge, UK

Supported by Intel Strategic Research Alliance (ISRA)  
“Information Flow Tracking across the Hardware-Software Boundary”

�2
P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, Y. Yarom —  
Spectre Attacks: Exploiting Speculative Execution — S&P 2019

�2

Exploits speculative execution to
leak sensitive information

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, Y. Yarom —  
Spectre Attacks: Exploiting Speculative Execution — S&P 2019

�2

Exploits speculative execution to
leak sensitive information

Almost all modern processors

 are affected

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, Y. Yarom —  
Spectre Attacks: Exploiting Speculative Execution — S&P 2019

�3

Countermeasures

�3

Countermeasures

Long Term: Co-Design of Software and Hardware countermeasures

�3

Countermeasures

Long Term: Co-Design of Software and Hardware countermeasures

Short and Mid Term: Software countermeasures

In particular: Compiler-level countermeasures

✓ Example: insert “fences” to selectively terminate speculative execution

✓ Implemented in major compilers (Microsoft Visual C++, Intel ICC, Clang)

�3

Countermeasures

Long Term: Co-Design of Software and Hardware countermeasures

Short and Mid Term: Software countermeasures

In particular: Compiler-level countermeasures

✓ Example: insert “fences” to selectively terminate speculative execution

✓ Implemented in major compilers (Microsoft Visual C++, Intel ICC, Clang)

PROBLEM SOLVED ?

Compiler-level countermeasures

�4

Compiler-level countermeasures

�4

“The countermeasure […] is conceptually straightforward

 but challenging in practice”

Compiler-level countermeasures

�4

“The countermeasure […] is conceptually straightforward

 but challenging in practice”

“compiler […] produces unsafe code when the

 static analyzer is unable to determine whether

 a code pattern will be exploitable”

Compiler-level countermeasures

�4

“The countermeasure […] is conceptually straightforward

 but challenging in practice”

“compiler […] produces unsafe code when the

 static analyzer is unable to determine whether

 a code pattern will be exploitable”

"there is no guarantee that all possible instances of

[Spectre] will be instrumented”

Compiler-level countermeasures

�4
Bottom line: No guarantees!

“The countermeasure […] is conceptually straightforward

 but challenging in practice”

“compiler […] produces unsafe code when the

 static analyzer is unable to determine whether

 a code pattern will be exploitable”

"there is no guarantee that all possible instances of

[Spectre] will be instrumented”

Goals

�5

Goals

�5

1. Introduce semantic notion of security  
 against speculative execution attacks

Goals

�5

1. Introduce semantic notion of security  
 against speculative execution attacks

2. Static analysis to detect vulnerability  
 or to prove security

Outline

�6

1. Speculative execution attacks 

2. Speculative non-interference

3. Spectector: Detecting speculative leaks 

4. Challenges

1. Speculative execution attacks

�7

Background: Speculative execution

�8

Background: Speculative execution

• Predict instructions’ outcomes and speculatively continue execution 

�8

Background: Speculative execution

• Predict instructions’ outcomes and speculatively continue execution 

• Rollback changes if speculation was wrong

�8

Background: Speculative execution

• Predict instructions’ outcomes and speculatively continue execution 

• Rollback changes if speculation was wrong

Only architectural (ISA, “logical”) state,
not microarchitectural state

�8

Background: Branch prediction

if (x < A_size)
 y = B[A[x]]

�9

Size of array A

Background: Branch prediction

if (x < A_size)
 y = B[A[x]]

�9

Size of array A

Background: Branch prediction

if (x < A_size)
 y = B[A[x]]

�9

Size of array A

Background: Branch prediction

if (x < A_size)
 y = B[A[x]]

�9

Size of array A

Background: Branch prediction

if (x < A_size)
 y = B[A[x]]

�9

Predictions based on
branch history &

program structure

Size of array A

Background: Branch prediction

if (x < A_size)
 y = B[A[x]]

�9

Predictions based on
branch history &

program structure

Size of array A

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

�10

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

�10
Cache state

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

�10
Cache state

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

�10

A_size=16
B[0]B[1] ...B

Cache state

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

�10

A_size=16
B[0]B[1] ...B What is in A[128]?

Cache state

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

 1a) Training

�10

A_size=16
B[0]B[1] ...B What is in A[128]?

Cache state

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1a) Training

�11

A_size=16
B[0]B[1] ...B

Cache state

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1a) Training f(0);

�11

A_size=16
B[0]B[1] ...B

Cache state

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1a) Training f(0);f(1);

�11

A_size=16
B[0]B[1] ...B

Cache state

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1a) Training f(0);f(1);f(2); …

�11

A_size=16
B[0]B[1] ...B

Cache state

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1a) Training

 1b) Prepare cache

f(0);f(1);f(2); …

�11

A_size=16
B[0]B[1] ...B

Cache state

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1a) Training

 1b) Prepare cache

f(0);f(1);f(2); …

�11

A_size=16
B[0]B[1] ...B

Cache state

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1a) Training

 1b) Prepare cache

 2) Run f(128)

f(0);f(1);f(2); …

�11

A_size=16
B[0]B[1] ...B

Cache state

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1a) Training

 1b) Prepare cache

 2) Run f(128)

f(0);f(1);f(2); …

�11

A_size=16
B[0]B[1] ...B

Cache state

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1a) Training

 1b) Prepare cache

 2) Run f(128)

f(0);f(1);f(2); …

�11

A_size=16
B[0]B[1] ...B

Cache state

B[A[128]]

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1a) Training

 1b) Prepare cache

 2) Run f(128)

f(0);f(1);f(2); …

�11

A_size=16
B[0]B[1] ...B B[A[128]]

Cache state

B[A[128]]
]

B[A[128]]

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1a) Training

 1b) Prepare cache

 2) Run f(128)

f(0);f(1);f(2); …

�11

A_size=16
B[0]B[1] ...B B[A[128]]

Cache state

B[A[128]]
]

Address
depends on
A[128]

B[A[128]]

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1a) Training

 1b) Prepare cache

 2) Run f(128)

f(0);f(1);f(2); …

�11

A_size=16
B[0]B[1] ...B B[A[128]]

Cache state

B[A[128]]
]

Address
depends on
A[128]

Persistent beyond
rollback

B[A[128]]

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1a) Training

 1b) Prepare cache

 2) Run f(128)

f(0);f(1);f(2); …

�11

A_size=16
B[0]B[1] ...B B[A[128]]

Cache state

B[A[128]]
]

Address
depends on
A[128]

Persistent beyond
rollback

B[A[128]]

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1a) Training

 1b) Prepare cache

 2) Run f(128)

 3) Extract from cache

f(0);f(1);f(2); …

�11

A_size=16
B[0]B[1] ...B B[A[128]]

Cache state

2. Speculative non-interference

�12

Generalizing the Spectre V1 example

�13

 1a) Training

 1b) Prepare cache

 2) Run f(128)

 3) Extract from cache

f(0);f(1);f(2); …

Generalizing the Spectre V1 example

�13

 1a) Training

 1b) Prepare cache

 2) Run f(128)

 3) Extract from cache

f(0);f(1);f(2); … }Attacker

Generalizing the Spectre V1 example

�13

 1a) Training

 1b) Prepare cache

 2) Run f(128)

 3) Extract from cache

f(0);f(1);f(2); …

{Victim

}Attacker

Generalizing the Spectre V1 example

�13

 1a) Training

 1b) Prepare cache

 2) Run f(128)

 3) Extract from cache

f(0);f(1);f(2); …

{Victim

}Attacker

} Attacker

Generalizing the Spectre V1 example

�14

 1) Prepares microarchitectural state

 2) Leaks information into microarchitectural state

 3) Extracts information from microarchitecture

{Victim

}

Attacker

Attacker

}

Speculative non-interference

�15

Speculative non-interference

�15

Program P is speculatively non-interferent if

Speculative non-interference

Leakage of P in  
speculative

execution

Leakage of P in  
non-speculative

execution =?

�15

Informally:

Program P is speculatively non-interferent if

Speculative non-interference

Leakage of P in  
speculative

execution

Leakage of P in  
non-speculative

execution =?

�15

Informally:

Program P is speculatively non-interferent if

More formally:

Speculative non-interference

Leakage of P in  
speculative

execution

Leakage of P in  
non-speculative

execution =?

�15

Informally:

Program P is speculatively non-interferent if

More formally:
 For all program states s and s’:

Speculative non-interference

Leakage of P in  
speculative

execution

Leakage of P in  
non-speculative

execution =?

�15

Informally:

Program P is speculatively non-interferent if

More formally:
 For all program states s and s’:

Pnon-spec(s) = Pnon-spec(s’) 	

Speculative non-interference

Leakage of P in  
speculative

execution

Leakage of P in  
non-speculative

execution =?

�15

Informally:

Program P is speculatively non-interferent if

More formally:
 For all program states s and s’:

Pnon-spec(s) = Pnon-spec(s’) 	
⇒ Pspec(s) = Pspec(s’)

Speculative non-interference

Leakage of P in  
speculative

execution

Leakage of P in  
non-speculative

execution =?

�15

Informally:

Program P is speculatively non-interferent if

More formally:
 For all program states s and s’:

Extended
with policies

Pnon-spec(s) = Pnon-spec(s’) 	
⇒ Pspec(s) = Pspec(s’)

How to capture leakage  
into microarchitectural state?

�16

How to capture leakage  
into microarchitectural state?

�16

Non-speculative
semantics

Speculative  
semantics

How to capture leakage  
into microarchitectural state?

�16

Non-speculative
semantics

Speculative  
semantics

+ Attacker/Observer
model

μAssembly

�17

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

if (x < A_size)
 y = B[A[x]]

μAssembly

�17

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

if (x < A_size)
 y = B[A[x]]

+ Non-speculative semantics

μAssembly

�17

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

if (x < A_size)
 y = B[A[x]]

+ Non-speculative semantics

μAssembly

�17

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

if (x < A_size)
 y = B[A[x]]

+ Non-speculative semantics

μAssembly

�17

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

if (x < A_size)
 y = B[A[x]]

+ Non-speculative semantics

μAssembly

�17

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

if (x < A_size)
 y = B[A[x]]

+ Non-speculative semantics

μAssembly

�17

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

if (x < A_size)
 y = B[A[x]]

+ Non-speculative semantics

Non-speculative semantics: Inference Rules

�18

Expression evaluation

JnK(a) = n JxK(a) = a(x) J eK(a) = JeK(a) Je1 ⌦ e2K(a) = Je1K(a)⌦ Je2K(a)

Instruction evaluation

SKIP
p(a(pc)) = skip

hm, ai �! hm, a[pc 7! a(pc) + 1]i

BARRIER
p(a(pc)) = spbarr

hm, ai �! hm, a[pc 7! a(pc) + 1]i

ASSIGN
p(a(pc)) = x e x 6= pc

hm, ai �! hm, a[pc 7! a(pc) + 1, x 7! JeK(a)]i

CONDITIONALUPDATE-SAT

p(a(pc)) = x
e0
 � e Je0K(a) = 0 x 6= pc

hm, ai �! hm, a[pc 7! a(pc) + 1, x 7! JeK(a)]i

CONDITIONALUPDATE-UNSAT

p(a(pc)) = x
e0
 � e Je0K(a) 6= 0 x 6= pc

hm, ai �! hm, a[pc 7! a(pc) + 1]i

TERMINATE
p(a(pc)) = ?

hm, ai �! hm, a[pc 7! ?]i

LOAD
p(a(pc)) = load x, e x 6= pc n = JeK(a)
hm, ai

load n
����! hm, a[pc 7! a(pc) + 1, x 7! m(n)]i

STORE
p(a(pc)) = store x, e n = JeK(a)

hm, ai
store n
����! hm[n 7! a(x)], a[pc 7! a(pc) + 1]i

BEQZ-SAT
p(a(pc)) = beqz x, ` a(x) = 0

hm, ai
pc `
��! hm, a[pc 7! `]i

BEQZ-UNSAT
p(a(pc)) = beqz x, ` a(x) 6= 0

hm, ai
pc a(pc)+1
�������! hm, a[pc 7! a(pc) + 1]i

JMP
p(a(pc)) = jmp e ` = JeK(a)

hm, ai
pc `
��! hm, a[pc 7! `]i

Fig. 8. µASM semantics for a program p

NOBRANCH, the rule applies only to the last transaction in s.
Since the semantics always-mispredicts the outcome of branch
instructions, SE-ROLLBACK is always applied, i.e there is no
need for a rule that handles committed transactions.

Similarly to Proposition 1, we can show that a program’s
non-speculative behavior can be recovered from its behavior
under th always-mispredict semantics.

Proposition 3. Let p be a program and w be a speculative
window. Then, LpM = {|p|}w�nse.

Proposition 4 states that the always-mispredict semantics
yields the worst-case leakage.

Proposition 4. Let p be a program, w 2 N be a specula-
tive window, and �,�0

2 InitConf be initial configurations.
{|p|}w(�) = {|p|}w(�0) iff JpKO(�) = JpKO(�0) for all predic-
tion oracles O with speculative window at most w.

APPENDIX D
SYMBOLIC SEMANTICS

Here, we formalize the symbolic version of the always-
mispredict semantics for µASM programs.

Symbolic expressions. Symbolic expressions represent com-
putations over symbolic values. A symbolic expression se is a
concrete value n 2 Vals, a symbolic value s 2 SymbVals , an
if-then-else expression ite(se, se 0, se 00), or the application of
a unary or a binary operator ⌦.

se := n | s | ite(se, se 0, se 00) | se | se ⌦ se 0

Symbolic memories. We model symbolic memories as sym-
bolic arrays using the standard theory of arrays [20]. That is,
we model memory updates as triples of the form write(sm,
se, se 0), which updates the symbolic memory sm by assigning
the symbolic value se 0 to the symbolic location se , and

memory reads as read(sm, se), which denote retrieving the
value assigned to the symbolic expression se .

A symbolic memory sm is either a function mem : N !

SymbVals mapping memory addresses to symbolic values or
a term write(sm, se, se 0), where sm is a symbolic memory
and se, se 0 are symbolic expressions. To account for symbolic
memories, we extend symbolic expressions with terms of the
form read(sm, se), where sm is a symbolic memory and se
is a symbolic expression, representing memory reads.

sm := mem | write(sm, se, se 0)

se := . . . | read(sm, se)

Evaluating symbolic expressions. The value of a symbolic
expression se depends on a valuation µ : SymbVals ! Vals
mapping symbolic values to concrete ones:

µ(n) = n if n 2 Vals
µ(s) = µ(s) if s 2 SymbVals

µ(ite(se, se 0, se 00)) = µ(se 0) if µ(se) 6= 0

µ(ite(se, se 0, se 00)) = µ(se 00) if µ(se) = 0

µ(se) = µ(se)

µ(se ⌦ se 0) = µ(se)⌦ µ(se 0)

µ(mem) = µ �mem

µ(write(sm, se, se 0)) = µ(sm)[µ(se) 7! µ(se 0)]

µ(read(sm, se)) = µ(sm)(µ(se))

An expression se is satisfiable if there is a valuation µ
satisfying it, i.e., µ(se) 6= 0.

Symbolic assignments. A symbolic assignment sa is a func-
tion mapping register identifiers to symbolic expressions sa :
Regs ! SymbExprs . Given a symbolic assignment sa and a
valuation µ, µ(sa) denotes the assignment µ � sa. We assume

16

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics

�19

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics
Starts speculative

transactions upon branches

�19

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics
Starts speculative

transactions upon branches

Committed upon  
correct speculation

�19

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics
Starts speculative

transactions upon branches

Committed upon  
correct speculation

Rolled back upon
misspeculation

�19

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics
Starts speculative

transactions upon branches

Committed upon  
correct speculation

Rolled back upon
misspeculation

�19

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics
Starts speculative

transactions upon branches

Committed upon  
correct speculation

Rolled back upon
misspeculation

�19

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics
Starts speculative

transactions upon branches

Committed upon  
correct speculation

Rolled back upon
misspeculation

�19

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics
Starts speculative

transactions upon branches

Committed upon  
correct speculation

Rolled back upon
misspeculation

�19

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics
Starts speculative

transactions upon branches

Committed upon  
correct speculation

Rolled back upon
misspeculation

�19

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics
Starts speculative

transactions upon branches

Committed upon  
correct speculation

Rolled back upon
misspeculation

�19

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics
Starts speculative

transactions upon branches

Committed upon  
correct speculation

Rolled back upon
misspeculation

�19

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics
Starts speculative

transactions upon branches

Committed upon  
correct speculation

Rolled back upon
misspeculation

�19

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics
Starts speculative

transactions upon branches

Committed upon  
correct speculation

Rolled back upon
misspeculation

�19

Prediction Oracle O determines branch prediction + length of speculative window

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Observer model: Leakage into μarchitectural state

�20

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Observer model: Leakage into μarchitectural state
 Attacker can observe:
- locations of memory accesses

- branch/jump targets

- start/end speculative execution

�20

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Observer model: Leakage into μarchitectural state
 Attacker can observe:
- locations of memory accesses

- branch/jump targets

- start/end speculative execution

�20

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Observer model: Leakage into μarchitectural state
 Attacker can observe:
- locations of memory accesses

- branch/jump targets

- start/end speculative execution

�20

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Observer model: Leakage into μarchitectural state
 Attacker can observe:
- locations of memory accesses

- branch/jump targets

- start/end speculative execution

�20

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Observer model: Leakage into μarchitectural state
 Attacker can observe:
- locations of memory accesses

- branch/jump targets

- start/end speculative execution

�20

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Observer model: Leakage into μarchitectural state

start;
pc L1

 Attacker can observe:
- locations of memory accesses

- branch/jump targets

- start/end speculative execution

�20

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Observer model: Leakage into μarchitectural state

load A+x

 Attacker can observe:
- locations of memory accesses

- branch/jump targets

- start/end speculative execution

�20

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Observer model: Leakage into μarchitectural state

load B+A[x]

 Attacker can observe:
- locations of memory accesses

- branch/jump targets

- start/end speculative execution

�20

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Observer model: Leakage into μarchitectural state

rollback;
pc END

 Attacker can observe:
- locations of memory accesses

- branch/jump targets

- start/end speculative execution

�20

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Observer model: Leakage into μarchitectural state
 Attacker can observe:
- locations of memory accesses

- branch/jump targets

- start/end speculative execution

�20

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Observer model: Leakage into μarchitectural state
 Attacker can observe:
- locations of memory accesses

- branch/jump targets

- start/end speculative execution

Inspired by “constant-time”
programming requirements

�20

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Observer model: Leakage into μarchitectural state
 Attacker can observe:
- locations of memory accesses

- branch/jump targets

- start/end speculative execution

Inspired by “constant-time”
programming requirements

�20

No need for detailed model of
memory hierarchy:
• possibly pessimistic

• more robust

Reasoning about arbitrary prediction oracles

�21

Speculative semantics
+ 

Prediction oracle

Always-mispredict
speculative semantics

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Always-mispredict speculative semantics

�22

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Always-mispredict speculative semantics

Always mispredict branch
instructions’ outcomes

�22

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Always-mispredict speculative semantics

Always mispredict branch
instructions’ outcomes

Fixed speculative window

�22

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Always-mispredict speculative semantics

Always mispredict branch
instructions’ outcomes

Fixed speculative window

Rollback of every transaction

�22

Always-mispredict speculative semantics:
Inference Rules

�23

SE-NOBRANCH
p(�(pc)) 6= beqz x, ` �

⌧
�!s �0 enabled 0(s)

s0 =

(
decr 0(s) if p(�(pc)) 6= spbarr

zeroes 0(s) otherwise

hctr ,�, si
⌧

==)s hctr ,�0, s0i

SE-BRANCH-SYMB
p(�(pc)) = beqz x, `00 enabled 0(s)

�
symPc(se)·pc `0
���������!s �0 ` =

(
�(pc) + 1 if `0 6= �(pc) + 1

`00 if `0 = �(pc) + 1

s0 = s · h�, ctr ,min(w,wndw(s)� 1), `i id = ctr

hctr ,�, si
symPc(se)·start id·pc `
==============)s hctr + 1,�[pc 7! `], s0i

SE-ROLLBACK
�0 ⌧

�!s �00

hctr ,�, s · h�0, id , 0, `ii
rollback id·pc �00(pc)
==============)s hctr ,�00, si

Fig. 11. Symbolic always-mispredict speculative semantics for a program p and speculative window w

the same non-speculative projection. From Propositions 2, ⌧c
and ⌧ 0c correspond to two symbolic traces ⌧s and ⌧ 0s. Since
CHECK CTRL LEAK(⌧s) = ?, CHECK CTRL LEAK(⌧ 0s) =
?, and ⌧c�nse = ⌧ 0c�nse, speculatively executed control-flow
instructions produce the same outcome in ⌧c and ⌧ 0c. Hence,
the same code is executed in both traces and ⌧s = ⌧ 0s. From
CHECK MEM LEAK(⌧s) = ?, the observations produced by
speculatively executed load and store instructions are the
same. Thus, ⌧c = ⌧ 0c. Hence, whenever two initial configu-
rations result in the same non-speculative traces, then they
produce the same speculative traces. Therefore, p satisfies
speculative non-interference w.r.t. the always-mispredict se-
mantics with speculative window w. From this and Theorem 1,
p satisfies speculative non-interference w.r.t. any prediction
oracle with speculative window at most w.

Theorem 4 states that the leaks found by SPECTECTOR are
valid counterexamples to speculative non-interference.

Theorem 4. Whenever SPECTECTOR(p, P, w) = INSECURE,
there is an oracle O with speculative window at most w such
that program p does not satisfy speculative non-interference
w.r.t. O and the policy P .

Proof. If SPECTECTOR(p, P) = INSECURE, there is a sym-
bolic trace ⌧ for which either CHECK MEM LEAK(⌧) = > or
CHECK CTRL LEAK(⌧) = >. In the first case, pthCnd(⌧)^
polEqv(P) ^ obsEqv(⌧�nse) ^ ¬obsEqv(⌧�se) is satisfiable.
Then, there are two models for the symbolic trace ⌧ that
(1) satisfy the path condition encoded in ⌧ , (2) agree on
the non-sensitive registers and memory locations in P , (3)
produce the same non-speculative projection, and (4) the
speculative projections differ on a load or store observation.
From Proposition 2, the two concretizations correspond to
two concrete runs, with different traces, whose non-speculative
projection are the same. By combining this with Proposition 3,
there are two configurations that produce the same non-
speculative trace but different speculative traces. This is a
violation of speculative non-interference.

In the second case, there is a prefix ⌫ · symPc(se) of ⌧�se
such that pthCnd(⌧�nse · ⌫) ^ polEqv(P) ^ obsEqv(⌧�nse) ^
¬(se1 $ se2) is satisfiable. Hence, there are two symbolic

traces ⌧ and ⌧ 0 that produce the same non-speculative observa-
tions but differ on a program counter observation pc n in their
speculative projections. Again, this implies, through Proposi-
tions 2 and 3, that there are two P -indistinguishable initial
configurations producing the same non-speculative traces but
distinct speculative traces, leading to a violation of speculative
non-interference.

In both cases, p does not satisfy speculative non-interference
w.r.t. the always-mispredict semantics with speculative win-
dow w. From this and Theorem 1, there is a prediction oracle
O with speculative window at most w such that p does not
satisfy speculative non-interference w.r.t. O.

Theorem 2 immediately follows from Theorems 3 and 4.

APPENDIX F
CODE FROM CASE STUDIES

A. Example #8
In Example #8, the bounds check of Figure 1 is imple-

mented using a conditional operator:

1 temp &= B[A[y<size?(y+1):0]*512];

When compiling the example without countermeasures or
optimizations, the conditional operator is translated to a branch
instruction (line 4 below), which is a source of speculation.
Hence, the resulting program is vulnerable to SPECTRE-style
attacks, and SPECTECTOR correctly detects the possible leak
of sensitive information.

1 mov size, %rcx

2 mov y, %rax

3 cmp %rcx, %rax

4 jae .L1

5 add $1, %rax

6 jmp .L2

7 .L1:

8 xor %rax, %rax

9 jmp .L2

10 .L2:

11 mov A(%rax), %rax

12 shl $9, %rax

13 mov B(%rax), %rax

19

Always-mispredict leaks maximally

�24

Speculative semantics
+ 

Prediction oracle

Always-mispredict
speculative semantics

For all program states s and s’:

	 	 Pspec(s) = Pspec(s’) 	

 ⇔ ∀O: Pspec,O(s) = Pspec,O(s’)

Recap: Speculative non-interference

�25

Program P is speculatively non-interferent if

 For all program states s and s’:

Pnon-spec(s) = Pnon-spec(s’) 	

⇒ Pspec(s) = Pspec(s’)

Speculative non-interference: Example

�26

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative non-interference: Example

�26

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x=128
A_size=16
A[128]=1

x=128
A_size=16
A[128]=0

Speculative non-interference: Example

�26

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x=128
A_size=16
A[128]=1

x=128
A_size=16
A[128]=0

Speculative non-interference: Example

�26

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x=128
A_size=16
A[128]=1

x=128
A_size=16
A[128]=0

Speculative non-interference: Example

�26

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x=128
A_size=16
A[128]=1

x=128
A_size=16
A[128]=0

Speculative non-interference: Example

�26

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x=128
A_size=16
A[128]=1

x=128
A_size=16
A[128]=0

Speculative non-interference: Example

�26

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x=128
A_size=16
A[128]=1

x=128
A_size=16
A[128]=0

load A+128 load A+128

Speculative non-interference: Example

�26

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x=128
A_size=16
A[128]=1

x=128
A_size=16
A[128]=0

Speculative non-interference: Example

�26

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x=128
A_size=16
A[128]=1

x=128
A_size=16
A[128]=0

load B+1load B+0

Speculative non-interference: Example

�26

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x=128
A_size=16
A[128]=1

x=128
A_size=16
A[128]=0

load B+1load B+0

Speculative non-interference: Example

�26

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x=128
A_size=16
A[128]=1

x=128
A_size=16
A[128]=0

load B+1load B+0

Speculative non-interference: Example

�26

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

3. Spectector: Detecting speculative leaks

�27

Spectector: Detecting speculative leaks

�28

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Spectector: Detecting speculative leaks

�28

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Spectector: Detecting speculative leaks

Symbolic
execution

�28

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Spectector: Detecting speculative leaks

Symbolic
execution

�28

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Spectector: Detecting speculative leaks

Symbolic
execution

Detect leaks

�28

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Spectector: Detecting speculative leaks

Symbolic
execution

Detect leaks

�28

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Spectector: Detecting speculative leaks

Symbolic
execution

Detect leaks

�28

Symbolic execution

�29

• Program analysis technique

Symbolic execution

�29

Programming

B. W
egbreit

Languages

Editor

Symbolic Execution

and Program Testin
g

James C. King

IBM Thomas J. W
atson Research Center

This p
aper describes th

e symbolic execution of pro-

grams. I
nstead of su

pplying the normal in
puts to

 a

program (e.g. numbers) o
ne supplies sy

mbols r
epresent-

ing arbitrary values. T
he execution proceeds as in

 a

normal execution except th
at values m

ay he symbolic

formulas over the input sy
mbols. T

he diffic
ult, y

et in
-

terestin
g issu

es arise during the symbolic execution of

conditional branch type sta
tements.

A particular system

called EFFIGY which provides sy
mbolic execution for

program testin
g and debugging is a

lso described, it

interpretively executes programs w
ritten in a sim

ple

PL/I sty
le programming language. It

includes m
any

standard debugging features, th
e ability

 to manage and

to prove things about sy
mbolic expressio

ns, a
 sim

ple

program testin
g manager, and a program verifier. A

brief discussio
n of th

e relationship between symbolic

execution and program proving is a
lso included.

Key Words and Phrases: s
ymbolic execution, pro-

gram testin
g, program debugging, program proving,

program verification, symbolic interpretation

CR Categories: 4
.13, 5.21, 5.24

Copyright © 1976, Association for Computing Machinery, Inc.

General permissio
n to republish

, but not fo
r profit,

all or part

of this m
aterial is

granted provided that ACM's c
opyright notice

is g
iven and that reference is m

ade to the publication, to its
date

of iss
ue, and to the fact th

at re
printing privileges were granted

by permissio
n of the Association for Computing Machinery.

Author's address:
IBM Thomas J.

 Watson Research Center,

P.O. Box 218, Yorktown Heights, N
.Y. 10598.

385

1. Introduction

The large-scale production of re
liable programs is

one of th
e fundamental re

quirements for applying com-

puters to today's challenging problems. Several tech-

niques are used in practice; others are the focus of cur-

rent re
search. The work reported in this paper is

 directed

at assuring that a program meets its
 requirements even

when formal specific
ations are not given. The current

technology in this area is
basically a testing technology.

That is
, some small s

ample of th
e data that a program is

expected to handle is presented to the program. If t
he

program is judged to produce correct results for the

sample, it is
 assumed to be correct. M

uch current w
ork

[11] focuses on the question of how to choose this

sample.

Recent w
ork on proving the correctness of programs

by formal analysis 15] shows great promise and appears

to be the ultim
ate technique for producing reliable pro-

grams. However, t
he practical accomplishments in this

area fall short of a tool for routine use. Fundamental

problems in reducing the theory to practice are not

likely to be solved in the im
mediate future.

Program testing and program proving can be con-

sidered as extreme alternatives. While testing, a pro-

grammer can be assured that sample test ru
ns work cor-

rectly by carefully checking the results. The correct exe-

cution for in
puts not in

 the sample is
still

 in doubt. Al-

ternatively, in
 program proving the programmer form-

ally proves that the program meets its
 specific

ation for

all executions without being required to execute the

program at all. To do this he gives a precise specific
a-

tion of th
e correct program behavior and then follows a

formal proof procedure to show that the program and

the specific
ation are consistent. The confidence in this

method hinges on the care and accuracy employed in

both the creation of the specific
ation and in the con-

struction of th
e proof steps, as well a

s on the attention

to machine-dependent iss
ues such as overflo

w, ro
unding

etc.
This paper describes a practical approach between

these tw
o extremes. F rom one simple view, it

is an en-

hanced testing technique. In
stead of executing a program

on a set of sample inputs, a program is "symbolically"

executed for a set of classes of in
puts. T

hat is,
 each sym-

bolic execution result m
ay be equivalent to

 a large num-

ber of normal test cases. These results can be checked

against the programmer's expectations for correctness

either fo
rmally or in

formally.

The class of in
puts characterized by each symbolic

execution is
determined by the dependence of th

e pro-

gram's control fl
ow on its

 inputs. If t
he control fl

ow of

the program is c
ompletely independent of th

e input var-

iables, a single symbolic execution will s
uffic

e to check

all possible executions of th
e program. If the control

flow of th
e program is dependent on the inputs, one

must resort to a case analysis. Often the set of input

Communications

July 1976

of

Volume 19

the ACM

Number 7

• Program analysis technique

Symbolic execution

�29

Programming

B. W
egbreit

Languages

Editor

Symbolic Execution

and Program Testin
g

James C. King

IBM Thomas J. W
atson Research Center

This p
aper describes th

e symbolic execution of pro-

grams. I
nstead of su

pplying the normal in
puts to

 a

program (e.g. numbers) o
ne supplies sy

mbols r
epresent-

ing arbitrary values. T
he execution proceeds as in

 a

normal execution except th
at values m

ay he symbolic

formulas over the input sy
mbols. T

he diffic
ult, y

et in
-

terestin
g issu

es arise during the symbolic execution of

conditional branch type sta
tements.

A particular system

called EFFIGY which provides sy
mbolic execution for

program testin
g and debugging is a

lso described, it

interpretively executes programs w
ritten in a sim

ple

PL/I sty
le programming language. It

includes m
any

standard debugging features, th
e ability

 to manage and

to prove things about sy
mbolic expressio

ns, a
 sim

ple

program testin
g manager, and a program verifier. A

brief discussio
n of th

e relationship between symbolic

execution and program proving is a
lso included.

Key Words and Phrases: s
ymbolic execution, pro-

gram testin
g, program debugging, program proving,

program verification, symbolic interpretation

CR Categories: 4
.13, 5.21, 5.24

Copyright © 1976, Association for Computing Machinery, Inc.

General permissio
n to republish

, but not fo
r profit,

all or part

of this m
aterial is

granted provided that ACM's c
opyright notice

is g
iven and that reference is m

ade to the publication, to its
date

of iss
ue, and to the fact th

at re
printing privileges were granted

by permissio
n of the Association for Computing Machinery.

Author's address:
IBM Thomas J.

 Watson Research Center,

P.O. Box 218, Yorktown Heights, N
.Y. 10598.

385

1. Introduction

The large-scale production of re
liable programs is

one of th
e fundamental re

quirements for applying com-

puters to today's challenging problems. Several tech-

niques are used in practice; others are the focus of cur-

rent re
search. The work reported in this paper is

 directed

at assuring that a program meets its
 requirements even

when formal specific
ations are not given. The current

technology in this area is
basically a testing technology.

That is
, some small s

ample of th
e data that a program is

expected to handle is presented to the program. If t
he

program is judged to produce correct results for the

sample, it is
 assumed to be correct. M

uch current w
ork

[11] focuses on the question of how to choose this

sample.

Recent w
ork on proving the correctness of programs

by formal analysis 15] shows great promise and appears

to be the ultim
ate technique for producing reliable pro-

grams. However, t
he practical accomplishments in this

area fall short of a tool for routine use. Fundamental

problems in reducing the theory to practice are not

likely to be solved in the im
mediate future.

Program testing and program proving can be con-

sidered as extreme alternatives. While testing, a pro-

grammer can be assured that sample test ru
ns work cor-

rectly by carefully checking the results. The correct exe-

cution for in
puts not in

 the sample is
still

 in doubt. Al-

ternatively, in
 program proving the programmer form-

ally proves that the program meets its
 specific

ation for

all executions without being required to execute the

program at all. To do this he gives a precise specific
a-

tion of th
e correct program behavior and then follows a

formal proof procedure to show that the program and

the specific
ation are consistent. The confidence in this

method hinges on the care and accuracy employed in

both the creation of the specific
ation and in the con-

struction of th
e proof steps, as well a

s on the attention

to machine-dependent iss
ues such as overflo

w, ro
unding

etc.
This paper describes a practical approach between

these tw
o extremes. F rom one simple view, it

is an en-

hanced testing technique. In
stead of executing a program

on a set of sample inputs, a program is "symbolically"

executed for a set of classes of in
puts. T

hat is,
 each sym-

bolic execution result m
ay be equivalent to

 a large num-

ber of normal test cases. These results can be checked

against the programmer's expectations for correctness

either fo
rmally or in

formally.

The class of in
puts characterized by each symbolic

execution is
determined by the dependence of th

e pro-

gram's control fl
ow on its

 inputs. If t
he control fl

ow of

the program is c
ompletely independent of th

e input var-

iables, a single symbolic execution will s
uffic

e to check

all possible executions of th
e program. If the control

flow of th
e program is dependent on the inputs, one

must resort to a case analysis. Often the set of input

Communications

July 1976

of

Volume 19

the ACM

Number 7

“The execution proceeds as in a normal
execution except that values may be

symbolic formulas over the input symbols”
— James C. King

• Program analysis technique

• Execute programs over symbolic values  

Symbolic execution

�29

Programming

B. W
egbreit

Languages

Editor

Symbolic Execution

and Program Testin
g

James C. King

IBM Thomas J. W
atson Research Center

This p
aper describes th

e symbolic execution of pro-

grams. I
nstead of su

pplying the normal in
puts to

 a

program (e.g. numbers) o
ne supplies sy

mbols r
epresent-

ing arbitrary values. T
he execution proceeds as in

 a

normal execution except th
at values m

ay he symbolic

formulas over the input sy
mbols. T

he diffic
ult, y

et in
-

terestin
g issu

es arise during the symbolic execution of

conditional branch type sta
tements.

A particular system

called EFFIGY which provides sy
mbolic execution for

program testin
g and debugging is a

lso described, it

interpretively executes programs w
ritten in a sim

ple

PL/I sty
le programming language. It

includes m
any

standard debugging features, th
e ability

 to manage and

to prove things about sy
mbolic expressio

ns, a
 sim

ple

program testin
g manager, and a program verifier. A

brief discussio
n of th

e relationship between symbolic

execution and program proving is a
lso included.

Key Words and Phrases: s
ymbolic execution, pro-

gram testin
g, program debugging, program proving,

program verification, symbolic interpretation

CR Categories: 4
.13, 5.21, 5.24

Copyright © 1976, Association for Computing Machinery, Inc.

General permissio
n to republish

, but not fo
r profit,

all or part

of this m
aterial is

granted provided that ACM's c
opyright notice

is g
iven and that reference is m

ade to the publication, to its
date

of iss
ue, and to the fact th

at re
printing privileges were granted

by permissio
n of the Association for Computing Machinery.

Author's address:
IBM Thomas J.

 Watson Research Center,

P.O. Box 218, Yorktown Heights, N
.Y. 10598.

385

1. Introduction

The large-scale production of re
liable programs is

one of th
e fundamental re

quirements for applying com-

puters to today's challenging problems. Several tech-

niques are used in practice; others are the focus of cur-

rent re
search. The work reported in this paper is

 directed

at assuring that a program meets its
 requirements even

when formal specific
ations are not given. The current

technology in this area is
basically a testing technology.

That is
, some small s

ample of th
e data that a program is

expected to handle is presented to the program. If t
he

program is judged to produce correct results for the

sample, it is
 assumed to be correct. M

uch current w
ork

[11] focuses on the question of how to choose this

sample.

Recent w
ork on proving the correctness of programs

by formal analysis 15] shows great promise and appears

to be the ultim
ate technique for producing reliable pro-

grams. However, t
he practical accomplishments in this

area fall short of a tool for routine use. Fundamental

problems in reducing the theory to practice are not

likely to be solved in the im
mediate future.

Program testing and program proving can be con-

sidered as extreme alternatives. While testing, a pro-

grammer can be assured that sample test ru
ns work cor-

rectly by carefully checking the results. The correct exe-

cution for in
puts not in

 the sample is
still

 in doubt. Al-

ternatively, in
 program proving the programmer form-

ally proves that the program meets its
 specific

ation for

all executions without being required to execute the

program at all. To do this he gives a precise specific
a-

tion of th
e correct program behavior and then follows a

formal proof procedure to show that the program and

the specific
ation are consistent. The confidence in this

method hinges on the care and accuracy employed in

both the creation of the specific
ation and in the con-

struction of th
e proof steps, as well a

s on the attention

to machine-dependent iss
ues such as overflo

w, ro
unding

etc.
This paper describes a practical approach between

these tw
o extremes. F rom one simple view, it

is an en-

hanced testing technique. In
stead of executing a program

on a set of sample inputs, a program is "symbolically"

executed for a set of classes of in
puts. T

hat is,
 each sym-

bolic execution result m
ay be equivalent to

 a large num-

ber of normal test cases. These results can be checked

against the programmer's expectations for correctness

either fo
rmally or in

formally.

The class of in
puts characterized by each symbolic

execution is
determined by the dependence of th

e pro-

gram's control fl
ow on its

 inputs. If t
he control fl

ow of

the program is c
ompletely independent of th

e input var-

iables, a single symbolic execution will s
uffic

e to check

all possible executions of th
e program. If the control

flow of th
e program is dependent on the inputs, one

must resort to a case analysis. Often the set of input

Communications

July 1976

of

Volume 19

the ACM

Number 7

“The execution proceeds as in a normal
execution except that values may be

symbolic formulas over the input symbols”
— James C. King

• Program analysis technique

• Execute programs over symbolic values  

• Explore all paths,  
each with its own path constraint 

Symbolic execution

�29

Programming

B. W
egbreit

Languages

Editor

Symbolic Execution

and Program Testin
g

James C. King

IBM Thomas J. W
atson Research Center

This p
aper describes th

e symbolic execution of pro-

grams. I
nstead of su

pplying the normal in
puts to

 a

program (e.g. numbers) o
ne supplies sy

mbols r
epresent-

ing arbitrary values. T
he execution proceeds as in

 a

normal execution except th
at values m

ay he symbolic

formulas over the input sy
mbols. T

he diffic
ult, y

et in
-

terestin
g issu

es arise during the symbolic execution of

conditional branch type sta
tements.

A particular system

called EFFIGY which provides sy
mbolic execution for

program testin
g and debugging is a

lso described, it

interpretively executes programs w
ritten in a sim

ple

PL/I sty
le programming language. It

includes m
any

standard debugging features, th
e ability

 to manage and

to prove things about sy
mbolic expressio

ns, a
 sim

ple

program testin
g manager, and a program verifier. A

brief discussio
n of th

e relationship between symbolic

execution and program proving is a
lso included.

Key Words and Phrases: s
ymbolic execution, pro-

gram testin
g, program debugging, program proving,

program verification, symbolic interpretation

CR Categories: 4
.13, 5.21, 5.24

Copyright © 1976, Association for Computing Machinery, Inc.

General permissio
n to republish

, but not fo
r profit,

all or part

of this m
aterial is

granted provided that ACM's c
opyright notice

is g
iven and that reference is m

ade to the publication, to its
date

of iss
ue, and to the fact th

at re
printing privileges were granted

by permissio
n of the Association for Computing Machinery.

Author's address:
IBM Thomas J.

 Watson Research Center,

P.O. Box 218, Yorktown Heights, N
.Y. 10598.

385

1. Introduction

The large-scale production of re
liable programs is

one of th
e fundamental re

quirements for applying com-

puters to today's challenging problems. Several tech-

niques are used in practice; others are the focus of cur-

rent re
search. The work reported in this paper is

 directed

at assuring that a program meets its
 requirements even

when formal specific
ations are not given. The current

technology in this area is
basically a testing technology.

That is
, some small s

ample of th
e data that a program is

expected to handle is presented to the program. If t
he

program is judged to produce correct results for the

sample, it is
 assumed to be correct. M

uch current w
ork

[11] focuses on the question of how to choose this

sample.

Recent w
ork on proving the correctness of programs

by formal analysis 15] shows great promise and appears

to be the ultim
ate technique for producing reliable pro-

grams. However, t
he practical accomplishments in this

area fall short of a tool for routine use. Fundamental

problems in reducing the theory to practice are not

likely to be solved in the im
mediate future.

Program testing and program proving can be con-

sidered as extreme alternatives. While testing, a pro-

grammer can be assured that sample test ru
ns work cor-

rectly by carefully checking the results. The correct exe-

cution for in
puts not in

 the sample is
still

 in doubt. Al-

ternatively, in
 program proving the programmer form-

ally proves that the program meets its
 specific

ation for

all executions without being required to execute the

program at all. To do this he gives a precise specific
a-

tion of th
e correct program behavior and then follows a

formal proof procedure to show that the program and

the specific
ation are consistent. The confidence in this

method hinges on the care and accuracy employed in

both the creation of the specific
ation and in the con-

struction of th
e proof steps, as well a

s on the attention

to machine-dependent iss
ues such as overflo

w, ro
unding

etc.
This paper describes a practical approach between

these tw
o extremes. F rom one simple view, it

is an en-

hanced testing technique. In
stead of executing a program

on a set of sample inputs, a program is "symbolically"

executed for a set of classes of in
puts. T

hat is,
 each sym-

bolic execution result m
ay be equivalent to

 a large num-

ber of normal test cases. These results can be checked

against the programmer's expectations for correctness

either fo
rmally or in

formally.

The class of in
puts characterized by each symbolic

execution is
determined by the dependence of th

e pro-

gram's control fl
ow on its

 inputs. If t
he control fl

ow of

the program is c
ompletely independent of th

e input var-

iables, a single symbolic execution will s
uffic

e to check

all possible executions of th
e program. If the control

flow of th
e program is dependent on the inputs, one

must resort to a case analysis. Often the set of input

Communications

July 1976

of

Volume 19

the ACM

Number 7

“The execution proceeds as in a normal
execution except that values may be

symbolic formulas over the input symbols”
— James C. King

• Program analysis technique

• Execute programs over symbolic values  

• Explore all paths,  
each with its own path constraint 

• Each path represents all possible  
executions satisfying the constraints  

Symbolic execution

�29

Programming

B. W
egbreit

Languages

Editor

Symbolic Execution

and Program Testin
g

James C. King

IBM Thomas J. W
atson Research Center

This p
aper describes th

e symbolic execution of pro-

grams. I
nstead of su

pplying the normal in
puts to

 a

program (e.g. numbers) o
ne supplies sy

mbols r
epresent-

ing arbitrary values. T
he execution proceeds as in

 a

normal execution except th
at values m

ay he symbolic

formulas over the input sy
mbols. T

he diffic
ult, y

et in
-

terestin
g issu

es arise during the symbolic execution of

conditional branch type sta
tements.

A particular system

called EFFIGY which provides sy
mbolic execution for

program testin
g and debugging is a

lso described, it

interpretively executes programs w
ritten in a sim

ple

PL/I sty
le programming language. It

includes m
any

standard debugging features, th
e ability

 to manage and

to prove things about sy
mbolic expressio

ns, a
 sim

ple

program testin
g manager, and a program verifier. A

brief discussio
n of th

e relationship between symbolic

execution and program proving is a
lso included.

Key Words and Phrases: s
ymbolic execution, pro-

gram testin
g, program debugging, program proving,

program verification, symbolic interpretation

CR Categories: 4
.13, 5.21, 5.24

Copyright © 1976, Association for Computing Machinery, Inc.

General permissio
n to republish

, but not fo
r profit,

all or part

of this m
aterial is

granted provided that ACM's c
opyright notice

is g
iven and that reference is m

ade to the publication, to its
date

of iss
ue, and to the fact th

at re
printing privileges were granted

by permissio
n of the Association for Computing Machinery.

Author's address:
IBM Thomas J.

 Watson Research Center,

P.O. Box 218, Yorktown Heights, N
.Y. 10598.

385

1. Introduction

The large-scale production of re
liable programs is

one of th
e fundamental re

quirements for applying com-

puters to today's challenging problems. Several tech-

niques are used in practice; others are the focus of cur-

rent re
search. The work reported in this paper is

 directed

at assuring that a program meets its
 requirements even

when formal specific
ations are not given. The current

technology in this area is
basically a testing technology.

That is
, some small s

ample of th
e data that a program is

expected to handle is presented to the program. If t
he

program is judged to produce correct results for the

sample, it is
 assumed to be correct. M

uch current w
ork

[11] focuses on the question of how to choose this

sample.

Recent w
ork on proving the correctness of programs

by formal analysis 15] shows great promise and appears

to be the ultim
ate technique for producing reliable pro-

grams. However, t
he practical accomplishments in this

area fall short of a tool for routine use. Fundamental

problems in reducing the theory to practice are not

likely to be solved in the im
mediate future.

Program testing and program proving can be con-

sidered as extreme alternatives. While testing, a pro-

grammer can be assured that sample test ru
ns work cor-

rectly by carefully checking the results. The correct exe-

cution for in
puts not in

 the sample is
still

 in doubt. Al-

ternatively, in
 program proving the programmer form-

ally proves that the program meets its
 specific

ation for

all executions without being required to execute the

program at all. To do this he gives a precise specific
a-

tion of th
e correct program behavior and then follows a

formal proof procedure to show that the program and

the specific
ation are consistent. The confidence in this

method hinges on the care and accuracy employed in

both the creation of the specific
ation and in the con-

struction of th
e proof steps, as well a

s on the attention

to machine-dependent iss
ues such as overflo

w, ro
unding

etc.
This paper describes a practical approach between

these tw
o extremes. F rom one simple view, it

is an en-

hanced testing technique. In
stead of executing a program

on a set of sample inputs, a program is "symbolically"

executed for a set of classes of in
puts. T

hat is,
 each sym-

bolic execution result m
ay be equivalent to

 a large num-

ber of normal test cases. These results can be checked

against the programmer's expectations for correctness

either fo
rmally or in

formally.

The class of in
puts characterized by each symbolic

execution is
determined by the dependence of th

e pro-

gram's control fl
ow on its

 inputs. If t
he control fl

ow of

the program is c
ompletely independent of th

e input var-

iables, a single symbolic execution will s
uffic

e to check

all possible executions of th
e program. If the control

flow of th
e program is dependent on the inputs, one

must resort to a case analysis. Often the set of input

Communications

July 1976

of

Volume 19

the ACM

Number 7

“The execution proceeds as in a normal
execution except that values may be

symbolic formulas over the input symbols”
— James C. King

• Program analysis technique

• Execute programs over symbolic values  

• Explore all paths,  
each with its own path constraint 

• Each path represents all possible  
executions satisfying the constraints  

• Branch and jump instructions:  
fork paths and update path constraint

Symbolic execution

�29

Programming

B. W
egbreit

Languages

Editor

Symbolic Execution

and Program Testin
g

James C. King

IBM Thomas J. W
atson Research Center

This p
aper describes th

e symbolic execution of pro-

grams. I
nstead of su

pplying the normal in
puts to

 a

program (e.g. numbers) o
ne supplies sy

mbols r
epresent-

ing arbitrary values. T
he execution proceeds as in

 a

normal execution except th
at values m

ay he symbolic

formulas over the input sy
mbols. T

he diffic
ult, y

et in
-

terestin
g issu

es arise during the symbolic execution of

conditional branch type sta
tements.

A particular system

called EFFIGY which provides sy
mbolic execution for

program testin
g and debugging is a

lso described, it

interpretively executes programs w
ritten in a sim

ple

PL/I sty
le programming language. It

includes m
any

standard debugging features, th
e ability

 to manage and

to prove things about sy
mbolic expressio

ns, a
 sim

ple

program testin
g manager, and a program verifier. A

brief discussio
n of th

e relationship between symbolic

execution and program proving is a
lso included.

Key Words and Phrases: s
ymbolic execution, pro-

gram testin
g, program debugging, program proving,

program verification, symbolic interpretation

CR Categories: 4
.13, 5.21, 5.24

Copyright © 1976, Association for Computing Machinery, Inc.

General permissio
n to republish

, but not fo
r profit,

all or part

of this m
aterial is

granted provided that ACM's c
opyright notice

is g
iven and that reference is m

ade to the publication, to its
date

of iss
ue, and to the fact th

at re
printing privileges were granted

by permissio
n of the Association for Computing Machinery.

Author's address:
IBM Thomas J.

 Watson Research Center,

P.O. Box 218, Yorktown Heights, N
.Y. 10598.

385

1. Introduction

The large-scale production of re
liable programs is

one of th
e fundamental re

quirements for applying com-

puters to today's challenging problems. Several tech-

niques are used in practice; others are the focus of cur-

rent re
search. The work reported in this paper is

 directed

at assuring that a program meets its
 requirements even

when formal specific
ations are not given. The current

technology in this area is
basically a testing technology.

That is
, some small s

ample of th
e data that a program is

expected to handle is presented to the program. If t
he

program is judged to produce correct results for the

sample, it is
 assumed to be correct. M

uch current w
ork

[11] focuses on the question of how to choose this

sample.

Recent w
ork on proving the correctness of programs

by formal analysis 15] shows great promise and appears

to be the ultim
ate technique for producing reliable pro-

grams. However, t
he practical accomplishments in this

area fall short of a tool for routine use. Fundamental

problems in reducing the theory to practice are not

likely to be solved in the im
mediate future.

Program testing and program proving can be con-

sidered as extreme alternatives. While testing, a pro-

grammer can be assured that sample test ru
ns work cor-

rectly by carefully checking the results. The correct exe-

cution for in
puts not in

 the sample is
still

 in doubt. Al-

ternatively, in
 program proving the programmer form-

ally proves that the program meets its
 specific

ation for

all executions without being required to execute the

program at all. To do this he gives a precise specific
a-

tion of th
e correct program behavior and then follows a

formal proof procedure to show that the program and

the specific
ation are consistent. The confidence in this

method hinges on the care and accuracy employed in

both the creation of the specific
ation and in the con-

struction of th
e proof steps, as well a

s on the attention

to machine-dependent iss
ues such as overflo

w, ro
unding

etc.
This paper describes a practical approach between

these tw
o extremes. F rom one simple view, it

is an en-

hanced testing technique. In
stead of executing a program

on a set of sample inputs, a program is "symbolically"

executed for a set of classes of in
puts. T

hat is,
 each sym-

bolic execution result m
ay be equivalent to

 a large num-

ber of normal test cases. These results can be checked

against the programmer's expectations for correctness

either fo
rmally or in

formally.

The class of in
puts characterized by each symbolic

execution is
determined by the dependence of th

e pro-

gram's control fl
ow on its

 inputs. If t
he control fl

ow of

the program is c
ompletely independent of th

e input var-

iables, a single symbolic execution will s
uffic

e to check

all possible executions of th
e program. If the control

flow of th
e program is dependent on the inputs, one

must resort to a case analysis. Often the set of input

Communications

July 1976

of

Volume 19

the ACM

Number 7

“The execution proceeds as in a normal
execution except that values may be

symbolic formulas over the input symbols”
— James C. King

Symbolic execution

�30

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Symbolic execution

�30

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

true

Symbolic execution

�30

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

true

Symbolic execution

�30

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

true

Symbolic execution

�30

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

true

Symbolic execution

�30

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x ≥ A_size x < A_size

Symbolic execution

�30

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x ≥ A_size x < A_size

Symbolic execution

�30

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x ≥ A_size x < A_size

Symbolic execution

�30

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x ≥ A_size x < A_size

Symbolic execution

�30

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x ≥ A_size x < A_size

start; pc L1; load A+x; load B+A[x]; rollback; pc END

Symbolic execution

�30

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x ≥ A_size x < A_size

start; pc L1; load A+x; load B+A[x]; rollback; pc END

Symbolic execution

�30

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x ≥ A_size x < A_size

start; pc L1; load A+x; load B+A[x]; rollback; pc END

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Detecting speculative leaks

Symbolic
execution

Detect leaks

�31

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Detecting speculative leaks

Symbolic
execution

Detect leaks

�31

For each τ ∈ sym-traces(P)
if MemLeak(τ) then

return INSECURE
if CtrlLeak(τ) then

return INSECURE
return SECURE

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Detecting speculative leaks

Symbolic
execution

Detect leaks

�31

For each τ ∈ sym-traces(P)
if MemLeak(τ) then

return INSECURE
if CtrlLeak(τ) then

return INSECURE
return SECURE

Memory leaks
Speculative memory accesses must depend only on

• Non-sensitive information (determined by policy), or

• be determined by non-speculative observations

�32

Memory leaks
Speculative memory accesses must depend only on

• Non-sensitive information (determined by policy), or

• be determined by non-speculative observations

τ

�32

Memory leaks
Speculative memory accesses must depend only on

• Non-sensitive information (determined by policy), or

• be determined by non-speculative observations

τ
pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)

�32

Memory leaks
Speculative memory accesses must depend only on

• Non-sensitive information (determined by policy), or

• be determined by non-speculative observations

τ

s1

s2

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)

�32

Memory leaks
Speculative memory accesses must depend only on

• Non-sensitive information (determined by policy), or

• be determined by non-speculative observations

τ

s1

s2

⊧
⊧

φ
φ

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)

�32

Memory leaks
Speculative memory accesses must depend only on

• Non-sensitive information (determined by policy), or

• be determined by non-speculative observations

τ

=
s1

s2

⊧
⊧

φ
φ

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)

�32

Memory leaks
Speculative memory accesses must depend only on

• Non-sensitive information (determined by policy), or

• be determined by non-speculative observations

τ

= ≠

s1

s2

⊧
⊧

φ
φ

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)

�32

Memory leaks
 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Policy
x, A_size, A, B

are public

�33

start; pc L1; load A+x; load B+A[x]; rollback; pc ENDτ =

Memory leaks
 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)

Policy
x, A_size, A, B

are public

�33

start; pc L1; load A+x; load B+A[x]; rollback; pc ENDτ =

Memory leaks
 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)

s1

s2

Policy
x, A_size, A, B

are public

�33

start; pc L1; load A+x; load B+A[x]; rollback; pc ENDτ =

Memory leaks
 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)

s1

s2

Policy
x, A_size, A, B

are public

x1=x2 A_size1=A_size2 A1=A2 B1=B2 ∧ ∧ ∧
�33

start; pc L1; load A+x; load B+A[x]; rollback; pc ENDτ =

Memory leaks
 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)

s1

s2

⊧
⊧

x1≥A_size1

x2≥A_size2

Policy
x, A_size, A, B

are public

x1=x2 A_size1=A_size2 A1=A2 B1=B2 ∧ ∧ ∧
�33

start; pc L1; load A+x; load B+A[x]; rollback; pc ENDτ =

Memory leaks
 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)

s1

s2

⊧
⊧

x1≥A_size1

x2≥A_size2

Policy
x, A_size, A, B

are public

x1=x2 A_size1=A_size2 A1=A2 B1=B2 ∧ ∧ ∧

pc END

pc END

=

�33
Always true!

start; pc L1; load A+x; load B+A[x]; rollback; pc ENDτ =

Memory leaks
 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)`

s1

s2

⊧
⊧

x1≥A_size1

x2≥A_size2

Policy
x, A_size, A, B

are public

x1=x2 A_size1=A_size2 A1=A2 B1=B2 ∧ ∧ ∧

pc END

pc END

=

�33
Always true!

start; pc L1; load A+x; load B+A[x]; rollback; pc ENDτ =

Memory leaks
 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)`

s1

s2

⊧
⊧

x1≥A_size1

x2≥A_size2

Policy
x, A_size, A, B

are public

x1=x2 A_size1=A_size2 A1=A2 B1=B2 ∧ ∧ ∧

A1+x1

A2+x2

pc END

pc END

≠=

�33
Always true!

start; pc L1; load A+x; load B+A[x]; rollback; pc ENDτ =

Memory leaks
 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)`

s1

s2

⊧
⊧

x1≥A_size1

x2≥A_size2

Policy
x, A_size, A, B

are public

x1=x2 A_size1=A_size2 A1=A2 B1=B2 ∧ ∧ ∧

A1+x1

A2+x2

pc END

pc END

≠= ∨

�33
Always true!

start; pc L1; load A+x; load B+A[x]; rollback; pc ENDτ =

B2+A2[x2]

B1+A1[x1]

Memory leaks
 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)`

s1

s2

⊧
⊧

x1≥A_size1

x2≥A_size2

Policy
x, A_size, A, B

are public

x1=x2 A_size1=A_size2 A1=A2 B1=B2 ∧ ∧ ∧

A1+x1

A2+x2

pc END

pc END

≠ ≠= ∨

�33
Always true!

start; pc L1; load A+x; load B+A[x]; rollback; pc ENDτ =

B2+A2[x2]

B1+A1[x1]

Memory leaks
 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)

s1

s2

⊧
⊧

x1≥A_size1

x2≥A_size2

Policy
x, A_size, A, B

are public

x1=x2 A_size1=A_size2 A1=A2 B1=B2 ∧ ∧ ∧

A1+x1

A2+x2

pc END

pc END

≠ ≠= ∨

�33
Always true!

start; pc L1; load A+x; load B+A[x]; rollback; pc ENDτ =

Experimental results

�34

Experimental results
15 Spectre variants from

Paul Kocher

�34

Experimental results

if (x < A_size)
 y = B[A[x]*512]

15 Spectre variants from
Paul Kocher

�34

Experimental results

y = B[A[x<A_size?(x+1):0]*512]

15 Spectre variants from
Paul Kocher

�34

Experimental results

if (x < A_size)
 if (A[x]==k)
 y = B[0]

15 Spectre variants from
Paul Kocher

�34

Experimental results

�34

Experimental results

�34

Experimental resultsNo countermeasures

�34

Experimental resultsAutomated insertion of
fences

�34

Experimental results Speculative load
hardening

�34

Experimental results

�34

Experimental results

�34

Experimental results

Summary
• Leaks in all unprotected programs 

(except example #08 with optimizations)

• Confirm all vulnerabilities in VCC pointed out by Paul Kocher

• Programs with fences (ICC and Clang) are secure

• But: Unnecessary fences

• Programs with SLH are secure except #10 and #15

�34

Experimental results

Performance
• Programs ~20-200 lines of assembly code

• Analysis terminates in less than 30 sec

• Except for example #05 (< 2 min)

�34

4. Challenges

�35

Scalable analysis
Goal:  
Analysis of large, security-critical applications:

• Intel SGX SDK
• Xen hypervisor
• microkernels 
 

Need: Scalable analysis of speculative non-interference
• Exploit “locality” of speculative execution
• Develop scalable abstractions

�36

Verifying compiler-level countermeasures
mov rax, A_size
mov rcx, x
cmp rcx, rax
jae END
mov rax, A[rcx]
shl rax, 9
mov rax, B[rax]

mov rax, A_size
mov rcx, x
mov rdx, 0
cmp rcx, rax
jae END  
cmovae -1, rdx
mov rax, A[rcx]
shl rax, 9  
or rax, rdx
mov rax, B[rax]

mov rax, A_size
mov rcx, x
cmp rcx, rax
jae END
lfence
mov rax, A[rcx]
shl rax, 9
mov rax, B[rax]

Inserting

fences

Speculative

load

hardening

How can we verify such countermeasures?

A sound HW/SW security contract

�38

Instruction-set architecture: to weak for security
guarantees

Microarchitecture: not available publicly, and
too detailed for analysis

A sound HW/SW security contract

�38

Instruction-set architecture: to weak for security
guarantees

Microarchitecture: not available publicly, and
too detailed for analysis

HW/SW security contract

�39

Find out more in the paper: 
https://arxiv.org/abs/1812.08639

To appear in: IEEE Symposium on Security & Privacy, 2020

https://arxiv.org/abs/1812.08639

�39

Find out more in the paper: 
https://arxiv.org/abs/1812.08639

To appear in: IEEE Symposium on Security & Privacy, 2020

I am looking for PhD students and postdocs!

https://arxiv.org/abs/1812.08639

Thank you for your attention!
�39

Find out more in the paper: 
https://arxiv.org/abs/1812.08639

To appear in: IEEE Symposium on Security & Privacy, 2020

I am looking for PhD students and postdocs!

https://arxiv.org/abs/1812.08639

Backup

�40

if (x < A_size)
 y = B[A[x]*512]

Example #01 - SLH

�41

mov rax, A_size
mov rcx, x
mov rdx, 0
cmp rcx, rax
jae END
cmovae -1, rdx
mov rax, A[rcx]
shl rax, 9
or rax, rdx
mov rax, B[rax]

if (x < A_size)
 y = B[A[x]*512]

Example #01 - SLH

�41

mov rax, A_size
mov rcx, x
mov rdx, 0
cmp rcx, rax
jae END
cmovae -1, rdx
mov rax, A[rcx]
shl rax, 9
or rax, rdx
mov rax, B[rax]

if (x < A_size)
 y = B[A[x]*512]

rax is -1 whenever x ≥ A_size
We can prove security

Example #01 - SLH

�41

if (x < A_size)
 if (A[x]==0)
 y = B[0]

Example #10 - SLH

�42

mov rax, A_size
mov rcx, x
mov rdx, 0
cmp rcx, rax
jae END
cmovae -1, rdx
mov rax, A[rcx]
jne rax, END
cmovne -1, rdx
mov rax, [B]

if (x < A_size)
 if (A[x]==0)
 y = B[0]

Example #10 - SLH

�42

mov rax, A_size
mov rcx, x
mov rdx, 0
cmp rcx, rax
jae END
cmovae -1, rdx
mov rax, A[rcx]
jne rax, END
cmovne -1, rdx
mov rax, [B]

if (x < A_size)
 if (A[x]==0)
 y = B[0]

Leaks A[x]==0 via  
control-flow

We detect the leak!

Example #10 - SLH

�42

y = B[A[x<A_size?(x+1):0]*512]

Example #08 - FEN

�43

y = B[A[x<A_size?(x+1):0]*512]

mov rax, A_size
mov rcx, x
lea rcx, [rcx+1]
xor rdx,rdx
cmp rcx, rax
cmovae rdx, rcx
mov rax, A[rdx]
shl rax, 9
lfence
mov rax, B[rax]

Example #08 - FEN

�43

y = B[A[x<A_size?(x+1):0]*512]

mov rax, A_size
mov rcx, x
lea rcx, [rcx+1]
xor rdx,rdx
cmp rcx, rax
cmovae rdx, rcx
mov rax, A[rdx]
shl rax, 9
lfence
mov rax, B[rax]

 lfence is unnecessary

Example #08 - FEN

�43

