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Long Term: Co-Design of Software and Hardware countermeasures

Short and Mid Term: Software countermeasures


In particular: Compiler-level countermeasures

✓ Example: insert “fences” to selectively terminate speculative execution

✓ Implemented in major compilers (Microsoft Visual C++, Intel ICC, Clang)


PROBLEM SOLVED ?



Compiler-level countermeasures

�4



Compiler-level countermeasures

�4

“The countermeasure […] is conceptually straightforward

 but challenging in practice”



Compiler-level countermeasures

�4

“The countermeasure […] is conceptually straightforward

 but challenging in practice”

“compiler […] produces unsafe code when the

 static analyzer is unable to determine whether

 a code pattern will be exploitable”



Compiler-level countermeasures

�4

“The countermeasure […] is conceptually straightforward

 but challenging in practice”

“compiler […] produces unsafe code when the

 static analyzer is unable to determine whether

 a code pattern will be exploitable”

"there is no guarantee that all possible instances of 

[Spectre] will be instrumented”



Compiler-level countermeasures

�4
Bottom line: No guarantees!

“The countermeasure […] is conceptually straightforward

 but challenging in practice”

“compiler […] produces unsafe code when the

 static analyzer is unable to determine whether

 a code pattern will be exploitable”

"there is no guarantee that all possible instances of 

[Spectre] will be instrumented”
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1. Introduce semantic notion of security  
                    against speculative execution attacks

2. Static analysis to detect vulnerability  
                                                  or to prove security



Outline
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1.  Speculative execution attacks 

2.  Speculative non-interference


3.  Spectector: Detecting speculative leaks 

4.  Challenges
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Background: Speculative execution

• Predict instructions’ outcomes and speculatively continue execution 

• Rollback changes if speculation was wrong

Only architectural (ISA, “logical”) state, 
not microarchitectural state
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 1) Prepares microarchitectural state

 2) Leaks information into microarchitectural state

  3) Extracts information from microarchitecture

{Victim

}

Attacker

Attacker

}
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Informally:

Program P is speculatively non-interferent if

More formally:
 For all program states s and s’:


Extended 
with policies

Pnon-spec(s) = Pnon-spec(s’)    	             
⇒        Pspec(s) = Pspec(s’)
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model
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Expression evaluation

JnK(a) = n JxK(a) = a(x) J eK(a) =  JeK(a) Je1 ⌦ e2K(a) = Je1K(a)⌦ Je2K(a)

Instruction evaluation

SKIP
p(a(pc)) = skip

hm, ai �! hm, a[pc 7! a(pc) + 1]i

BARRIER
p(a(pc)) = spbarr

hm, ai �! hm, a[pc 7! a(pc) + 1]i

ASSIGN
p(a(pc)) = x e x 6= pc

hm, ai �! hm, a[pc 7! a(pc) + 1, x 7! JeK(a)]i

CONDITIONALUPDATE-SAT

p(a(pc)) = x
e0
 � e Je0K(a) = 0 x 6= pc

hm, ai �! hm, a[pc 7! a(pc) + 1, x 7! JeK(a)]i

CONDITIONALUPDATE-UNSAT

p(a(pc)) = x
e0
 � e Je0K(a) 6= 0 x 6= pc

hm, ai �! hm, a[pc 7! a(pc) + 1]i

TERMINATE
p(a(pc)) = ?

hm, ai �! hm, a[pc 7! ?]i

LOAD
p(a(pc)) = load x, e x 6= pc n = JeK(a)
hm, ai

load n
����! hm, a[pc 7! a(pc) + 1, x 7! m(n)]i

STORE
p(a(pc)) = store x, e n = JeK(a)

hm, ai
store n
����! hm[n 7! a(x)], a[pc 7! a(pc) + 1]i

BEQZ-SAT
p(a(pc)) = beqz x, ` a(x) = 0

hm, ai
pc `
��! hm, a[pc 7! `]i

BEQZ-UNSAT
p(a(pc)) = beqz x, ` a(x) 6= 0

hm, ai
pc a(pc)+1
�������! hm, a[pc 7! a(pc) + 1]i

JMP
p(a(pc)) = jmp e ` = JeK(a)

hm, ai
pc `
��! hm, a[pc 7! `]i

Fig. 8. µASM semantics for a program p

NOBRANCH, the rule applies only to the last transaction in s.
Since the semantics always-mispredicts the outcome of branch
instructions, SE-ROLLBACK is always applied, i.e there is no
need for a rule that handles committed transactions.

Similarly to Proposition 1, we can show that a program’s
non-speculative behavior can be recovered from its behavior
under th always-mispredict semantics.

Proposition 3. Let p be a program and w be a speculative
window. Then, LpM = {|p|}w�nse.

Proposition 4 states that the always-mispredict semantics
yields the worst-case leakage.

Proposition 4. Let p be a program, w 2 N be a specula-
tive window, and �,�0

2 InitConf be initial configurations.
{|p|}w(�) = {|p|}w(�0) iff JpKO(�) = JpKO(�0) for all predic-
tion oracles O with speculative window at most w.

APPENDIX D
SYMBOLIC SEMANTICS

Here, we formalize the symbolic version of the always-
mispredict semantics for µASM programs.

Symbolic expressions. Symbolic expressions represent com-
putations over symbolic values. A symbolic expression se is a
concrete value n 2 Vals, a symbolic value s 2 SymbVals , an
if-then-else expression ite(se, se 0, se 00), or the application of
a unary  or a binary operator ⌦.

se := n | s | ite(se, se 0, se 00) |  se | se ⌦ se 0

Symbolic memories. We model symbolic memories as sym-
bolic arrays using the standard theory of arrays [20]. That is,
we model memory updates as triples of the form write(sm,
se, se 0), which updates the symbolic memory sm by assigning
the symbolic value se 0 to the symbolic location se , and

memory reads as read(sm, se), which denote retrieving the
value assigned to the symbolic expression se .

A symbolic memory sm is either a function mem : N !

SymbVals mapping memory addresses to symbolic values or
a term write(sm, se, se 0), where sm is a symbolic memory
and se, se 0 are symbolic expressions. To account for symbolic
memories, we extend symbolic expressions with terms of the
form read(sm, se), where sm is a symbolic memory and se
is a symbolic expression, representing memory reads.

sm := mem | write(sm, se, se 0)

se := . . . | read(sm, se)

Evaluating symbolic expressions. The value of a symbolic
expression se depends on a valuation µ : SymbVals ! Vals
mapping symbolic values to concrete ones:

µ(n) = n if n 2 Vals
µ(s) = µ(s) if s 2 SymbVals

µ(ite(se, se 0, se 00)) = µ(se 0) if µ(se) 6= 0

µ(ite(se, se 0, se 00)) = µ(se 00) if µ(se) = 0

µ( se) =  µ(se)

µ(se ⌦ se 0) = µ(se)⌦ µ(se 0)

µ(mem) = µ �mem

µ(write(sm, se, se 0)) = µ(sm)[µ(se) 7! µ(se 0)]

µ(read(sm, se)) = µ(sm)(µ(se))

An expression se is satisfiable if there is a valuation µ
satisfying it, i.e., µ(se) 6= 0.

Symbolic assignments. A symbolic assignment sa is a func-
tion mapping register identifiers to symbolic expressions sa :
Regs ! SymbExprs . Given a symbolic assignment sa and a
valuation µ, µ(sa) denotes the assignment µ � sa. We assume

16
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SE-NOBRANCH
p(�(pc)) 6= beqz x, ` �

⌧
�!s �0 enabled 0(s)

s0 =

(
decr 0(s) if p(�(pc)) 6= spbarr

zeroes 0(s) otherwise

hctr ,�, si
⌧

==)s hctr ,�0, s0i

SE-BRANCH-SYMB
p(�(pc)) = beqz x, `00 enabled 0(s)

�
symPc(se)·pc `0
���������!s �0 ` =

(
�(pc) + 1 if `0 6= �(pc) + 1

`00 if `0 = �(pc) + 1

s0 = s · h�, ctr ,min(w,wndw(s)� 1), `i id = ctr

hctr ,�, si
symPc(se)·start id·pc `
==============)s hctr + 1,�[pc 7! `], s0i

SE-ROLLBACK
�0 ⌧

�!s �00

hctr ,�, s · h�0, id , 0, `ii
rollback id·pc �00(pc)
==============)s hctr ,�00, si

Fig. 11. Symbolic always-mispredict speculative semantics for a program p and speculative window w

the same non-speculative projection. From Propositions 2, ⌧c
and ⌧ 0c correspond to two symbolic traces ⌧s and ⌧ 0s. Since
CHECK CTRL LEAK(⌧s) = ?, CHECK CTRL LEAK(⌧ 0s) =
?, and ⌧c�nse = ⌧ 0c�nse, speculatively executed control-flow
instructions produce the same outcome in ⌧c and ⌧ 0c. Hence,
the same code is executed in both traces and ⌧s = ⌧ 0s. From
CHECK MEM LEAK(⌧s) = ?, the observations produced by
speculatively executed load and store instructions are the
same. Thus, ⌧c = ⌧ 0c. Hence, whenever two initial configu-
rations result in the same non-speculative traces, then they
produce the same speculative traces. Therefore, p satisfies
speculative non-interference w.r.t. the always-mispredict se-
mantics with speculative window w. From this and Theorem 1,
p satisfies speculative non-interference w.r.t. any prediction
oracle with speculative window at most w.

Theorem 4 states that the leaks found by SPECTECTOR are
valid counterexamples to speculative non-interference.

Theorem 4. Whenever SPECTECTOR(p, P, w) = INSECURE,
there is an oracle O with speculative window at most w such
that program p does not satisfy speculative non-interference
w.r.t. O and the policy P .

Proof. If SPECTECTOR(p, P ) = INSECURE, there is a sym-
bolic trace ⌧ for which either CHECK MEM LEAK(⌧) = > or
CHECK CTRL LEAK(⌧) = >. In the first case, pthCnd(⌧)^
polEqv(P ) ^ obsEqv(⌧�nse) ^ ¬obsEqv(⌧�se) is satisfiable.
Then, there are two models for the symbolic trace ⌧ that
(1) satisfy the path condition encoded in ⌧ , (2) agree on
the non-sensitive registers and memory locations in P , (3)
produce the same non-speculative projection, and (4) the
speculative projections differ on a load or store observation.
From Proposition 2, the two concretizations correspond to
two concrete runs, with different traces, whose non-speculative
projection are the same. By combining this with Proposition 3,
there are two configurations that produce the same non-
speculative trace but different speculative traces. This is a
violation of speculative non-interference.

In the second case, there is a prefix ⌫ · symPc(se) of ⌧�se
such that pthCnd(⌧�nse · ⌫) ^ polEqv(P ) ^ obsEqv(⌧�nse) ^
¬(se1 $ se2) is satisfiable. Hence, there are two symbolic

traces ⌧ and ⌧ 0 that produce the same non-speculative observa-
tions but differ on a program counter observation pc n in their
speculative projections. Again, this implies, through Proposi-
tions 2 and 3, that there are two P -indistinguishable initial
configurations producing the same non-speculative traces but
distinct speculative traces, leading to a violation of speculative
non-interference.

In both cases, p does not satisfy speculative non-interference
w.r.t. the always-mispredict semantics with speculative win-
dow w. From this and Theorem 1, there is a prediction oracle
O with speculative window at most w such that p does not
satisfy speculative non-interference w.r.t. O.

Theorem 2 immediately follows from Theorems 3 and 4.

APPENDIX F
CODE FROM CASE STUDIES

A. Example #8
In Example #8, the bounds check of Figure 1 is imple-

mented using a conditional operator:

1 temp &= B[A[y<size?(y+1):0]*512];

When compiling the example without countermeasures or
optimizations, the conditional operator is translated to a branch
instruction (line 4 below), which is a source of speculation.
Hence, the resulting program is vulnerable to SPECTRE-style
attacks, and SPECTECTOR correctly detects the possible leak
of sensitive information.

1 mov size, %rcx

2 mov y, %rax

3 cmp %rcx, %rax

4 jae .L1

5 add $1, %rax

6 jmp .L2

7 .L1:

8 xor %rax, %rax

9 jmp .L2

10 .L2:

11 mov A(%rax), %rax

12 shl $9, %rax

13 mov B(%rax), %rax

19
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�24

Speculative semantics 
+ 

Prediction oracle

Always-mispredict 
speculative semantics

For all program states s and s’:

	    	             Pspec(s) = Pspec(s’)    	

   ⇔   ∀O:  Pspec,O(s) = Pspec,O(s’)
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Program P is speculatively non-interferent if

 For all program states s and s’:

Pnon-spec(s) = Pnon-spec(s’)    	             

⇒        Pspec(s) = Pspec(s’)
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1. Introduction 

The large-scale production of  re
liable programs is 

one of th
e fundamental re

quirements for applying com- 

puters to today's challenging problems. Several tech- 

niques are used in practice; others are the focus of  cur- 

rent re
search. The work reported in this paper is

 directed 

at assuring that a program meets its
 requirements even 

when formal specific
ations are not given. The current 

technology in this area is 
basically a testing technology. 

That  is
, some small s

ample of th
e data that a program is 

expected to handle is presented to the program. If  t
he 

program is judged to produce correct results for the 

sample, it is
 assumed to be correct. M

uch current w
ork 

[11] focuses on the question of  how to choose this 

sample. 

Recent w
ork on proving the correctness of programs 

by formal analysis 15] shows great promise and appears 

to be the ultim
ate technique for producing reliable pro- 

grams. However, t
he practical accomplishments in this 

area fall short of  a tool for routine use. Fundamental  

problems in reducing the theory to practice are not 

likely to be solved in the im
mediate future. 

Program testing and program proving can be con- 

sidered as extreme alternatives. While testing, a pro- 

grammer can be assured that sample test ru
ns work cor- 

rectly by carefully checking the results. The correct exe- 

cution for in
puts not in

 the sample is 
still

 in doubt. Al- 

ternatively, in
 program proving the programmer form- 

ally proves that the program meets its
 specific

ation for 

all executions without being required to execute the 

program at all. To do this he gives a precise specific
a- 

tion of th
e correct program behavior and then follows a 

formal proof  procedure to show that the program and 

the specific
ation are consistent. The confidence in this 

method hinges on the care and accuracy employed in 

both the creation of the specific
ation and in the con- 

struction of  th
e proof  steps, as well a

s on the attention 

to machine-dependent iss
ues such as overflo

w, ro
unding 

etc. 
This paper describes a practical approach between 

these tw
o extremes. F rom one simple view, it 

is an en- 

hanced testing technique. In
stead of executing a program 

on a set of sample inputs, a program is "symbolically" 

executed for a set of  classes of in
puts. T

hat  is,
 each sym- 

bolic execution result m
ay be equivalent to

 a large num- 

ber of normal test cases. These results can be checked 

against the programmer's  expectations for correctness 

either fo
rmally or in

formally. 

The class of  in
puts characterized by each symbolic 

execution is 
determined by the dependence of  th

e pro- 

gram's control fl
ow on its

 inputs. If  t
he control fl

ow of  

the program is c
ompletely independent of  th

e input var- 

iables, a single symbolic execution will s
uffic

e to check 

all possible executions of th
e program. If  the control 

flow of th
e program is dependent on the inputs, one 

must resort to a case analysis. Often the set of input 
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Experimental results

if (x < A_size) 
 if (A[x]==k) 
  y = B[0]
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Experimental results

Summary 
• Leaks in all unprotected programs 

(except example #08 with optimizations) 

• Confirm all vulnerabilities in VCC pointed out by Paul Kocher 

• Programs with fences (ICC and Clang) are secure 

• But: Unnecessary fences 

• Programs with SLH are secure except #10 and #15 
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Experimental results

Performance 
• Programs ~20-200 lines of assembly code 

• Analysis terminates in less than 30 sec  

• Except for example #05 (< 2 min)
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4. Challenges
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Scalable analysis
Goal:  
Analysis of large, security-critical applications:  

• Intel SGX SDK  
• Xen hypervisor  
• microkernels 
 

Need: Scalable analysis of speculative non-interference 
• Exploit “locality” of speculative execution 
• Develop scalable abstractions
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Verifying compiler-level countermeasures
mov  rax, A_size 
mov  rcx, x 
cmp  rcx, rax 
jae  END 
mov  rax, A[rcx] 
shl  rax, 9 
mov  rax, B[rax]

mov  rax, A_size 
mov  rcx, x 
mov  rdx, 0 
cmp  rcx, rax 
jae  END  
cmovae -1, rdx 
mov  rax, A[rcx] 
shl  rax, 9  
or  rax, rdx 
mov  rax, B[rax]

mov  rax, A_size 
mov  rcx, x 
cmp  rcx, rax 
jae  END 
lfence 
mov  rax, A[rcx] 
shl  rax, 9 
mov  rax, B[rax]

Inserting

fences

Speculative

load


hardening

How can we verify such countermeasures?



A sound HW/SW security contract
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Thank you for your attention!
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if (x < A_size) 
 y = B[A[x]*512]

Example #01 - SLH
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mov   rax, A_size 
mov   rcx, x 
mov   rdx, 0 
cmp   rcx, rax 
jae   END 
cmovae -1, rdx 
mov   rax, A[rcx] 
shl   rax, 9 
or   rax, rdx 
mov   rax, B[rax]

if (x < A_size) 
 y = B[A[x]*512]

Example #01 - SLH
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mov   rax, A_size 
mov   rcx, x 
mov   rdx, 0 
cmp   rcx, rax 
jae   END 
cmovae -1, rdx 
mov   rax, A[rcx] 
shl   rax, 9 
or   rax, rdx 
mov   rax, B[rax]

if (x < A_size) 
 y = B[A[x]*512]

rax is -1 whenever x ≥ A_size 
We can prove security

Example #01 - SLH
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if (x < A_size) 
 if (A[x]==0) 
  y = B[0]

Example #10 - SLH
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mov   rax, A_size 
mov   rcx, x 
mov   rdx, 0 
cmp   rcx, rax 
jae   END 
cmovae -1, rdx 
mov   rax, A[rcx] 
jne   rax, END 
cmovne -1, rdx 
mov   rax, [B]  

if (x < A_size) 
 if (A[x]==0) 
  y = B[0]

Example #10 - SLH
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mov   rax, A_size 
mov   rcx, x 
mov   rdx, 0 
cmp   rcx, rax 
jae   END 
cmovae -1, rdx 
mov   rax, A[rcx] 
jne   rax, END 
cmovne -1, rdx 
mov   rax, [B]  

if (x < A_size) 
 if (A[x]==0) 
  y = B[0]

Leaks A[x]==0 via  
control-flow 

We detect the leak!

Example #10 - SLH
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y = B[A[x<A_size?(x+1):0]*512]

Example #08 - FEN
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y = B[A[x<A_size?(x+1):0]*512]

mov   rax, A_size 
mov   rcx, x 
lea   rcx, [rcx+1]  
xor   rdx,rdx 
cmp   rcx, rax 
cmovae rdx, rcx  
mov   rax, A[rdx] 
shl   rax, 9 
lfence 
mov   rax, B[rax]

Example #08 - FEN
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y = B[A[x<A_size?(x+1):0]*512]

mov   rax, A_size 
mov   rcx, x 
lea   rcx, [rcx+1]  
xor   rdx,rdx 
cmp   rcx, rax 
cmovae rdx, rcx  
mov   rax, A[rdx] 
shl   rax, 9 
lfence 
mov   rax, B[rax]

 lfence is unnecessary

Example #08 - FEN
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