
S e l f i s h - L R U :
P r e e m p t i o n - A w a r e C a c h i n g f o r

P r e d i c t a b i l i t y a n d P e r f o r m a n c e

J a n R e i n e k e S a a r l a n d U n i v e r s i t y, G e r m a n y
S e b a s t i a n A l t m e y e r U n i v e r s i t y o f A m s t e r d a m , N e t h e r l a n d s
D a n i e l G r u n d T h a l e s G e r m a n y
S e b a s t i a n H a h n S a a r l a n d U n i v e r s i t y, G e r m a n y
C l a i r e M a i z a I N P G r e n o b l e , Ve r i m a g , F r a n c e

20th IEEE Real-Time and Embedded Technology and Applications Symposium
April 15-17, 2014
Berlin, Germany

Task 1

Task 2

C o n t e x t : P r e e m p t i v e S c h e d u l i n g

2

Non-preemptive Execution:

C o n t e x t : P r e e m p t i v e S c h e d u l i n g

3

Preemptive Execution:

Task 1

Task 2

Task 1

Task 2

Cache-Related Preemption Delay (CRPD)

C a v e a t : P r e e m p t i o n s a r e n o t f r e e !

4

Preemptive Execution:

C o n t r i b u t i o n o f t h i s p a p e r

5

Selfish-LRU: a new cache replacement policy, that

➡ Increases performance by reducing the CRPD
➡ Simplifies static analysis of the CRPD

C o n t r i b u t i o n o f t h i s p a p e r

5

Selfish-LRU: a new cache replacement policy, that

➡ Increases performance by reducing the CRPD
➡ Simplifies static analysis of the CRPD

Selfish-LRU is a preemption-aware variant of
least-recently used (LRU)

A
B
C
D

most-recently used

least-recently used

E
A
B
C

E: miss

B
E
A
C

B: hit

B
E
A
C

B: hit

L e a s t - R e c e n t l y U s e d (L R U)

6

“Replace data that has not been used for the longest time”

➡ Usually works well due to temporal locality

C R P D E x a m p l e u n d e r L R U R e p l a c e m e n t

7

Assume simple preempted task:

for i in [1,10]:!
! ! do something()

for i in [1,10]:!
! ! access A!
! ! access B!
! ! access C!
! ! access D

C R P D E x a m p l e u n d e r L R U R e p l a c e m e n t

7

Assume simple preempted task:

for i in [1,10]:!
! ! do something()

for i in [1,10]:!
! ! access A!
! ! access B!
! ! access C!
! ! access D

D
C
B
A

A
D
C
B

A: hit

B
A
D
C

B: hit

C
B
A
D

C: hit

D
C
B
A

D: hit

Without preemption (after warmup): 0 misses

D
C
B
A

X
D
C
B

X: miss

C R P D E x a m p l e u n d e r L R U R e p l a c e m e n t

8

Assume simple preempting task:

do something_else() access X

Preemption between loop iterations: 1 access

X
D
C
B

A
X
D
C

A: miss

B
A
X
D

B: miss

C
B
A
X

C: miss

D
C
B
A

D: miss

C R P D E x a m p l e u n d e r L R U R e p l a c e m e n t

9

First loop iteration after preemption: 4 misses

X
D
C
B

A
X
D
C

A: miss

B
A
X
D

B: miss

C
B
A
X

C: miss

D
C
B
A

D: miss

C R P D E x a m p l e u n d e r L R U R e p l a c e m e n t :
Two types of misses related to preemption

10

1. Replaced Misses 2. Reordered Misses

X
D
C
B

A
X
D
C

A: miss

B
A
X
D

B: miss

C
B
A
X

C: miss

D
C
B
A

D: miss

C R P D E x a m p l e u n d e r L R U R e p l a c e m e n t :
Two types of misses related to preemption

10

1. Replaced Misses 2. Reordered Misses

Liu et al., PACT 2008: reordered misses account
for 10% to 28% of all preemption-related misses

A
B
C
D

most-recently used

least-recently used

E
A
B
D

E: miss

B
E
A
D

B: hit

F
B
E
A

F: miss

S e l f i s h - L R U : I d e a

11

Prioritize blocks of currently running task:

Intuition:
“Memory blocks of currently running task
more likely to be accessed again soon.”

D
C
B
A

A
D
C
B

A: hit

B
A
D
C

B: hit

C
B
A
D

C: hit

D
C
B
A

D: hit

S e l f i s h - L R U : C R P D E x a m p l e R e v i s i t e d

12

Assume simple preempted task:

for i in [1,10]:!
! ! do something()

for i in [1,10]:!
! ! access A!
! ! access B!
! ! access C!
! ! access D

Without preemption (after warmup): 0 misses

➡ Same behavior as LRU

D
C
B
A

X
D
C
B

X: miss

S e l f i s h - L R U : C R P D E x a m p l e R e v i s i t e d

13

Assume simple preempting task:

do something_else() access X

Preemption between loop iterations: 1 access

X
D
C
B

A
D
C
B

A: miss

B
A
D
C

B: hit

C
B
A
D

C: hit

D
C
B
A

D: hit

S e l f i s h - L R U : C R P D E x a m p l e R e v i s i t e d

14

First loop iteration after preemption: 1 miss

➡ No reordering misses

S e l f i s h - L R U : P r o p e r t i e s

15

S e l f i s h - L R U : P r o p e r t i e s

15

Property 1:
Selfish-LRU does not exhibit reordering misses.

➡ Often: smaller CRPD
➡ Simplifies static analysis of the CRPD

S e l f i s h - L R U : P r o p e r t i e s

15

Property 1:
Selfish-LRU does not exhibit reordering misses.

➡ Often: smaller CRPD
➡ Simplifies static analysis of the CRPD

Property 2:
In non-preempted execution, Selfish-LRU = LRU.

➡ No change in “regular” WCET analysis

Preempting

Preempted

S e l f i s h - L R U : C R P D A n a l y s i s

16

Preempting

Preempted

S e l f i s h - L R U : C R P D A n a l y s i s

16

1. Number of useful
cache blocks (UCBs)?

Preempting

Preempted

S e l f i s h - L R U : C R P D A n a l y s i s

16

1. Number of useful
cache blocks (UCBs)?

2. Number of evicting
cache blocks (ECBs)?

➡ Smaller Bound

Preempting

Preempted

S e l f i s h - L R U : C R P D A n a l y s i s

16

1. Number of useful
cache blocks (UCBs)?

2. Number of evicting
cache blocks (ECBs)?

➡ Smaller Bound

3. Combination of
ECBs and UCBs
based on Resilience
➡ Simplified and Smaller Bound

S e l f i s h - L R U : I m p l e m e n t a t i o n

17

Required modifications:
• Manage task ids (TID) in operating system
• Make TID available to cache in TID register
• Augment cache lines with TID of “owner” task
‣ Conservative estimate: < 3% space overhead

• Modified replacement logic

Similar to virtually-addressed caches

E x p e r i m e n t a l E v a l u a t i o n

18

E x p e r i m e n t a l E v a l u a t i o n

18

Main goal:
Compare Selfish-LRU with LRU in terms of
performance and predictability
!

E x p e r i m e n t a l E v a l u a t i o n

18

Main goal:
Compare Selfish-LRU with LRU in terms of
performance and predictability
! ➡ Modified MPARM simulator
➡ CRPD analyses implemented in AbsInt’s aiT

E x p e r i m e n t a l E v a l u a t i o n

18

Main goal:
Compare Selfish-LRU with LRU in terms of
performance and predictability
!

Secondary goal: (see paper for details)
Compare CRPD approach with cache partitioning

➡ Modified MPARM simulator
➡ CRPD analyses implemented in AbsInt’s aiT

E x p e r i m e n t a l E v a l u a t i o n :
B e n c h m a r k s a n d C a c h e C o n f i g u r a t i o n

19

Benchmarks:
• Four of the largest Mälardalen benchmarks
• Four models from the SCADE distribution
• Two SCADE models from an embedded systems course

Cache configuration:
 Capacity: 2 KB, 4 KB, 8 KB
 Associativity: 4, 8
 Number of sets: 32, 64, 128

E x p e r i m e n t a l E v a l u a t i o n :
S i m u l a t i o n R e s u l t s , “ L a r g e ” P r e e m p t i n g Ta s k

20

Measured
number of
additional

misses

Cache configuration:
 Capacity: 2 KiB, Associativity 4, Number of sets: 32

Preempted Tasks

Fig. 1. Measured number of context-switch misses for each benchmark when
preempted by pilot. k = 4, n = 32, and thus C = 2 KiB.

Fig. 2. Measured number of context-switch misses for each benchmark when
preempted by pilot. k = 8, n = 32, and thus C = 4 KiB.

Fig. 3. Measured number of context-switch misses for each benchmark when
preempted by edn. k = 4, n = 32, and thus C = 2 KiB.

Fig. 7. Observed misses during the execution of different task sets.
k = 4, n = 128, and thus C = 8 KiB.

Fig. 4. Bounds on the number of context-switch misses when preempted by
pilot. k = 4, n = 32, and thus C = 2 KiB determined by static analysis.

Fig. 5. Bounds on the number of context-switch misses when preempted by
pilot. k = 8, n = 32, and thus C = 4 KiB determined by static analysis.

Fig. 6. Bounds on the number of context-switch misses when preempted by
edn. k = 4, n = 32, and thus C = 2 KiB determined by static analysis.

Fig. 8. Observed misses during the execution of different task sets.
k = 8, n = 64, and thus C = 8 KiB.

E x p e r i m e n t a l E v a l u a t i o n :
S i m u l a t i o n R e s u l t s , “ L a r g e ” P r e e m p t i n g Ta s k

20

Measured
number of
additional

misses

Cache configuration:
 Capacity: 2 KiB, Associativity 4, Number of sets: 32

Preempted Tasks

Fig. 1. Measured number of context-switch misses for each benchmark when
preempted by pilot. k = 4, n = 32, and thus C = 2 KiB.

Fig. 2. Measured number of context-switch misses for each benchmark when
preempted by pilot. k = 8, n = 32, and thus C = 4 KiB.

Fig. 3. Measured number of context-switch misses for each benchmark when
preempted by edn. k = 4, n = 32, and thus C = 2 KiB.

Fig. 7. Observed misses during the execution of different task sets.
k = 4, n = 128, and thus C = 8 KiB.

Fig. 4. Bounds on the number of context-switch misses when preempted by
pilot. k = 4, n = 32, and thus C = 2 KiB determined by static analysis.

Fig. 5. Bounds on the number of context-switch misses when preempted by
pilot. k = 8, n = 32, and thus C = 4 KiB determined by static analysis.

Fig. 6. Bounds on the number of context-switch misses when preempted by
edn. k = 4, n = 32, and thus C = 2 KiB determined by static analysis.

Fig. 8. Observed misses during the execution of different task sets.
k = 8, n = 64, and thus C = 8 KiB.

Large share of replaced misses
➡ Fairly small improvement

E x p e r i m e n t a l E v a l u a t i o n :
S i m u l a t i o n R e s u l t s , “ S m a l l ” P r e e m p t i n g Ta s k

21

Fig. 1. Measured number of context-switch misses for each benchmark when
preempted by pilot. k = 4, n = 32, and thus C = 2 KiB.

Fig. 2. Measured number of context-switch misses for each benchmark when
preempted by pilot. k = 8, n = 32, and thus C = 4 KiB.

Fig. 3. Measured number of context-switch misses for each benchmark when
preempted by edn. k = 4, n = 32, and thus C = 2 KiB.

Fig. 7. Observed misses during the execution of different task sets.
k = 4, n = 128, and thus C = 8 KiB.

Fig. 4. Bounds on the number of context-switch misses when preempted by
pilot. k = 4, n = 32, and thus C = 2 KiB determined by static analysis.

Fig. 5. Bounds on the number of context-switch misses when preempted by
pilot. k = 8, n = 32, and thus C = 4 KiB determined by static analysis.

Fig. 6. Bounds on the number of context-switch misses when preempted by
edn. k = 4, n = 32, and thus C = 2 KiB determined by static analysis.

Fig. 8. Observed misses during the execution of different task sets.
k = 8, n = 64, and thus C = 8 KiB.

Measured
number of
additional

misses

Cache configuration:
 Capacity: 2 KiB, Associativity 4, Number of sets: 32

Preempted Tasks

E x p e r i m e n t a l E v a l u a t i o n :
S i m u l a t i o n R e s u l t s , “ S m a l l ” P r e e m p t i n g Ta s k

21

Fig. 1. Measured number of context-switch misses for each benchmark when
preempted by pilot. k = 4, n = 32, and thus C = 2 KiB.

Fig. 2. Measured number of context-switch misses for each benchmark when
preempted by pilot. k = 8, n = 32, and thus C = 4 KiB.

Fig. 3. Measured number of context-switch misses for each benchmark when
preempted by edn. k = 4, n = 32, and thus C = 2 KiB.

Fig. 7. Observed misses during the execution of different task sets.
k = 4, n = 128, and thus C = 8 KiB.

Fig. 4. Bounds on the number of context-switch misses when preempted by
pilot. k = 4, n = 32, and thus C = 2 KiB determined by static analysis.

Fig. 5. Bounds on the number of context-switch misses when preempted by
pilot. k = 8, n = 32, and thus C = 4 KiB determined by static analysis.

Fig. 6. Bounds on the number of context-switch misses when preempted by
edn. k = 4, n = 32, and thus C = 2 KiB determined by static analysis.

Fig. 8. Observed misses during the execution of different task sets.
k = 8, n = 64, and thus C = 8 KiB.

Measured
number of
additional

misses

Cache configuration:
 Capacity: 2 KiB, Associativity 4, Number of sets: 32

Preempted Tasks

Small share of replaced misses
➡ Fairly significant improvement

E x p e r i m e n t a l E v a l u a t i o n :
A n a l y s i s R e s u l t s , “ L a r g e ” P r e e m p t i n g Ta s k

22

Bound on
number of
additional

misses

Cache configuration:
 Capacity: 2 KiB, Associativity 4, Number of sets: 32

Preempted Tasks

Fig. 1. Measured number of context-switch misses for each benchmark when
preempted by pilot. k = 4, n = 32, and thus C = 2 KiB.

Fig. 2. Measured number of context-switch misses for each benchmark when
preempted by pilot. k = 8, n = 32, and thus C = 4 KiB.

Fig. 3. Measured number of context-switch misses for each benchmark when
preempted by edn. k = 4, n = 32, and thus C = 2 KiB.

Fig. 7. Observed misses during the execution of different task sets.
k = 4, n = 128, and thus C = 8 KiB.

Fig. 4. Bounds on the number of context-switch misses when preempted by
pilot. k = 4, n = 32, and thus C = 2 KiB determined by static analysis.

Fig. 5. Bounds on the number of context-switch misses when preempted by
pilot. k = 8, n = 32, and thus C = 4 KiB determined by static analysis.

Fig. 6. Bounds on the number of context-switch misses when preempted by
edn. k = 4, n = 32, and thus C = 2 KiB determined by static analysis.

Fig. 8. Observed misses during the execution of different task sets.
k = 8, n = 64, and thus C = 8 KiB.

E x p e r i m e n t a l E v a l u a t i o n :
A n a l y s i s R e s u l t s , “ L a r g e ” P r e e m p t i n g Ta s k

22

Bound on
number of
additional

misses

Cache configuration:
 Capacity: 2 KiB, Associativity 4, Number of sets: 32

Preempted Tasks

Fig. 1. Measured number of context-switch misses for each benchmark when
preempted by pilot. k = 4, n = 32, and thus C = 2 KiB.

Fig. 2. Measured number of context-switch misses for each benchmark when
preempted by pilot. k = 8, n = 32, and thus C = 4 KiB.

Fig. 3. Measured number of context-switch misses for each benchmark when
preempted by edn. k = 4, n = 32, and thus C = 2 KiB.

Fig. 7. Observed misses during the execution of different task sets.
k = 4, n = 128, and thus C = 8 KiB.

Fig. 4. Bounds on the number of context-switch misses when preempted by
pilot. k = 4, n = 32, and thus C = 2 KiB determined by static analysis.

Fig. 5. Bounds on the number of context-switch misses when preempted by
pilot. k = 8, n = 32, and thus C = 4 KiB determined by static analysis.

Fig. 6. Bounds on the number of context-switch misses when preempted by
edn. k = 4, n = 32, and thus C = 2 KiB determined by static analysis.

Fig. 8. Observed misses during the execution of different task sets.
k = 8, n = 64, and thus C = 8 KiB.

All misses are replaced misses
➡ No improvement

E x p e r i m e n t a l E v a l u a t i o n :
A n a l y s i s R e s u l t s , “ S m a l l ” P r e e m p t i n g Ta s k

23

Bound on
number of
additional

misses

Cache configuration:
 Capacity: 4 KiB, Associativity 8, Number of sets: 32

Preempted Tasks

Fig. 1. Measured number of context-switch misses for each benchmark when
preempted by pilot. k = 4, n = 32, and thus C = 2 KiB.

Fig. 2. Measured number of context-switch misses for each benchmark when
preempted by pilot. k = 8, n = 32, and thus C = 4 KiB.

Fig. 3. Measured number of context-switch misses for each benchmark when
preempted by edn. k = 4, n = 32, and thus C = 2 KiB.

Fig. 7. Observed misses during the execution of different task sets.
k = 4, n = 128, and thus C = 8 KiB.

Fig. 4. Bounds on the number of context-switch misses when preempted by
pilot. k = 4, n = 32, and thus C = 2 KiB determined by static analysis.

Fig. 5. Bounds on the number of context-switch misses when preempted by
pilot. k = 8, n = 32, and thus C = 4 KiB determined by static analysis.

Fig. 6. Bounds on the number of context-switch misses when preempted by
edn. k = 4, n = 32, and thus C = 2 KiB determined by static analysis.

Fig. 8. Observed misses during the execution of different task sets.
k = 8, n = 64, and thus C = 8 KiB.

E x p e r i m e n t a l E v a l u a t i o n :
A n a l y s i s R e s u l t s , “ S m a l l ” P r e e m p t i n g Ta s k

23

Bound on
number of
additional

misses

Cache configuration:
 Capacity: 4 KiB, Associativity 8, Number of sets: 32

Preempted Tasks

Fig. 1. Measured number of context-switch misses for each benchmark when
preempted by pilot. k = 4, n = 32, and thus C = 2 KiB.

Fig. 2. Measured number of context-switch misses for each benchmark when
preempted by pilot. k = 8, n = 32, and thus C = 4 KiB.

Fig. 3. Measured number of context-switch misses for each benchmark when
preempted by edn. k = 4, n = 32, and thus C = 2 KiB.

Fig. 7. Observed misses during the execution of different task sets.
k = 4, n = 128, and thus C = 8 KiB.

Fig. 4. Bounds on the number of context-switch misses when preempted by
pilot. k = 4, n = 32, and thus C = 2 KiB determined by static analysis.

Fig. 5. Bounds on the number of context-switch misses when preempted by
pilot. k = 8, n = 32, and thus C = 4 KiB determined by static analysis.

Fig. 6. Bounds on the number of context-switch misses when preempted by
edn. k = 4, n = 32, and thus C = 2 KiB determined by static analysis.

Fig. 8. Observed misses during the execution of different task sets.
k = 8, n = 64, and thus C = 8 KiB.

Small share of replaced misses
➡ Fairly large improvement

S u m m a r y a n d F u t u r e W o r k

24

Selfish-LRU eliminates reordered misses:

➡ Increases performance by reducing the CRPD
➡ Simplifies static analysis of the CRPD
➡ Large improvements for small preempting
tasks like interrupt handlers

S u m m a r y a n d F u t u r e W o r k

24

Selfish-LRU eliminates reordered misses:

➡ Increases performance by reducing the CRPD
➡ Simplifies static analysis of the CRPD
➡ Large improvements for small preempting
tasks like interrupt handlers

Apply same idea in shared caches in multi-cores?

