Selfish-LRU:

Preemption-Aware Caching for
Predictability and Performance

Jan Reineke Saarland University, Germany
Sebastian Altmeyer University of Amsterdam, Netherlands
Daniel Grund Thales Germany

Sebastian Hahn Saarland University, Germany

Claire Maiza INP Grenoble, Verimag, France

20th IEEE Real-Time and Embedded Technology and Applications Symposium
April 15-17, 2014
Berlin, Germany

Context: Preemptive Scheduling

Non-preemptive Execution:

IE @ r t ? t

Task 2 ? I t

Context: Preemptive Scheduling

Preemptive Execution:

IE @ F F F t

Task 2 ? - e -1

Caveat: Preemptions are not free!

Preemptive Execution:

Task 1 f_

Task2 W W™
\Y

Cache-Related Preemption Delay (CRPD)

Contribution of this paper

Selfish-LRU: a new cache replacement policy, that

= |ncreases performance by reducing the CRPD
= Simplifies static analysis of the CRPD

Contribution of this paper

Selfish-LRU: a new cache replacement policy, that

= |ncreases performance by reducing the CRPD
= Simplifies static analysis of the CRPD

Seltish-LRU is a preemption-aware variant ot
least-recently used (LRU)

Least-Recently Used (LRU)

“"Replace data that has not been used for the longest time”
E: miss B: hit B: hit

i S
P

most-recently used 4

il

least-recently used y

= Usually works well due to temporal locality

CRPD Example under LRU Replacement

Assume simple preempted task:
for 1 in [1,10]:

. access A
for 1 i1n [1,10]:
: access B
do something()
access C
access D

CRPD Example under LRU Replacement

Assume simple preempted task:
for 1 in [1,10]:

. access A
for 1 1in [1,10]:
: access B
do something()
access C
access D

Without preemption (after warmup): O misses

A: hit B: hit C: hit D: hit

=

CRPD Example under LRU Replacement

Assume simple preempting task:

do something else() access X

Preemption between loop iterations: 1 access

X: miss

CRPD Example under LRU Replacement

First loop iteration after preemption: 4 misses

A: miss B: miss C: miss D: miss

= A <~ SN <~ SMA S SN

/1]
gl
gl
gl

CRPD Example under LRU Replacement:
Two types of misses related to preemption

1. Replaced Misses 2. Reordered Misses

v — Y

A: miss B: miss C: miss D: miss

= A <~ SN <~ SMA S SN

/1]
gl
gl
gl

10

CRPD Example under LRU Replacement:
Two types of misses related to preemption

1. Replaced Misses 2. Reordered Misses

v — Y

A: miss B: miss C: miss D: miss

= A <~ SN <~ SMA S SN

J/]
gl
gl
gl

5 NN

iu et al., PACT 2008: reordered misses account

for 10% to 28% of all preemption-related misses

10

Selfish-LRU: Idea

Prioritize blocks of currently running task:

E: miss B: hit F: miss
e e Y
most-recently used 4 \ E % E \
A
least-recently used y E l\ > E > E \

Intuition:
"Memory blocks of currently running task
more likely to be accessed again soon.”

11

Selfish-LRU: CRPD Example Revisited

Assume simple preempted task:

for 1 in [1,10]:
access A
access B
access C
access D

for 1 in [1,10]:
do something()

Without preemption (after warmup): O misses

A: hit B: hit C: hit D: hit

=

= Same behavior as LRU

12

Selfish-LRU: CRPD Example Revisited

Assume simple preempting task:

do something else() access X

Preemption between loop iterations: 1 access

X: miss

13

Selfish-LRU: CRPD Example Revisited

First loop iteration after preemption: 1 miss

A: miss B: hit C: hit D: hit

= No reordering misses

14

Selfish-LRU: Properties

Seltish-LRU: Properties

Seltish-LRU does not exhibit reordering misses.

= Often: smaller CRPD
= Simplifies static analysis of the CRPD

15

Seltish-LRU: Properties

Seltish-LRU does not exhibit reordering misses.

= Often: smaller CRPD
= Simplifies static analysis of the CRPD

In non-preempted execution, Selfish-LRU = LRU.

= No change in “regular” WCET analysis

15

Selfish-LRU: CRPD Analysis

Preempting .

Seltish-LRU: CRPD Analysis

1. Number of useful
cache blocks (UCBs)?

Preempting \r

Preempted f .|'|-|_

16

Seltish-LRU: CRPD Analysis

1. Number of useful
cache blocks (UCBs)?

Preempting

2. Number of evicting
cache blocks (ECBs)”?

‘/ = Smaller Bound

Preempted f -|-|-|_

16

Seltish-LRU: CRPD Analysis

2. Number of evicting

1. Number of usetful cache blocks (ECBs)?
cache blocks (UCBs)? = Smaller Bound

Preempting \f
Preempted f -.-._._

3. Combination of
ECBs and UCBs
based on Resilience

= Simplified and Smaller Bound

Selfish-LRU: Implementation

Required modifications:

e Manage task ids (TID) in operating system

e Make TID available to cache in TID register

e Augment cache lines with TID of “owner” task
» Conservative estimate: < 3% space overhead

 Moditied replacement logic

Similar to virtually-addressed caches

17

Experimental Evaluation

—xperimental Evaluation

Compare Selfish-LRU with LRU in terms of
performance and predictability

18

—xperimental

“valuation

Compare Selfish-LRU with LRU in terms of
performance and predictability

= Modified MPARM s;

= C

RP

D analyses imp

mulator
emented in Abslnt's ai T

18

—xperimental Evaluation

Compare Selfish-LRU with LRU in terms of
performance and predictability
= Moditied MPARM simulator

= C

RP

D analyses implemented in Abslnt's ail

(see paper for details)

Compare CRPD approach with cache partitioning

18

—xperimental Evaluation:

Benchmarks and Cache Contiguration

Benchmarks:

* Four of the largest Malardalen benchmarks

® Four models from the SCADE distribution

e Two SCADE models from an embedded systems course

Cache configuration:
Capacity: 2 KB, 4 KB, 8 KB
Associativity: 4,3
Number of sets: 32, 64, 128

19

Experimental Evaluation:
Simulation Results, "Large” Preempting Task

Cache configuration:
Capacity: 2 KiB, Associativity 4, Number of sets: 32

| Selfish LRU

Measured

number of

additiona
MISSEeS

Preempted Tasks

20

Experimental Evaluation:
Simulation Results, "Large” Preempting Task

Cache configuration:
Capacity: 2 KiB, Associativity 4, Number of sets: 32

Selfish LRU

Measured

number of Large share of replaced misses

add.|t|ona = Fairly small improvement
MmISSses '

3%« Ox Jlg,
G

Preempted Tasks

20

Experimental Evaluation:
Simulation Results, "Small” Preempting Task

Cache configuration:
Capacity: 2 KiB, Associativity 4, Number of sets: 32

== Selfish LRU

Measured

number of

additiona
MISSEeS

Preempted Tasks

21

Experimental Evaluation:
Simulation Results, "Small” Preempting Task

Cache configuration:
Capacity: 2 KiB, Associativity 4, Number of sets: 32

Selfish LRU

Measured

number of Small share of replaced misses

add.|t|ona = Fairly significant improvement
MISsSsesS '

o

Preempted Tasks

21

Experimental Evaluation:

1

Analysis Results, “"Large” Preempting Task

Cache configuration:
Capacity: 2 KiB, Associativity 4, Number of sets: 32

e Selfish LRU

Bound on

number of

additiona
MISSEeS

Preempted Tasks

22

Experimental Evaluation:

1

Analysis Results, “"Large” Preempting Task

Cache configuration:
Capacity: 2 KiB, Associativity 4, Number of sets: 32

Selfish LRU

Bound on

number of

additiona
MISSEeS

Preempted Tasks

22

Experimental Evaluation:
Analysis Results, “"Small” Preempting Task

Cache configuration:
Capacity: 4 KiB, Associativity 8, Number of sets: 32

Bound on

number of

additiona
MISSEeS

Preempted Tasks

23

Experimental Evaluation:
Analysis Results, “"Small” Preempting Task

Cache configuration:
Capacity: 4 KiB, Associativity 8, Number of sets: 32

Selfish LRU

Bound on

number of

additiona
MISSEeS

Small share of replaced misses

- Fa|r|y Iarge |mprovement

Preempted Tasks

23

Summary and Future Work

Selfish-LRU eliminates reordered misses:

= |[ncreases performance by reducing the CRPD

= Simplifies static analysis of the CRPD

= |arge improvements for small preempting
tasks like interrupt handlers

24

Summary and Future Work

Selfish-LRU eliminates reordered misses:

= |[ncreases performance by reducing the CRPD

= Simplifies static analysis of the CRPD

= |arge improvements for small preempting
tasks like interrupt handlers

Apply same idea in shared caches in multi-cores?

24

