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Non-preemptive Execution:
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Preemptive Execution:

Task 1

Task 2
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Preemptive Execution:
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Selfish-LRU: a new cache replacement policy, that

➡ Increases performance by reducing the CRPD  
➡ Simplifies static analysis of the CRPD
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Selfish-LRU: a new cache replacement policy, that

➡ Increases performance by reducing the CRPD  
➡ Simplifies static analysis of the CRPD

Selfish-LRU is a preemption-aware variant of  
least-recently used (LRU)
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“Replace data that has not been used for the longest time”

➡ Usually works well due to temporal locality
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Assume simple preempted task:

for i in [1,10]:!
! ! do something()

for i in [1,10]:!
! ! access A!
! ! access B!
! ! access C!
! ! access D
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Assume simple preempted task:
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Assume simple preempting task:

do something_else() access X

Preemption between loop iterations:  1 access
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First loop iteration after preemption:  4 misses
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1. Replaced Misses         2. Reordered Misses
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1. Replaced Misses         2. Reordered Misses

Liu et al., PACT 2008: reordered misses account 
for 10% to 28% of all preemption-related misses
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Prioritize blocks of currently running task:

Intuition:  
“Memory blocks of currently running task 
more likely to be accessed again soon.”
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Assume simple preempted task:

for i in [1,10]:!
! ! do something()

for i in [1,10]:!
! ! access A!
! ! access B!
! ! access C!
! ! access D

Without preemption (after warmup):  0 misses

➡ Same behavior as LRU
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Assume simple preempting task:

do something_else() access X

Preemption between loop iterations:  1 access
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First loop iteration after preemption:  1 miss

➡ No reordering misses
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Property 1:  
Selfish-LRU does not exhibit reordering misses.

➡ Often: smaller CRPD  
➡ Simplifies static analysis of the CRPD
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Property 1:  
Selfish-LRU does not exhibit reordering misses.

➡ Often: smaller CRPD  
➡ Simplifies static analysis of the CRPD

Property 2:  
In non-preempted execution, Selfish-LRU = LRU.

➡ No change in “regular” WCET analysis
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1. Number of useful 
cache blocks (UCBs)?

2. Number of evicting 
cache blocks (ECBs)?

➡ Smaller Bound

3. Combination of 
ECBs and UCBs 
based on Resilience
➡ Simplified and Smaller Bound
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Required modifications: 
• Manage task ids (TID) in operating system 
• Make TID available to cache in TID register 
• Augment cache lines with TID of “owner” task 
‣ Conservative estimate: < 3% space overhead 

• Modified replacement logic

Similar to virtually-addressed caches
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Main goal: 
Compare Selfish-LRU with LRU in terms of  
performance and predictability 
!

Secondary goal: (see paper for details) 
Compare CRPD approach with cache partitioning

➡ Modified MPARM simulator 
➡ CRPD analyses implemented in AbsInt’s aiT
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Benchmarks: 
• Four of the largest Mälardalen benchmarks 
• Four models from the SCADE distribution 
• Two SCADE models from an embedded systems course

Cache configuration: 
   Capacity:    2 KB, 4 KB, 8 KB 
   Associativity:   4, 8 
   Number of sets:  32, 64, 128



E x p e r i m e n t a l  E v a l u a t i o n :  
S i m u l a t i o n  R e s u l t s ,  “ L a r g e ”  P r e e m p t i n g  Ta s k

20
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Cache configuration: 
   Capacity: 2 KiB, Associativity 4, Number of sets: 32

Preempted Tasks

Fig. 1. Measured number of context-switch misses for each benchmark when
preempted by pilot. k = 4, n = 32, and thus C = 2 KiB.

Fig. 2. Measured number of context-switch misses for each benchmark when
preempted by pilot. k = 8, n = 32, and thus C = 4 KiB.

Fig. 3. Measured number of context-switch misses for each benchmark when
preempted by edn. k = 4, n = 32, and thus C = 2 KiB.

Fig. 7. Observed misses during the execution of different task sets.
k = 4, n = 128, and thus C = 8 KiB.

Fig. 4. Bounds on the number of context-switch misses when preempted by
pilot. k = 4, n = 32, and thus C = 2 KiB determined by static analysis.

Fig. 5. Bounds on the number of context-switch misses when preempted by
pilot. k = 8, n = 32, and thus C = 4 KiB determined by static analysis.

Fig. 6. Bounds on the number of context-switch misses when preempted by
edn. k = 4, n = 32, and thus C = 2 KiB determined by static analysis.

Fig. 8. Observed misses during the execution of different task sets.
k = 8, n = 64, and thus C = 8 KiB.
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pilot. k = 4, n = 32, and thus C = 2 KiB determined by static analysis.

Fig. 5. Bounds on the number of context-switch misses when preempted by
pilot. k = 8, n = 32, and thus C = 4 KiB determined by static analysis.

Fig. 6. Bounds on the number of context-switch misses when preempted by
edn. k = 4, n = 32, and thus C = 2 KiB determined by static analysis.

Fig. 8. Observed misses during the execution of different task sets.
k = 8, n = 64, and thus C = 8 KiB.

Large share of replaced misses 
➡ Fairly small improvement
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Fig. 1. Measured number of context-switch misses for each benchmark when
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Fig. 2. Measured number of context-switch misses for each benchmark when
preempted by pilot. k = 8, n = 32, and thus C = 4 KiB.

Fig. 3. Measured number of context-switch misses for each benchmark when
preempted by edn. k = 4, n = 32, and thus C = 2 KiB.

Fig. 7. Observed misses during the execution of different task sets.
k = 4, n = 128, and thus C = 8 KiB.

Fig. 4. Bounds on the number of context-switch misses when preempted by
pilot. k = 4, n = 32, and thus C = 2 KiB determined by static analysis.

Fig. 5. Bounds on the number of context-switch misses when preempted by
pilot. k = 8, n = 32, and thus C = 4 KiB determined by static analysis.

Fig. 6. Bounds on the number of context-switch misses when preempted by
edn. k = 4, n = 32, and thus C = 2 KiB determined by static analysis.

Fig. 8. Observed misses during the execution of different task sets.
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Cache configuration: 
   Capacity: 2 KiB, Associativity 4, Number of sets: 32

Preempted Tasks

Small share of replaced misses 
➡ Fairly significant improvement
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Cache configuration: 
   Capacity: 2 KiB, Associativity 4, Number of sets: 32

Preempted Tasks

Fig. 1. Measured number of context-switch misses for each benchmark when
preempted by pilot. k = 4, n = 32, and thus C = 2 KiB.

Fig. 2. Measured number of context-switch misses for each benchmark when
preempted by pilot. k = 8, n = 32, and thus C = 4 KiB.

Fig. 3. Measured number of context-switch misses for each benchmark when
preempted by edn. k = 4, n = 32, and thus C = 2 KiB.

Fig. 7. Observed misses during the execution of different task sets.
k = 4, n = 128, and thus C = 8 KiB.

Fig. 4. Bounds on the number of context-switch misses when preempted by
pilot. k = 4, n = 32, and thus C = 2 KiB determined by static analysis.

Fig. 5. Bounds on the number of context-switch misses when preempted by
pilot. k = 8, n = 32, and thus C = 4 KiB determined by static analysis.

Fig. 6. Bounds on the number of context-switch misses when preempted by
edn. k = 4, n = 32, and thus C = 2 KiB determined by static analysis.

Fig. 8. Observed misses during the execution of different task sets.
k = 8, n = 64, and thus C = 8 KiB.
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Cache configuration: 
   Capacity: 2 KiB, Associativity 4, Number of sets: 32

Preempted Tasks

Fig. 1. Measured number of context-switch misses for each benchmark when
preempted by pilot. k = 4, n = 32, and thus C = 2 KiB.

Fig. 2. Measured number of context-switch misses for each benchmark when
preempted by pilot. k = 8, n = 32, and thus C = 4 KiB.

Fig. 3. Measured number of context-switch misses for each benchmark when
preempted by edn. k = 4, n = 32, and thus C = 2 KiB.

Fig. 7. Observed misses during the execution of different task sets.
k = 4, n = 128, and thus C = 8 KiB.

Fig. 4. Bounds on the number of context-switch misses when preempted by
pilot. k = 4, n = 32, and thus C = 2 KiB determined by static analysis.

Fig. 5. Bounds on the number of context-switch misses when preempted by
pilot. k = 8, n = 32, and thus C = 4 KiB determined by static analysis.

Fig. 6. Bounds on the number of context-switch misses when preempted by
edn. k = 4, n = 32, and thus C = 2 KiB determined by static analysis.

Fig. 8. Observed misses during the execution of different task sets.
k = 8, n = 64, and thus C = 8 KiB.

All misses are replaced misses 
➡ No improvement
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Cache configuration: 
   Capacity: 4 KiB, Associativity 8, Number of sets: 32

Preempted Tasks

Fig. 1. Measured number of context-switch misses for each benchmark when
preempted by pilot. k = 4, n = 32, and thus C = 2 KiB.

Fig. 2. Measured number of context-switch misses for each benchmark when
preempted by pilot. k = 8, n = 32, and thus C = 4 KiB.

Fig. 3. Measured number of context-switch misses for each benchmark when
preempted by edn. k = 4, n = 32, and thus C = 2 KiB.

Fig. 7. Observed misses during the execution of different task sets.
k = 4, n = 128, and thus C = 8 KiB.

Fig. 4. Bounds on the number of context-switch misses when preempted by
pilot. k = 4, n = 32, and thus C = 2 KiB determined by static analysis.

Fig. 5. Bounds on the number of context-switch misses when preempted by
pilot. k = 8, n = 32, and thus C = 4 KiB determined by static analysis.

Fig. 6. Bounds on the number of context-switch misses when preempted by
edn. k = 4, n = 32, and thus C = 2 KiB determined by static analysis.

Fig. 8. Observed misses during the execution of different task sets.
k = 8, n = 64, and thus C = 8 KiB.
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   Capacity: 4 KiB, Associativity 8, Number of sets: 32

Preempted Tasks

Fig. 1. Measured number of context-switch misses for each benchmark when
preempted by pilot. k = 4, n = 32, and thus C = 2 KiB.

Fig. 2. Measured number of context-switch misses for each benchmark when
preempted by pilot. k = 8, n = 32, and thus C = 4 KiB.

Fig. 3. Measured number of context-switch misses for each benchmark when
preempted by edn. k = 4, n = 32, and thus C = 2 KiB.

Fig. 7. Observed misses during the execution of different task sets.
k = 4, n = 128, and thus C = 8 KiB.

Fig. 4. Bounds on the number of context-switch misses when preempted by
pilot. k = 4, n = 32, and thus C = 2 KiB determined by static analysis.

Fig. 5. Bounds on the number of context-switch misses when preempted by
pilot. k = 8, n = 32, and thus C = 4 KiB determined by static analysis.

Fig. 6. Bounds on the number of context-switch misses when preempted by
edn. k = 4, n = 32, and thus C = 2 KiB determined by static analysis.

Fig. 8. Observed misses during the execution of different task sets.
k = 8, n = 64, and thus C = 8 KiB.

Small share of replaced misses 
➡ Fairly large improvement
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Selfish-LRU eliminates reordered misses:

➡ Increases performance by reducing the CRPD  
➡ Simplifies static analysis of the CRPD 
➡ Large improvements for small preempting 
tasks like interrupt handlers
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Selfish-LRU eliminates reordered misses:

➡ Increases performance by reducing the CRPD  
➡ Simplifies static analysis of the CRPD 
➡ Large improvements for small preempting 
tasks like interrupt handlers

Apply same idea in shared caches in multi-cores?


