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Context: Preemptive Scheduling

Non-preemptive Execution:

IE @ r t ? t

Task 2 ? I t




Context: Preemptive Scheduling
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Caveat: Preemptions are not free!

Preemptive Execution:
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Cache-Related Preemption Delay (CRPD)



Contribution of this paper

Selfish-LRU: a new cache replacement policy, that

= |ncreases performance by reducing the CRPD
= Simplifies static analysis of the CRPD
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Selfish-LRU: a new cache replacement policy, that

= |ncreases performance by reducing the CRPD
= Simplifies static analysis of the CRPD

Seltish-LRU is a preemption-aware variant ot
least-recently used (LRU)



Least-Recently Used (LRU)

“"Replace data that has not been used for the longest time”
E: miss B: hit B: hit
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= Usually works well due to temporal locality



CRPD Example under LRU Replacement

Assume simple preempted task:
for 1 in [1,10]:

. access A
for 1 i1n [1,10]:
: access B
do something()
access C
access D



CRPD Example under LRU Replacement

Assume simple preempted task:
for 1 in [1,10]:

. access A
for 1 1in [1,10]:
: access B
do something()
access C
access D

Without preemption (after warmup): O misses

A: hit B: hit C: hit D: hit
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CRPD Example under LRU Replacement

Assume simple preempting task:

do something else() access X

Preemption between loop iterations: 1 access

X: miss




CRPD Example under LRU Replacement

First loop iteration after preemption: 4 misses

A: miss B: miss C: miss D: miss

= A <~ SN <~ SMA S SN
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CRPD Example under LRU Replacement:
Two types of misses related to preemption

1. Replaced Misses 2. Reordered Misses

v — Y

A: miss B: miss C: miss D: miss

= A <~ SN <~ SMA S SN
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CRPD Example under LRU Replacement:
Two types of misses related to preemption

1. Replaced Misses 2. Reordered Misses

v — Y

A: miss B: miss C: miss D: miss

= A <~ SN <~ SMA S SN
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iu et al., PACT 2008: reordered misses account

for 10% to 28% of all preemption-related misses
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Selfish-LRU: Idea

Prioritize blocks of currently running task:

E: miss B: hit F: miss
e e Y
most-recently used 4 \ E % E \
A
least-recently used y E l\ > E > E \

Intuition:
"Memory blocks of currently running task
more likely to be accessed again soon.”
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Selfish-LRU: CRPD Example Revisited

Assume simple preempted task:

for 1 in [1,10]:
access A
access B
access C
access D

for 1 in [1,10]:
do something()

Without preemption (after warmup): O misses

A: hit B: hit C: hit D: hit

=

= Same behavior as LRU
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Selfish-LRU: CRPD Example Revisited

Assume simple preempting task:

do something else() access X

Preemption between loop iterations: 1 access

X: miss
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Selfish-LRU: CRPD Example Revisited

First loop iteration after preemption: 1 miss

A: miss B: hit C: hit D: hit

= No reordering misses
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Selfish-LRU: Properties




Seltish-LRU: Properties

Seltish-LRU does not exhibit reordering misses.

= Often: smaller CRPD
= Simplifies static analysis of the CRPD
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Seltish-LRU: Properties

Seltish-LRU does not exhibit reordering misses.

= Often: smaller CRPD
= Simplifies static analysis of the CRPD

In non-preempted execution, Selfish-LRU = LRU.

= No change in “regular” WCET analysis
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Selfish-LRU: CRPD Analysis

Preempting .




Seltish-LRU: CRPD Analysis

1. Number of useful
cache blocks (UCBs)?

Preempting \r
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Seltish-LRU: CRPD Analysis

1. Number of useful
cache blocks (UCBs)?

Preempting

2. Number of evicting
cache blocks (ECBs)”?

‘/ = Smaller Bound

Preempted f -|-|-|_
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Seltish-LRU: CRPD Analysis

2. Number of evicting

1. Number of usetful cache blocks (ECBs)?
cache blocks (UCBs)? = Smaller Bound

Preempting \f
Preempted f -.-._._

3. Combination of
ECBs and UCBs
based on Resilience

= Simplified and Smaller Bound



Selfish-LRU: Implementation

Required modifications:

e Manage task ids (TID) in operating system

e Make TID available to cache in TID register

e Augment cache lines with TID of “owner” task
» Conservative estimate: < 3% space overhead

 Moditied replacement logic

Similar to virtually-addressed caches
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Experimental Evaluation




—xperimental Evaluation

Compare Selfish-LRU with LRU in terms of
performance and predictability
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—xperimental Evaluation

Compare Selfish-LRU with LRU in terms of
performance and predictability
= Moditied MPARM simulator

= C

RP

D analyses implemented in Abslnt's ail

(see paper for details)

Compare CRPD approach with cache partitioning
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—xperimental Evaluation:

Benchmarks and Cache Contiguration

Benchmarks:

* Four of the largest Malardalen benchmarks

® Four models from the SCADE distribution

e Two SCADE models from an embedded systems course

Cache configuration:
Capacity: 2 KB, 4 KB, 8 KB
Associativity: 4,3
Number of sets: 32, 64, 128
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Experimental Evaluation:
Simulation Results, "Large” Preempting Task

Cache configuration:
Capacity: 2 KiB, Associativity 4, Number of sets: 32

| Selfish LRU

Measured

number of

additiona
MISSEeS

Preempted Tasks
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Experimental Evaluation:
Simulation Results, "Large” Preempting Task

Cache configuration:
Capacity: 2 KiB, Associativity 4, Number of sets: 32

Selfish LRU

Measured

number of Large share of replaced misses

add.|t|ona = Fairly small improvement
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Experimental Evaluation:
Simulation Results, "Small” Preempting Task

Cache configuration:
Capacity: 2 KiB, Associativity 4, Number of sets: 32

== Selfish LRU

Measured

number of

additiona
MISSEeS

Preempted Tasks
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Experimental Evaluation:
Simulation Results, "Small” Preempting Task

Cache configuration:
Capacity: 2 KiB, Associativity 4, Number of sets: 32

Selfish LRU

Measured

number of Small share of replaced misses

add.|t|ona = Fairly significant improvement
MISsSsesS '

o

Preempted Tasks
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Experimental Evaluation:

1

Analysis Results, “"Large” Preempting Task

Cache configuration:
Capacity: 2 KiB, Associativity 4, Number of sets: 32

e Selfish LRU

Bound on

number of

additiona
MISSEeS

Preempted Tasks
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Experimental Evaluation:

1

Analysis Results, “"Large” Preempting Task

Cache configuration:
Capacity: 2 KiB, Associativity 4, Number of sets: 32

Selfish LRU

Bound on

number of

additiona
MISSEeS

Preempted Tasks
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Experimental Evaluation:
Analysis Results, “"Small” Preempting Task

Cache configuration:
Capacity: 4 KiB, Associativity 8, Number of sets: 32

Bound on

number of

additiona
MISSEeS

Preempted Tasks
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Experimental Evaluation:
Analysis Results, “"Small” Preempting Task

Cache configuration:
Capacity: 4 KiB, Associativity 8, Number of sets: 32

Selfish LRU

Bound on

number of

additiona
MISSEeS

Small share of replaced misses

- Fa|r|y Iarge |mprovement

Preempted Tasks
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Summary and Future Work

Selfish-LRU eliminates reordered misses:

= |[ncreases performance by reducing the CRPD

= Simplifies static analysis of the CRPD

= |arge improvements for small preempting
tasks like interrupt handlers
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Summary and Future Work

Selfish-LRU eliminates reordered misses:

= |[ncreases performance by reducing the CRPD

= Simplifies static analysis of the CRPD

= |arge improvements for small preempting
tasks like interrupt handlers

Apply same idea in shared caches in multi-cores?
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