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Context. Hard Real-Time Systems

Reaction in < 10 ms

Embedded software must
* deliver correct control signals,
e within fixed time bounds.



Timing Analysis Problem

// Perform the convolution.

for (int 1=0; i<10; i++) {
x[i] = a[i]l*b[j-1];
// Notify listeners.
notify(x[1i]);

}

Embedded Software

‘ Timing Requirements

Microarchitecture



What does the execution time depend on?

o The input, determining which path is taken
through the program.

Simple
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What does the execution time depend on?

o The state of the hardware platform:
e Due to caches, pipelining, speculation, etc.

Complex CPU
(out-of-order :
execution, <> L1 <> Main
Cache Memory
branch

prediction, etc.)




Influence of Microarchitectural State

" LOAD r2, a
x=a+b; ——{ LOAD r1, b
ADD r3,r2,r1

<

PowerPC 755

Execution Time (Clock Cycles)
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What does the execution time depend on?

o Interference from the environment:

e External interference as seen from the analyzed

task on shared busses, caches, memory.
A
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Influence of Corunning Tasks in Multicores

Radojkovic et al. (ACM TACO, 2012) on
Intel Atom and Intel Core 2 Quad:

up to 14x slow-down due to interference
on shared L2 cache and memory controller



Two Schools of Thought
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possible execution times———

frequency
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time
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1. Predictable = CRT

Is small = deterministic timing

2. Predictable = WCET can be efficiently approximated



Timing Anomalies

Analysis state representing set
of concrete hardware states. Nondeterminism due

to uncertainty about
hardware state.

Cache Miss
= [ ocal Worst Case Cache Hit

~

leads to

/ Global Worst Case

Timing Anomalies in Dynamically Scheduled Microproc'essors
T. Lundqvist, P. Stenstrém — RTSS 1999
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Timing Anomalies: Example

Scheduling Anomaly

C ready

Resource 1

Resource 2

Bounds on multiprocessing timing anomalies
RL Graham - SIAM Journal on Applied Mathematics, 1969 — SIAM

(http.//epubs.siam.org/doi/abs/10.1137/0117039) »



Timing Compositionality: By Example

exec{™ | Core 1 Core 2 Core 3 Core 4

Shared Bus

Shared Memory

Timing Compositionality =
Ability to simply sum up timing contributions by different components

Implicitly or explicitly assumed by (almost) all approaches to timing
analysis for multi cores and cache-related preemption delays (CRPD).
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Timing Compositionality: Benefit

Integrated Compositional

-
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Achieving Timing Compositionality

Textbook in-order pipeline + LRU caches

Fetch (/F)

Decode (/D)

I-cache

Execute (EX)

Memory

Memory (MEM)

Write-back (WB)

D-cache
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Bad News I. Timing Anomalies

Fetch (IF) l-cache
Decode (/D)
Execute (EX)

Memory (MEM) D-cache
Write-back (WB)

Memory

We show such a pipeline has timing anomalies:

Toward Compact Abstractions for Processor Pipelines
S. Hahn, J. Reineke, and R. Wilhelm. In Correct System Design, 2015.
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Bad News II. Timing Compositionality

Maximal cost of an additional cache miss?
Intuitively: main memory latency
Unfortunately: ~ 2 times main-memory latency

- ongoing instruction fetch may block load
- ongoing load may block instruction fetch
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Key Insight:

Anomalies Require Non-Monotonicity

In the blue state,
each instruction has

local local the same or more
worst case best case progress than in the
red state.
<

The program
has terminated.

|
* The program
= == _has not yet
¥
®

terminated.

e The program

has terminated.
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Monotonicity Enables Predictability 1/2

Theorem 1 (Timing Anomalies):
Monotonicity implies absence of timing anomalies.

local local
worst case best case
<
¢ < ® by monotonicity

O
IA
o
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Monotonicity Enables Predictability 1/2

Theorem 2 (Timing Compositionality):
Monotonicity enables the derivation of sound penalties.

local local
worst case best case

*
penalty 3 =
*
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How to Achieve Monotonicity?

v

Fetch

v

Decode

v

Execute

v

Memory

|-Cache

Memory

—_— [D-Cache

v

1. Pipelining is not the reason for
non-monotonicity!

Write-back

v

2. The shared resource memory
may be accessed out-of-order!
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Strictly In-Order Pipelines: Definition

Definition (Strictly In-Order):
We call a pipeline strictly in-order if each resource
processes the instructions in program order.

« Enforce memory operations (instructions and
data) in-order (common memory as resource)
* Block instruction fetch until no potential data

accesses in the pipeline
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Strictly In-Order Pipelines: Properties

Theorem 1 (Monotonicity):
In the strictly in-order pipeline progress of an instruction is
monotone in the progress of other instructions.

<

1/ < V

=

Corollary (Timing Anomalies and Timing Compositionality):
In the strictly in-order pipeline

* does not have timing anomalies, and

e admits compositional analysis with natural penalties.
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Experimental Evaluation

Performance:

Strictly in-order pipeline is about 6% slower than
regular in-order pipeline.

- Preserves most of the benefits of pipelining.

Predictability:
~4x faster single-core analysis
~32x faster multi-core analysis
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Automating the Predictability Proofs

Formalization + Formalization
of Processor of Property

SMT Solver

X

<
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Challenges in Proof Automation

Processor states map dynamic instruction
iInstances to their progress - infinite state space

Suffices to consider a finite window:

are and stay in pre

are and stay in post relevant instruction window during next x cycles
tk—1 Gk k1 ... k44 k45 ... lktdda Cktdfatl .,
@ @ @ @ @ @ @ t.’
" NG v Hue
N N

might be in the pipeline could be fetched
within x cycles
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Proof of Monotonicity: First Attempt

Define formula that is unsatisfiable,
if transition relation is monotonic.

Captures
transition
relation

/' N\

p1 C p2 A cycle(pr, ph) A cycle(pz, ph) A —p] C p;

However, the formula is satisfiable!

Need to capture reachable states...
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Proof of Monotonicity: Second Attempt

Define formula that is unsatisfiable,
if transition relation is monotonic.

validPipelineState(p;) A validPipelineState(ps)A
f p1 C p2 A cycle(py,py) A cycle(ps, py) A —py E ph

proved correct
via separate
SMT queries

This formula is indeed unsatisfiable!
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Anomaly Freedom and Timing Compositionality

See paper-
Sebastian Hahn, Jan Reineke:
Design and analysis of SIC: a provably timing-

predictable pipelined processor core.
Real-Time Systems, November 2019
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Efficiency of SMT Proofs

Proot Z3 Runtime
monotonicity of SIC 7s
non-monotonicity of textbook in-order < 1s
anomaly-freedom w.r.t. cache < 1s

ot

W

Compositionality w.r.t.
instruction-cache and
interrupts:

—=— instr. cache []
—6— interrupt ||

w

Runtime in Hours
—_ N
I I
i i

N Y Y
2 4 6 8 10 12

Memory Latency

)
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Conclusions and Future Work

Key Insight.
Monotonicity enables Timing Predictability

Strictly in-order pipeline is monotonic

Predictability proofs can be automated

o Translation of model to SMT still manual

o Need to capture relevant invariants manually
o Can we automate the process further?
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