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Context: Hard Real-Time Systems
computer science

saarland
universityHard Real-Time Systems

Safety-critical applications:
Avionics, automotive, train industries, manufacturing control

Side airbag in car Crankshaft-synchronous tasks
Reaction in < 10 msec Reaction in < 45 µsec

Embedded controllers must finish their tasks within given time
bounds.
Developers would like to know the Worst-Case Execution Time
(WCET) to give a guarantee.

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 4 / 38

Airbag
Reaction in < 10 ms

Embedded software must
• deliver correct control signals,
• within fixed time bounds.
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Embedded Software

Timing Requirements

?
Microarchitecture

+
Our Vision: PRET Machines

PREcision-Timed processors: Performance & Predicability

+ = PRET

(Image: John Harrison’s H4, first clock to solve longitude problem)

Precision-Timed (PRET) Machines – p. 11/19

Timing Analysis Problem
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computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Simple 
CPU

Memory
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What does the execution time depend on?

¢ The input, determining which path is taken 
through the program.
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Complex CPU
(out-of-order 
execution, 

branch 
prediction, etc.)

Main
Memory

L1 
Cache
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What does the execution time depend on?

¢ The input, determining which path is taken 
through the program.

¢ The state of the hardware platform:
l Due to caches, pipelining, speculation, etc.
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PowerPC 755

Reineke et al., Berkeley 5 

Example of Influence of  

Microarchitectural State computer science

saarland
universityAccess Time

x=a+b;
LOAD r2, _a
LOAD r1, _b
ADD r3,r2,r1

MPC5xx PPC755

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 5 / 63
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¢ The input, determining which path is taken 
through the program.

¢ The state of the hardware platform:
l Due to caches, pipelining, speculation, etc.

¢ Interference from the environment:
l External interference as seen from the analyzed 

task on shared busses, caches, memory.

What does the execution time depend on?
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Influence of Corunning Tasks in Multicores

Radojkovic et al. (ACM TACO, 2012) on 
Intel Atom and Intel Core 2 Quad:

up to 14x slow-down due to interference 
on shared L2 cache and memory controller
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Two Schools of Thought
fr
eq
u
en

cy

execution
time

BCET WCET

possible execution times

fr
eq
u
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cy

execution
time

BCET WCET

analysis
guaranteed

upper bound

possible execution times overestimation
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eq
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cy

execution
time

BCET WCET

possible execution times

1. Predictable = !"#$
%"#$ is small ≈ deterministic timing 

2. Predictable = WCET can be efficiently approximated
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Timing Anomalies

computer science

saarland
universityState-of-the-art: Integrated WCET Analysis

Drawback Efficiency

Timing Anomalies hinder state space reduction

Sebastian Hahn Timing Compositionality 19 June 2013 6 / 19

Cache Miss 
= Local Worst Case Cache Hit

Global Worst Case

leads to

Nondeterminism due 
to uncertainty about
hardware state.

Timing Anomalies in Dynamically Scheduled Microprocessors
T. Lundqvist, P. Stenström – RTSS 1999

Analysis state representing set
of concrete hardware states.
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Timing Anomalies: Example

Scheduling Anomaly

A

A

Resource 1

Resource 2

Resource 1

Resource 2

C

B C

B

D E

D E

C ready

Bounds on multiprocessing timing anomalies
RL Graham - SIAM Journal on Applied Mathematics, 1969 – SIAM
(http://epubs.siam.org/doi/abs/10.1137/0117039)
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Timing Compositionality: By Example
computer science

saarland
universityMulti-Core Processors [Schranzhofer et al.]

Response Time of Task on Core 1

Core 1execmax
1 Core 2 Core 3 Core 4

Shared Memoryµmax
1 · a

Shared BusB

1 Worst-case execution time without bus accesses: execmax
1

2 Number of bus accesses in the worst case: µmax
1

3 Worst-case bus blocking time: B (depends on execmax
i and µmax

i )

) R1  execmax
1 + µmax

1 · a + B

Jan Reineke Timing Compositionality AVACS meets InvasIC 10 / 20

Timing Compositionality = 
Ability to simply sum up timing contributions by different components

Implicitly or explicitly assumed by (almost) all approaches to timing
analysis for multi cores and cache-related preemption delays (CRPD).
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Timing Compositionality: Benefit
computer science

saarland
universityHow does compositionality help?

Efficiency of microarchitectural analysis

Integrated Compositional

) Uncertainty does not multiply

Jan Reineke Timing Compositionality AVACS meets InvasIC 15 / 20
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Achieving Timing Compositionality

Textbook in-order pipeline + LRU caches

computer science

saarland
universityMicroarchitecture

An Example

Pipeline processes instructions in program order

Caches buffer recently accessed memory blocks

Fetch (IF)
Decode (ID)
Execute (EX)

Memory (MEM)
Write-back (WB)

I-cache

D-cache

Memory

Reinhard Wilhelm Abstractable Pipelines August 13, 2015 5 / 22
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Bad News I: Timing Anomalies

We show such a pipeline has timing anomalies:
Toward Compact Abstractions for Processor Pipelines
S. Hahn, J. Reineke, and R. Wilhelm. In Correct System Design, 2015.

computer science

saarland
universityMicroarchitecture

An Example

Pipeline processes instructions in program order

Caches buffer recently accessed memory blocks

Fetch (IF)
Decode (ID)
Execute (EX)

Memory (MEM)
Write-back (WB)

I-cache

D-cache

Memory

Reinhard Wilhelm Abstractable Pipelines August 13, 2015 5 / 22
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Bad News II: Timing Compositionality

Maximal cost of an additional cache miss?

Intuitively: main memory latency

Unfortunately: ~ 2 times main-memory latency
- ongoing instruction fetch may block load
- ongoing load may block instruction fetch
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≤

Key Insight: 
Anomalies Require Non-Monotonicity

local
best case

local
worst case

≤

In the blue state, 
each instruction has
the same or more
progress than in the
red state.

...

The program
has terminated.

The program
has not yet
terminated.

The program
has terminated.

...

...
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Monotonicity Enables Predictability 1/2

Theorem 1 (Timing Anomalies):
Monotonicity implies absence of timing anomalies.

local
best case

local
worst case

≤

...

≤
≤

by monotonicity
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Monotonicity Enables Predictability 1/2

Theorem 2 (Timing Compositionality):
Monotonicity enables the derivation of sound penalties.

≤

local
best case

local
worst case

≤
≥penalty
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How to Achieve Monotonicity?

Fetch

Decode

Execute

Memory

Write-back

Memory

D-Cache

I-Cache

1. Pipelining is not the reason for
non-monotonicity!

2. The shared resource memory 
may be accessed out-of-order!
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Strictly In-Order Pipelines: Definition

Definition (Strictly In-Order):
We call a pipeline strictly in-order if each resource
processes the instructions in program order.

• Enforce memory operations (instructions and 
data) in-order (common memory as resource)

• Block instruction fetch until no potential data 
accesses in the pipeline
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Strictly In-Order Pipelines: Properties

Theorem 1 (Monotonicity):
In the strictly in-order pipeline progress of an instruction is
monotone in the progress of other instructions.

≤
∀∃

≤

⟸

Corollary (Timing Anomalies and Timing Compositionality):
In the strictly in-order pipeline
• does not have timing anomalies, and
• admits compositional analysis with natural penalties.
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Performance:
Strictly in-order pipeline is about 6% slower than 
regular in-order pipeline.
à Preserves most of the benefits of pipelining.

Experimental Evaluation

Predictability:
~4x faster single-core analysis

~32x faster multi-core analysis
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Automating the Predictability Proofs

SMT Solver

Formalization 
of Processor

Formalization 
of Property+
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Challenges in Proof Automation

Processor states map dynamic instruction 
instances to their progress à infinite state space

22 Sebastian Hahn, Jan Reineke

are and stay in post
are and stay in pre
during next x cyclesrelevant instruction window

ikik�1. . . ik+1 . . . ik+4 ik+5 . . . ik+4+x ik+4+x+1 . . .

might be in the pipeline could be fetched
within x cycles

time

Fig. 10 Illustration of an instruction sequence and the finite instruction window that is
relevant for an execution of at most x cycles.

– define a predicate for the partial progress order,
– model the external functions used in the cycle behavior, and
– define a predicate for the cycle behavior itself.

7.3 Representation of Pipeline States and Cycle Behavior

For a given sequence of instructions to execute, we have defined a pipeline state
to be a mapping from each instruction of the sequence to its execution progress
in Section 4.2. A straightforward representation of an arbitrary pipeline state
with finitely many variables is not possible due to the unbounded nature of
possible instruction sequences.

However, our theorems reason only about a small window of the overall
execution, e.g. the monotonicity theorem considers the execution of a single
cycle. Consider Figure 10. The number of instructions that play a role during
a limited execution window of x cycles can be bounded as follows:

– at most five consecutive instructions can be in the pipeline at the same
time instant, and

– at most one new instruction can be fetched per cycle.

The instructions prior to ik have already finished their execution and have no
e↵ect on the future execution. The instructions subsequent to ik+4+x await
their execution. They will not get fetched within the next x cycles and thus do
not play a role during the considered execution window. Thus, it is su�cient
to consider an arbitrary but finite instruction window ik to ik+4+x that might
have an influence on the cycle behavior in the considered execution window.
The execution of a longer instruction sequence can be modeled by a sliding
instruction window.

To represent the pipeline stages, we introduce a finite enumeration data
type to Z3. Next, we define a progress data type to represent pre, post , or a
pair of pipeline stage and remaining-cycles counter. We represent a pipeline
state as a set of free variables of our progress data type—one variable for each
instruction in the considered finite instruction window.

The partial order on pipeline stages is expressed as a predicate using a
conjunction of implications:

a @S b := . . .
^

a = MEM ) (b = ST _ b = WB)
^

. . .

Suffices to consider a finite window:
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Proof of Monotonicity: First Attempt

24 Sebastian Hahn, Jan Reineke

i3,ml cycles

i2

i1

i0

i2

i1

i0

v

i3,ml�1 cycles

i2

i1 i2

i1,ml cycles

6v
cycle

Fig. 11 Z3 correctly classifies the conventional in-order pipeline as non-monotonic by
providing the above counterexample. i1 is a load that misses the data cache. i3 is an
instruction that misses the instruction cache.

7.5 Proof of Monotonicity

In order to prove monotonicity of the cycle behavior, we use Z3 to check
whether there exists an instance of non-monotonic cycle behavior. Using the
components from the previous subsections, the input formula to the solver
reads as:

validPipelineState(p1) ^ validPipelineState(p2)^
p1 v p2 ^ cycle(p1, p

0
1) ^ cycle(p2, p

0
2) ^ ¬p01 v p02

Simplified:

p1 v p2 ^ cycle(p1, p
0
1) ^ cycle(p2, p

0
2) ^ ¬p01 v p02

If the formula is unsatisfiable, we learn that there is no instance of non-
monotonic behavior and, in other words, that the cycle behavior is indeed
monotonic. Indeed, Z3 is able to show the unsatisfiability of the above formula,
and thus the monotonicity of the strictly in-order pipeline.

If the formula would be satisfiable, we could use the generated variable
valuation to construct a counterexample of monotonicity. To demonstrate that
the proposed changes to enforce the strict bus access order were required
to establish monotonicity, we evaluate the above formula also for the cycle
behavior of the non-strict, conventional in-order pipeline. Indeed, Z3 classifies
the formula as satisfiable and provides a counterexample to monotonicity. An
instance of non-monotonicity of the conventional in-order pipeline as found
by Z3 is highlighted in Figure 11. The example demonstrates the potential to
reorder bus accesses which has been shown to lead to an actual timing anomaly
in [?].

7.6 Proof of Anomaly Freedom

For a given non-deterministic choice, e.g. whether an access hits or misses the
cache, a timing anomaly occurs when the expected worst case does not lead
to the longest overall execution time. Along the lines of Theorem 3, to prove
anomaly freedom, it is su�cient to relate the possible immediate successor
pipeline states w.r.t. execution progress. If the expected worst-case successor

Captures
transition
relation

Define formula that is unsatisfiable, 
if transition relation is monotonic.

However, the formula is satisfiable!

Need to capture reachable states…
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Proof of Monotonicity: Second Attempt

Define formula that is unsatisfiable, 
if transition relation is monotonic.

This formula is indeed unsatisfiable!

24 Sebastian Hahn, Jan Reineke
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by Z3 is highlighted in Figure 11. The example demonstrates the potential to
reorder bus accesses which has been shown to lead to an actual timing anomaly
in [?].
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For a given non-deterministic choice, e.g. whether an access hits or misses the
cache, a timing anomaly occurs when the expected worst case does not lead
to the longest overall execution time. Along the lines of Theorem 3, to prove
anomaly freedom, it is su�cient to relate the possible immediate successor
pipeline states w.r.t. execution progress. If the expected worst-case successor

proved correct
via separate 
SMT queries
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See paper:
Sebastian Hahn, Jan Reineke: 
Design and analysis of SIC: a provably timing-
predictable pipelined processor core. 
Real-Time Systems, November 2019

Anomaly Freedom and Timing Compositionality
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Efficiency of SMT Proofs

26 Sebastian Hahn, Jan Reineke

Proof Z3 Runtime

monotonicity of SIC 7s
non-monotonicity of conv. in-order < 1s
anomaly-freedom w.r.t. cache < 1s
compositionality w.r.t. instr. cache see right
compositionality w.r.t. interrupt see right
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interrupt

Fig. 12 Runtime of Z3 for di↵erent verification goals.

As an example, the formula to prove the timing compositionality of an
instruction cache miss is:

ichith[i] = hit ^ ichitm[i] = miss ^
^

j2IW\{i}

ichith[j] = ichitm[j]^

cycle
ichit

h(s, sh) ^ cycle
ichit

m(s, sm0 )^
4·ml+4^

k=1

cycle
ichit

m(smk�1, s
m
k ) ^ ¬(smk v sh),

where i denotes the instruction that might trigger the accident, IW denotes
the considered finite instruction window, and ml denotes the memory latency.
Indeed, Z3 is able to verify the unsatisfiability of the above formula for a range
of memory latencies from 2 to 12 cycles.

Performing the above check for an insu�cient penalty p yields a coun-
terexample that demonstrates that p is not su�cient. Using one less than the
minimal su�cient penalty p provides a counterexample that demonstrates a
worst-case situation that motivates p. The above formula can also be used in a
binary-search fashion to derive the minimal su�cient penalty for an accident
automatically.

7.8 Solver Performance

We implemented the construction of the SMT formulas in Python using the
Python bindings of Z3. To speed up the construction of the formulas we used
memoization of parts of the formulas.

Figure 12 shows the runtime of Z3 for the di↵erent formulas described in the
previous sections. Formulas that reason about a very limited execution window,
i.e. those encoding monotonicity or anomaly freedom, are quickly determined to
be satisfiable or unsatisfiable. In particular, the central monotonicity property
of SIC takes only seven seconds to verify.

The runtime for the compositionality proofs, however, depends on the size
of the penalty, which in turn often depends on the memory latency. For these

Compositionality w.r.t. 
instruction-cache and 

interrupts:
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Key Insight: 
Monotonicity enables Timing Predictability

Strictly in-order pipeline is monotonic

Predictability proofs can be automated
¢ Translation of model to SMT still manual
¢ Need to capture relevant invariants manually
¢ Can we automate the process further?

Conclusions and Future Work
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