Provably
Timing-Predictable
Microarchitectures

Jan Reineke

joint work with Sebastian Hahn and Johannes Kahlen

wu@'@i UNIVERSITAT SI Saarland Informatics
T IW

DES Campus
SAARLANDES

Context. Hard Real-Time Systems

Reaction in < 10 ms

Embedded software must
* deliver correct control signals,
e within fixed time bounds.

Timing Analysis Problem

// Perform the convolution.

for (int 1=0; i<10; i++) {
x[i] = a[i]l*b[j-1];
// Notify listeners.
notify(x[1i]);

}

Embedded Software

‘ Timing Requirements

Microarchitecture

What does the execution time depend on?

o The input, determining which path is taken
through the program.

Simple

CPU <+—>»| Memory

What does the execution time depend on?

o The state of the hardware platform:
e Due to caches, pipelining, speculation, etc.

Complex CPU
(out-of-order :
execution, <> L1 <> Main
Cache Memory
branch

prediction, etc.)

Influence of Microarchitectural State

" LOAD r2, a
x=a+b; ——{ LOAD r1, b
ADD r3,r2,r1

<

PowerPC 755

Execution Time (Clock Cycles)

Best Case WorstCase

What does the execution time depend on?

o Interference from the environment:

e External interference as seen from the analyzed

task on shared busses, caches, memory.
A

Complex L1

cPu | *™| cache [*™

L2 Main
Cache Memory

Complex L1
CPU Cache

Influence of Corunning Tasks in Multicores

Radojkovic et al. (ACM TACO, 2012) on
Intel Atom and Intel Core 2 Quad:

up to 14x slow-down due to interference
on shared L2 cache and memory controller

Two Schools of Thought

A
»

possible execution times———

frequency

7

BCET WCET execution
time

WCET

1. Predictable = CRT

Is small = deterministic timing

2. Predictable = WCET can be efficiently approximated

Timing Anomalies

Analysis state representing set
of concrete hardware states. Nondeterminism due

to uncertainty about
hardware state.

Cache Miss
= [ocal Worst Case Cache Hit

~

leads to

/ Global Worst Case

Timing Anomalies in Dynamically Scheduled Microproc'essors
T. Lundqvist, P. Stenstrém — RTSS 1999

10

Timing Anomalies: Example

Scheduling Anomaly

C ready

Resource 1

Resource 2

Bounds on multiprocessing timing anomalies
RL Graham - SIAM Journal on Applied Mathematics, 1969 — SIAM

(http.//epubs.siam.org/doi/abs/10.1137/0117039) »

Timing Compositionality: By Example

exec{™ | Core 1 Core 2 Core 3 Core 4

Shared Bus

Shared Memory

Timing Compositionality =
Ability to simply sum up timing contributions by different components

Implicitly or explicitly assumed by (almost) all approaches to timing
analysis for multi cores and cache-related preemption delays (CRPD).

12

Timing Compositionality: Benefit

Integrated Compositional

-

13

Achieving Timing Compositionality

Textbook in-order pipeline + LRU caches

Fetch (/F)

Decode (/D)

I-cache

Execute (EX)

Memory

Memory (MEM)

Write-back (WB)

D-cache

14

Bad News I. Timing Anomalies

Fetch (IF) l-cache
Decode (/D)
Execute (EX)

Memory (MEM) D-cache
Write-back (WB)

Memory

We show such a pipeline has timing anomalies:

Toward Compact Abstractions for Processor Pipelines
S. Hahn, J. Reineke, and R. Wilhelm. In Correct System Design, 2015.

15

Bad News II. Timing Compositionality

Maximal cost of an additional cache miss?
Intuitively: main memory latency
Unfortunately: ~ 2 times main-memory latency

- ongoing instruction fetch may block load
- ongoing load may block instruction fetch

17

Key Insight:

Anomalies Require Non-Monotonicity

In the blue state,
each instruction has

local local the same or more
worst case best case progress than in the
red state.
<

The program
has terminated.

|
* The program
= == _has not yet
¥
®

terminated.

e The program

has terminated.

18

Monotonicity Enables Predictability 1/2

Theorem 1 (Timing Anomalies):
Monotonicity implies absence of timing anomalies.

local local
worst case best case
<
¢ < ® by monotonicity

O
IA
o

19

Monotonicity Enables Predictability 1/2

Theorem 2 (Timing Compositionality):
Monotonicity enables the derivation of sound penalties.

local local
worst case best case

*
penalty 3 =
*

20

How to Achieve Monotonicity?

v

Fetch

v

Decode

v

Execute

v

Memory

|-Cache

Memory

—_— [D-Cache

v

1. Pipelining is not the reason for
non-monotonicity!

Write-back

v

2. The shared resource memory
may be accessed out-of-order!

21

Strictly In-Order Pipelines: Definition

Definition (Strictly In-Order):
We call a pipeline strictly in-order if each resource
processes the instructions in program order.

« Enforce memory operations (instructions and
data) in-order (common memory as resource)
* Block instruction fetch until no potential data

accesses in the pipeline

22

Strictly In-Order Pipelines: Properties

Theorem 1 (Monotonicity):
In the strictly in-order pipeline progress of an instruction is
monotone in the progress of other instructions.

<

1/ < V

=

Corollary (Timing Anomalies and Timing Compositionality):
In the strictly in-order pipeline

* does not have timing anomalies, and

e admits compositional analysis with natural penalties.

23

Experimental Evaluation

Performance:

Strictly in-order pipeline is about 6% slower than
regular in-order pipeline.

- Preserves most of the benefits of pipelining.

Predictability:
~4x faster single-core analysis
~32x faster multi-core analysis

24

Automating the Predictability Proofs

Formalization + Formalization
of Processor of Property

SMT Solver

X

<

25

Challenges in Proof Automation

Processor states map dynamic instruction
iInstances to their progress - infinite state space

Suffices to consider a finite window:

are and stay in pre

are and stay in post relevant instruction window during next x cycles
tk—1 Gk k1 ... k44 k45 ... lktdda Cktdfatl .,
@ @ @ @ @ @ @ t.’
" NG v Hue
N N

might be in the pipeline could be fetched
within x cycles

26

Proof of Monotonicity: First Attempt

Define formula that is unsatisfiable,
if transition relation is monotonic.

Captures
transition
relation

/' N\

p1 C p2 A cycle(pr, ph) A cycle(pz, ph) A —p] C p;

However, the formula is satisfiable!

Need to capture reachable states...

27

Proof of Monotonicity: Second Attempt

Define formula that is unsatisfiable,
if transition relation is monotonic.

validPipelineState(p;) A validPipelineState(ps)A
f p1 C p2 A cycle(py,py) A cycle(ps, py) A —py E ph

proved correct
via separate
SMT queries

This formula is indeed unsatisfiable!

28

Anomaly Freedom and Timing Compositionality

See paper-
Sebastian Hahn, Jan Reineke:
Design and analysis of SIC: a provably timing-

predictable pipelined processor core.
Real-Time Systems, November 2019

29

Efficiency of SMT Proofs

Proot Z3 Runtime
monotonicity of SIC 7s
non-monotonicity of textbook in-order < 1s
anomaly-freedom w.r.t. cache < 1s

ot

W

Compositionality w.r.t.
instruction-cache and
interrupts:

—=— instr. cache []
—6— interrupt ||

w

Runtime in Hours
—_ N
I I
i i

N Y Y
2 4 6 8 10 12

Memory Latency

)

30

Conclusions and Future Work

Key Insight.
Monotonicity enables Timing Predictability

Strictly in-order pipeline is monotonic

Predictability proofs can be automated

o Translation of model to SMT still manual

o Need to capture relevant invariants manually
o Can we automate the process further?

31

References

Sebastian Hahn, Jan Reineke:

Design and analysis of SIC: a provably timing-
predictable pipelined processor core.

RTSS 2018 (best student paper award)

Sebastian Hahn, Jan Reineke:

Design and analysis of SIC: a provably timing-
predictable pipelined processor core.
Real-Time Systems, November 2019

32

