SAARLAND gfEe
UNIVERSITY §=
I D e
COMPUTER SCIENCE

On the Smoothness of Paging Algorithms

Jan Reineke and Alejandro Salinger

Technische Universitat Dortmund
November 17, 2016

Motivation: Real-time Systems

Side airbag in car Crankshaft-synchronous tasks
Reaction in <10 ms Reaction in < 45 microsec

Controllers must finish their tasks within given time bounds
- Need to determine Worst-Case Response Times (WCRT)

Influence of Caches on Execution Times

' LOAD r2, a
x=a+b; ——| LOAD r1, b
ADD r3,r2,r1

y

PowerPC 755

Execution Time (Clock Cycles)

as0

aoo

250

200

150

100

a0

Best Case WorstCase

Basics: Caching/Paging

Slow memory
Cache

P2 Ps P1 Pz P3 [Ps [PiolPs |

O =..PgP3P2P4P4P,P10P11 Ps Py

Is p,in the cache? -yes Hit

-No Fault (miss)
Fetch p, from slow memory,

evict one page from cache

- Replacement policy determines page to evict

— Access sequence + policy determine cache state

Why are Caches a Challenge?

1. Input-dependent memory accesses
2. Interference due to preempted tasks
3. Interference due to co-running tasks

Two Approaches to Timing Analysis

1. Static Analysis:

(
How does uncertainty about memory accesses
affect uncertainty about number of faults?
\
2. Measurement-based Analysis:
(

How representative are measurements
on a subset of the possible cases?

How does uncertainty about memory accesses
affect uncertainty about execution time?

number
of faults

A«cf)_ ... %®

-

<
Quantify uncertainty

by edit distance

/

dCCESS sequences

Definition of Smoothness

dist(o,0") = edit distance between 0 and o'

4)
An online algorithm A'is («, [, 6)-smooth if for

all o, 0’ with dist(o,0’) < 6

Al)< a-A(o)+ P
_ /

For generic 6:

An online algorithm A is («, f)-smooth if for all g, o’
A(d") < a(8) -A(o) + L(6)
where a and f3 are functions and dist(o,0’) < §

/
We call A smooth if it is (1,B,1)-smooth for some, .

Key Questions

How smooth are known paging algorithms?

Are there fundamental bounds on the
smoothness of paging algorithms?

Are smoothness and high performance
contradictory goals?

Can randomization help?

Deterministic Replacement Policies /
Paging Algorithms

Online Algorithms:

* LRU: Least-Recently-Used
* FIFO: First-In-First-Out

* FWEF: Flush-When-Full

Offline Algorithm:
e FITF: Furthest-In-The-Future (OPT, LFD, Belady’s)

10

Smoothness of LRU
oc=..abcdabcd ..

dist(o,0’') =1
o =..abcdpabcd ..

LRU(o) [dcbal] — >[dcba] — >[adcb] — > [badc]

p a b
LRU(0") [dcba]l — > [pdcb] —>[apdc] —>[bapd]
miss miss miss

—>[cbad]—>[dcba]

C d Same state
——>[cbap] > [dcba]
miss miss

LRU(c') = LRU(o) + 5

11

Smoothness of LRU

-
V 0,0’ with dist(o,0') =1

LRU(¢"') < LRU(0) + (k+ 1)

_

Proof sketch

* Age of page: number of distinct requests since last request
 Arequestisamissifageis > k

* Atall times at most k pages have age < k

* New page p can increase age of at most k requests
fromk —1tok

= At most (k + 1) extra misses

What aboutd > 17

é _)
For any replacement policy A:

X If Ais (1,c,1)-smooth, then Ais (1,6c)-smooth

LRU(6") < LRU(o) + (k + 1) for g,0’ with dist(o,0') =1

4

LRU(¢") < LRU(o) + 6(k + 1) for o,0’ with dist(o,0') < 6

{ LRU is (1,6 (k + 1))-smooth J

13

FIFO is not smooth

There exist o0 and ¢’ with dist(o,0’) = 1 such that caches of
FIFO (o) and FIFO(c") are reversed

FIFO(o) [abcd] — >[eabc] —>[eabc] ——>[eab]

e a b
FIFO(0') [dcbal] — >[edcb] —>[aedc] —>[baed]

miss miss miss

—>[eabclﬁ>[deab]—>[deab]—>[deab]

c d e a
——>[cbael] > [dcba] —>[edcb] *>[aed(]
miss miss miss miss
FIFO(o) =

[FIFO(6") > k - FIFO(0) J

FIFO@) = ||| ||| |]]]..

Lower Bounds (1 of 2)

* An algorithm is demand paging if it only evicts

pages when needed
—e.g., LRU, FIFO

(

No deterministic, demand-paging algorithm is better than
(1, 6(k + 1))-smooth

-

\

* But not all algorithms are demand paging:

How about competitive algorithms?

15

Competitive Analysis

A(0): number of misses of A on sequence o
An online algorithm A is r-competitive if for all o

A(c) <r-OPT(o)+
Minimum such 7 is A’s competitive ratio CR(A)

CR(LRU) = CR(FIFO) = CR(FWF) =k
Randomized algorithms can achieve CR in O(logk)

16

Lower Bounds (2 of 2)

* An algorithm is demand paging if it only evicts

pages when needed
—e.g., LRU, FIFO

(

-

No deterministic, demand-paging algorithm is better than
(1, 6(k + 1))-smooth

\

* But not all algorithms are demand paging
—e.g., FWF

-

_

No deterministic, competitive algorithm is better than
(1, 6(k + 1))-smooth

Deterministic Algorithms

Smoothness
(9 #8 c-competitive
(k,v2) FIFO
Deterministic strongly-competitive
1,6
T Tsmoorl
FWF
(1,8(k+ D))p-=-----=—===-=-==—===—==—--~ LR _ .

(1L,26)y #®

1 k ¢ Competitivenéss

Can randomization help?

Randomized Replacement Policies

RAND: Evict page chosen uniformly at random

MARK: Evict only “unmarked” pages

PARTITION, EQUITABLE: define state probability
distribution based on OPT’s cache contents

Evict-On-Access: like RAND, but evict on hits too!

Randomized Replacement Policies
Algorithm | Competitiveratio | Smoothness

RANDOM k (1,6(k +1))
MARK 2H, — 1 (0(Hy), B)
PARTITION Hy (1+e€,6,1) (Hy, 2Hy)
EQUITABLE Hy (1+¢€,81) (Hy, 2Hy)
k
EOA 00 (1,(1+2k_1>5>
H,=1 +1+1+---+l
2 3 k
4 N

No randomized, demand-paging algorithm is better than

g (1, Hj, + %, 1)-smooth

r A
No randomized, strongly-competitive algorithm is better than

(1, §Hy,)-smooth
\) 21

\\

[RANDOM is (1, 8 (k + 1))-smooth]

* Bound extra misses by distance between distributions
Dy 5Dz

abc] > 1/3 > slabc]>2/3
:abd]91/3M[abe]91/3

acd] > 1/3 %

A(D4,D,) = min Z a(sq{,s,) - cost(sq,Sy)
a

S1 EDl,Sz EDZ

cost(sy,S,) = kH. where ¢ = |s{\s,]

2 Claims:

D and D’ are distributions resulting from serving p and p’
with dist(p, p’) = 1. Then, A(D,D") < k

[Vo,RAND(D,,0) — RAND(D,,0) < A(D4,D,) J

ootmes. RANAOMIzed Algorithms

(9 #8 c-competitive

O(H.), PARTITION@ 8 MARK
(O, EQUITABLE

(1.9F) Ysmdord

Rand. strongly-comp. f& FWF
(1,6(k+ 1))yg-------B------------- RANDOM, LRU

Deterministic strongly-competitive

(1, 8Hy) == === == B -
(1,26)

Competitiveness

Can we desigh smoother algorithms?

Hit probability

S
o

Smoothed-LRU

e Recall the age of a page in LRU’s cache: hit if age < k

ldea: smooth this transition

b —

b —

—— LRU

—5— SMOOTHED-LRU

I I

=
I

— [P

— O

ot

O~

N
I

6 7 8
Age of requested page

10

11

I
12 13

|
14

15

Smoothed-LRU

a4)

Smoothed-LRU is (1,5-min(2lf_1+1,k+.’"1+2))—smooth
2i+1 2i+1

_ J
e i=0 —> as smooth as LRU
e i=k-1 =2 assmooth as OPT

Is it competitive?

~ B

For any sequenceocand [< k —i:

k—1i

Smoothed-LRUy ; (o) < P OPT;(o) + 1

g Y,
As competitive as LRU for size k-i.

LRU-Random

Smoothed-LRU and EOA are very smooth, but not competitive

Is there a “reasonable” policy that beats the

additive 6 (k + 1) lower bound?

LRU-Random: evict the it" oldest page with probability%

(

.

LRU-Random is k-competitive (against adaptive adversary)]

f

LRU-Random is (1, (1 + %) 6)-smooth fork = 2]

1+11/6 =2.83 < 3 = k+1

27

LRU-Random: Conjectures

-

LRU-Random is (1, ©(H,?) §)-smooth
g

-
LRU-Random is O(H,%)-competitive

against an oblivious adversary

28

... The Whole Picture

¢ x) #8 c-competitive

* With resource

augmentation

O(H.), PARTITION S $8 MARK
O YOT EqUiTaBLE o N
Deterministic strongly-competitive

,0
SR I P |

Rand. strongly-comp & FWF

(1,5(k + 1)

(1,6Hy))
(1,26)

Competitiveness

Open Problems

(Generalize smoothness proof for LRU-Random)
Is there a randomized , LRU-sibling“?

Are there randomized algorithms that are
smooth ,with high probability“?

Are there , less pessimistic” notions of
smoothness?

Thank you for your attention!

