
On	the	Smoothness	of	Paging	Algorithms	

Jan	Reineke	and	Alejandro	Salinger	
	

Technische	Universität	Dortmund	
November	17,	2016	

	

MoHvaHon:	Real-Hme	Systems	

Controllers	must	finish	their	tasks	within	given	Hme	bounds	
à	Need	to	determine	Worst-Case	Response	Times	(WCRT)	

computer science

saarland
universityHard Real-Time Systems

Safety-critical applications:
Avionics, automotive, train industries, manufacturing control

Side airbag in car Crankshaft-synchronous tasks
Reaction in < 10 msec Reaction in < 45 µsec

Embedded controllers must finish their tasks within given time

bounds.
Developers would like to know the Worst-Case Execution Time

(WCET) to give a guarantee.

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 4 / 38

computer science

saarland
universityHard Real-Time Systems

Safety-critical applications:
Avionics, automotive, train industries, manufacturing control

Side airbag in car Crankshaft-synchronous tasks
Reaction in < 10 msec Reaction in < 45 µsec

Embedded controllers must finish their tasks within given time

bounds.
Developers would like to know the Worst-Case Execution Time

(WCET) to give a guarantee.

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 4 / 38

Side	airbag	in	car	
ReacHon	in	<	10	ms	

CrankshaT-synchronous	tasks	
ReacHon	in	<	45	microsec	

Influence	of	Caches	on	ExecuHon	Times	

3	

PowerPC	755	

Reineke et al., Berkeley 5

Example of Influence of

Microarchitectural State computer science

saarland
universityAccess Time

x=a+b;
LOAD r2, _a
LOAD r1, _b
ADD r3,r2,r1

MPC5xx PPC755

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 5 / 63

computer science

saarland
universityAccess Time

x=a+b;
LOAD r2, _a
LOAD r1, _b
ADD r3,r2,r1

MPC5xx PPC755

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 5 / 63

Motorola PowerPC 755

Courtesy of Reinhard Wilhelm.

Reineke et al., Berkeley 5

Example of Influence of

Microarchitectural State computer science

saarland
universityAccess Time

x=a+b;
LOAD r2, _a
LOAD r1, _b
ADD r3,r2,r1

MPC5xx PPC755

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 5 / 63

computer science

saarland
universityAccess Time

x=a+b;
LOAD r2, _a
LOAD r1, _b
ADD r3,r2,r1

MPC5xx PPC755

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 5 / 63

Motorola PowerPC 755

Courtesy of Reinhard Wilhelm.

Basics:	Caching/Paging	

4	

Slow	memory	

σ		=	…p6	p3	p2	p4	p4	p2	p10	p11	p5	p4…	

Is	pi	in	the	cache?	 -Yes	

à	Replacement	policy	determines	page	to	evict	
à	Access	sequence	+	policy	determine	cache	state	

Hit	
-No													Fault	(miss)	

Fetch	pi	from	slow	memory,		
evict	one	page	from	cache	
	

Cache	

Why	are	Caches	a	Challenge?	

5	

Core	
	
	
	

Cache	 Main	
Memory	

1.  Input-dependent	memory	accesses	
2.  Interference	due	to	preempted	tasks	
3.  Interference	due	to	co-running	tasks	

Task	n	Task	...	Task	1	

Core	
	
	
	Task	n	

Task	...	Task	1	

Two	Approaches	to	Timing	Analysis	
1.  StaHc	Analysis:		
–  Uncertainty	about	input-dependent	memory	accesses	
–  Uncertainty	about	memory	accesses	of	preempHng	tasks	
–  Uncertainty	about	memory	accesses	of	co-running	tasks	

6	

2.	Measurement-based	Analysis:	
–  Covers	only	subset	of	inputs	
–  Covers	only	subset	of	preempHng	task	scenarios	
–  Covers	only	subset	of	co-running	task	scenarios	
	

How	does	uncertainty	about	memory	accesses	
affect	uncertainty	about	number	of	faults?	

How	representaHve	are	measurements		
on	a	subset	of	the	possible	cases?	

7	

σ	 σ'	

A(σ')	

A(σ)	

access	sequences	

number	
of	faults	

How	does	uncertainty	about	memory	accesses	
affect	uncertainty	about	execuHon	Hme?	

QuanHfy	uncertainty	
by	edit	distance	

DefiniHon	of	Smoothness	

8	

dist(σ ,σ ') σ σ '=	edit	distance	between					and			

For	generic	δ:		

We	call	A	smooth	if	it	is	(1,β,1)-smooth	for	some	β.	

Key	QuesHons	

•  How	smooth	are	known	paging	algorithms?	

•  Are	there	fundamental	bounds	on	the	
smoothness	of	paging	algorithms?	

•  Are	smoothness	and	high	performance	
contradictory	goals?	

	
•  Can	randomizaHon	help?	

9	

DeterminisHc	Replacement	Policies	/		
Paging	Algorithms	

Online	Algorithms:	
•  LRU:	Least-Recently-Used	
•  FIFO:	First-In-First-Out	
•  FWF:	Flush-When-Full	
•  …	
	
Offline	Algorithm:	
•  FITF:	Furthest-In-The-Future	(OPT,	LFD,	Belady’s)	
	

10	

Smoothness	of	LRU	

[d	c	b	a]	

[d	c	b	a]	

[d	c	b	a]	

[p	d	c	b]	
miss	

[a	d	c	b]	

[a	p	d	c]	

[b	a	d	c]	

[b	a	p	d]	
miss	miss	

[c	b	a	d]	

[c	b	a	p]	
miss	

[d	c	b	a]	

[d	c	b	a]	
miss	

Same	state	

11	

...	

Smoothness	of	LRU	

12	

For	any	replacement	policy	A:		
If	A	is	(1,c,1)-smooth,	then	A	is	(1,δc)-smooth	

13	

FIFO	is	not	smooth	

[a	b	c	d]	

[d	c	b	a]	

[e	a	b	c]	

[e	d	c	b]	
miss	

[e	a	b	c]	

[a	e	d	c]	

[e	a	b	c]	

[b	a	e	d]	
miss	miss	

[e	a	b	c]	

[c	b	a	e]	
miss	

[d	e	a	b]	

[d	c	b	a]	
miss	

[d	e	a	b]	

[e	d	c	b]	
miss	

…	
[d	e	a	b]	

[a	e	d	c]	
miss	

…	

…	 14	

miss	

miss	

Lower	Bounds	(1	of	2)	
•  An	algorithm	is	demand	paging	if	it	only	evicts	
pages	when	needed	
– e.g.,	LRU,	FIFO	

15	

•  But	not	all	algorithms	are	demand	paging:	

								How	about	compeHHve	algorithms?	
				

CompeHHve	Analysis	

16	

Lower	Bounds	(2	of	2)	
•  An	algorithm	is	demand	paging	if	it	only	evicts	
pages	when	needed	
– e.g.,	LRU,	FIFO	

17	

•  But	not	all	algorithms	are	demand	paging	
– e.g.,	FWF	

DeterminisHc	strongly-compeHHve	

DeterminisHc	Algorithms	

18	

Smoothness	

CompeHHveness	

OPT	

LRU	
FWF	

FIFO	

c-compeHHve	

SMOOTH	

Can	randomizaHon	help?	

19	

Randomized	Replacement	Policies	
•  RAND:	Evict	page	chosen	uniformly	at	random	

•  MARK:	Evict	only	“unmarked”	pages	
•  PARTITION,	EQUITABLE:	define	state	probability	

distribuHon	based	on	OPT’s	cache	contents		

•  Evict-On-Access:	like	RAND,	but	evict	on	hits	too!	
	

20	

Randomized	Replacement	Policies	
Algorithm	 Compe//ve	ra/o	 Smoothness	

RANDOM	

MARK	

PARTITION	

EQUITABLE	

EOA	

21	

22	

•  	Bound	extra	misses	by	distance	between	distribuHons	

	

[a	b	c]	→	1/3		
[a	b	d]	→	1/3		
[a	c	d]	→	1/3		

[a	b	c]	→	2/3		
[a	b	e]	→	1/3		

1/3	

1/3	

1/3	

2	Claims:	

DeterminisHc	strongly-compeHHve	

Rand.	strongly-comp.	

Randomized	Algorithms	

23	

Smoothness	

OPT	 EOA	

RANDOM,	LRU	

c-compeHHve	

PARTITION	
EQUITABLE	

MARK	

SMOOTH	

CompeHHveness	

FWF	

FIFO	

Can	we	design	smoother	algorithms?	

24	

Smoothed-LRU	

25	

Smoothed-LRU	

26	

•  i	=	0					 	à		as	smooth	as	LRU	
•  i	=	k-1	 	à		as	smooth	as	OPT	

Is	it	compeHHve?	

As	compeHHve	as	LRU	for	size	k-i.	

(1,δ ⋅min(2k −1
2i+1

+1, k + i−1
2i+1

+ 2))Smoothed-LRU	is																																													-smooth	

LRU-Random	

27	

•  Smoothed-LRU	and	EOA	are	very	smooth,	but	not	compeHHve	

1
iHk

	

•  LRU-Random:	evict	the	ith	oldest	page	with	probability		

LRU-Random:	Conjectures	

28	

LRU-Random	is	(1,	Θ(Hk
2)	δ)-smooth	

LRU-Random	is	Θ(Hk
2)-compeHHve	

against	an	oblivious	adversary	

The	Whole	Picture	

29	

Smoothness	

CompeHHveness	

OPT	 EOA	

c-compeHHve	

PARTITION	
EQUITABLE	

MARK	

Smoothed-LRU*	

*	With	resource		
			augmentaHon	

SMOOTH	

LRU-Random	(k=2)	

DeterminisHc	strongly-compeHHve	

Rand.	strongly-comp.	
RANDOM,	LRU	
FWF	

FIFO	

Open	Problems	

•  (Generalize	smoothness	proof	for	LRU-Random)	
•  Is	there	a	randomized	„LRU-sibling“?	

•  Are	there	randomized	algorithms	that	are	
smooth	„with	high	probability“?	

•  Are	there	„less	pessimisHc“	noHons	of	
smoothness?	

30	

Thank	you	for	your	a~enHon!	

31	

