
Challenges for
Worst-case Execution Time Analysis of
Multi-core Architectures

Jan Reineke @

Intel, Braunschweig
April 29, 2013

computer science

saarland
university

Jan Reineke, Saarland 2

The Context: Hard Real-Time Systems

Safety-critical applications:
¢  Avionics, automotive, train industries, manufacturing

¢  Embedded controllers must finish their tasks within
given time bounds.

¢  Developers would like to know the Worst-Case
Execution Time (WCET) to give a guarantee.

computer science

saarland
universityHard Real-Time Systems

Safety-critical applications:
Avionics, automotive, train industries, manufacturing control

Side airbag in car Crankshaft-synchronous tasks
Reaction in < 10 msec Reaction in < 45 µsec

Embedded controllers must finish their tasks within given time

bounds.
Developers would like to know the Worst-Case Execution Time

(WCET) to give a guarantee.

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 4 / 38

computer science

saarland
universityHard Real-Time Systems

Safety-critical applications:
Avionics, automotive, train industries, manufacturing control

Side airbag in car Crankshaft-synchronous tasks
Reaction in < 10 msec Reaction in < 45 µsec

Embedded controllers must finish their tasks within given time

bounds.
Developers would like to know the Worst-Case Execution Time

(WCET) to give a guarantee.

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 4 / 38

Side airbag in car
Reaction in < 10 msec

Crankshaft-synchronous tasks
Reaction in < 45 microsec

Jan Reineke, Saarland 3

The Timing Analysis Problem

Embedded Software

Timing Requirements
?	

Our Vision: PRET Machines

PREcision-Timed processors: Performance & Predicability

+ = PRET

(Image: John Harrison’s H4, first clock to solve longitude problem)

Precision-Timed (PRET) Machines – p. 11/19

Microarchitecture

+	

Jan Reineke, Saarland 4

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Simple
CPU

Memory

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

What does the execution time depend on?

¢  The input, determining which path is taken
through the program.

¢  The state of the hardware platform:
l  Due to caches, pipelining, speculation, etc.

¢  Interference from the environment:
l  External interference as seen from the analyzed

task on shared busses, caches, memory.

Jan Reineke, Saarland 5

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Simple
CPU

Memory

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Complex CPU
(out-of-order
execution,

branch
prediction, etc.)

Main
Memory

L1
Cache

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

What does the execution time depend on?

¢  The input, determining which path is taken
through the program.

¢  The state of the hardware platform:
l  Due to caches, pipelining, speculation, etc.

¢  Interference from the environment:
l  External interference as seen from the analyzed

task on shared busses, caches, memory.

Jan Reineke, Saarland 6

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Simple
CPU

Memory

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Complex CPU
(out-of-order
execution,

branch
prediction, etc.)

Main
Memory

L1
Cache

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Complex
CPU

L1
Cache

Complex
CPU

L1
Cache

...
L2

Cache
Main

Memory

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

What does the execution time depend on?

¢  The input, determining which path is taken
through the program.

¢  The state of the hardware platform:
l  Due to caches, pipelining, speculation, etc.

¢  Interference from the environment:
l  External interference as seen from the analyzed

task on shared busses, caches, memory.

Jan Reineke, Saarland 7

Example of Influence of
Microarchitectural State

PowerPC 755

Reineke et al., Berkeley 5

Example of Influence of

Microarchitectural State computer science

saarland
universityAccess Time

x=a+b;
LOAD r2, _a
LOAD r1, _b
ADD r3,r2,r1

MPC5xx PPC755

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 5 / 63

computer science

saarland
universityAccess Time

x=a+b;
LOAD r2, _a
LOAD r1, _b
ADD r3,r2,r1

MPC5xx PPC755

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 5 / 63

Motorola PowerPC 755

Courtesy of Reinhard Wilhelm.

Reineke et al., Berkeley 5

Example of Influence of

Microarchitectural State computer science

saarland
universityAccess Time

x=a+b;
LOAD r2, _a
LOAD r1, _b
ADD r3,r2,r1

MPC5xx PPC755

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 5 / 63

computer science

saarland
universityAccess Time

x=a+b;
LOAD r2, _a
LOAD r1, _b
ADD r3,r2,r1

MPC5xx PPC755

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 5 / 63

Motorola PowerPC 755

Courtesy of Reinhard Wilhelm.

Jan Reineke, Saarland 8

Example of Influence of Corunning Tasks
in Multicores

Radojkovic et al. (ACM TACO, 2012) on Intel Atom
and Intel Core 2 Quad:

 up to 14x slow-down due to interference
 on shared L2 cache and memory controller

Jan Reineke, Saarland 9

Challenges

1.  Modeling
How to construct sound timing models?

2.  Analysis
How to precisely & efficiently bound the WCET?

3.  Design
How to design microarchitectures that enable
precise & efficient WCET analysis?

Jan Reineke, Saarland 10

The Modeling Challenge

Timing model = Formal specification of
 microarchitecture’s timing

Incorrect timing model

 à possibly incorrect WCET bound.

Our Vision: PRET Machines

PREcision-Timed processors: Performance & Predicability

+ = PRET

(Image: John Harrison’s H4, first clock to solve longitude problem)

Precision-Timed (PRET) Machines – p. 11/19

Timing
Model

Micro-
architecture

?	

Jan Reineke, Saarland 11

Current Process of Deriving Timing Model
Our Vision: PRET Machines

PREcision-Timed processors: Performance & Predicability

+ = PRET

(Image: John Harrison’s H4, first clock to solve longitude problem)

Precision-Timed (PRET) Machines – p. 11/19

Micro-
architecture

Timing
Model

?	

Jan Reineke, Saarland 12

Current Process of Deriving Timing Model
Our Vision: PRET Machines

PREcision-Timed processors: Performance & Predicability

+ = PRET

(Image: John Harrison’s H4, first clock to solve longitude problem)

Precision-Timed (PRET) Machines – p. 11/19

Micro-
architecture

Timing
Model

?	

Jan Reineke, Saarland 13

Current Process of Deriving Timing Model
Our Vision: PRET Machines

PREcision-Timed processors: Performance & Predicability

+ = PRET

(Image: John Harrison’s H4, first clock to solve longitude problem)

Precision-Timed (PRET) Machines – p. 11/19

Micro-
architecture

Timing
Model

?	

Jan Reineke, Saarland 14

Current Process of Deriving Timing Model
Our Vision: PRET Machines

PREcision-Timed processors: Performance & Predicability

+ = PRET

(Image: John Harrison’s H4, first clock to solve longitude problem)

Precision-Timed (PRET) Machines – p. 11/19

Micro-
architecture

Timing
Model

?	

Jan Reineke, Saarland 15

Current Process of Deriving Timing Model

à Time-consuming, and
à error-prone.

Our Vision: PRET Machines

PREcision-Timed processors: Performance & Predicability

+ = PRET

(Image: John Harrison’s H4, first clock to solve longitude problem)

Precision-Timed (PRET) Machines – p. 11/19

Micro-
architecture

Timing
Model

?	

Jan Reineke, Saarland 16

Current Process of Deriving Timing Model

à Time-consuming, and
à error-prone.

Our Vision: PRET Machines

PREcision-Timed processors: Performance & Predicability

+ = PRET

(Image: John Harrison’s H4, first clock to solve longitude problem)

Precision-Timed (PRET) Machines – p. 11/19

Micro-
architecture

Timing
Model

?	

Jan Reineke, Saarland 17

1. Future Process of Deriving Timing Model Our Vision: PRET Machines

PREcision-Timed processors: Performance & Predicability

+ = PRET

(Image: John Harrison’s H4, first clock to solve longitude problem)

Precision-Timed (PRET) Machines – p. 11/19

Micro-
architecture

Timing
Model

VHDL
Model

Jan Reineke, Saarland 18

1. Future Process of Deriving Timing Model Our Vision: PRET Machines

PREcision-Timed processors: Performance & Predicability

+ = PRET

(Image: John Harrison’s H4, first clock to solve longitude problem)

Precision-Timed (PRET) Machines – p. 11/19

Micro-
architecture

Timing
Model

VHDL
Model

Derive timing model automatically from formal
specification of microarchitecture.

à  Less manual effort, thus less time-consuming, and
à  provably correct.

Jan Reineke, Saarland 19

1. Future Process of Deriving Timing Model Our Vision: PRET Machines

PREcision-Timed processors: Performance & Predicability

+ = PRET

(Image: John Harrison’s H4, first clock to solve longitude problem)

Precision-Timed (PRET) Machines – p. 11/19

Micro-
architecture

Timing
Model

VHDL
Model

Derive timing model automatically from formal
specification of microarchitecture.

à  Less manual effort, thus less time-consuming, and
à  provably correct.

Jan Reineke, Saarland 20

1. Future Process of Deriving Timing Model Our Vision: PRET Machines

PREcision-Timed processors: Performance & Predicability

+ = PRET

(Image: John Harrison’s H4, first clock to solve longitude problem)

Precision-Timed (PRET) Machines – p. 11/19

Micro-
architecture

Timing
Model

VHDL
Model

Derive timing model automatically from formal
specification of microarchitecture.

à  Less manual effort, thus less time-consuming, and
à  provably correct.

Jan Reineke, Saarland 21

2. Future Process of Deriving Timing Model Our Vision: PRET Machines

PREcision-Timed processors: Performance & Predicability

+ = PRET

(Image: John Harrison’s H4, first clock to solve longitude problem)

Precision-Timed (PRET) Machines – p. 11/19

Micro-
architecture

Timing
Model

Perform
measurements on

hardware

Infer model

Jan Reineke, Saarland 22

2. Future Process of Deriving Timing Model Our Vision: PRET Machines

PREcision-Timed processors: Performance & Predicability

+ = PRET

(Image: John Harrison’s H4, first clock to solve longitude problem)

Precision-Timed (PRET) Machines – p. 11/19

Micro-
architecture

Timing
Model

Perform
measurements on

hardware

Derive timing model automatically from measurements
on the hardware using ideas from automata learning.

à  No manual effort, and
à  (under certain assumptions) provably correct.
à  Also useful to validate assumptions about microarch.

Infer model

Jan Reineke, Saarland 23

2. Future Process of Deriving Timing Model Our Vision: PRET Machines

PREcision-Timed processors: Performance & Predicability

+ = PRET

(Image: John Harrison’s H4, first clock to solve longitude problem)

Precision-Timed (PRET) Machines – p. 11/19

Micro-
architecture

Timing
Model

Perform
measurements on

hardware

Derive timing model automatically from measurements
on the hardware using ideas from automata learning.

à  No manual effort, and
à  (under certain assumptions) provably correct.
à  Also useful to validate assumptions about microarch.

Infer model

Jan Reineke, Saarland 24

2. Future Process of Deriving Timing Model Our Vision: PRET Machines

PREcision-Timed processors: Performance & Predicability

+ = PRET

(Image: John Harrison’s H4, first clock to solve longitude problem)

Precision-Timed (PRET) Machines – p. 11/19

Micro-
architecture

Timing
Model

Perform
measurements on

hardware

Derive timing model automatically from measurements
on the hardware using ideas from automata learning.

à  No manual effort, and
à  (under certain assumptions) provably correct.
à  Also useful to validate assumptions about microarch.

Infer model

Jan Reineke, Saarland 25

2. Future Process of Deriving Timing Model Our Vision: PRET Machines

PREcision-Timed processors: Performance & Predicability

+ = PRET

(Image: John Harrison’s H4, first clock to solve longitude problem)

Precision-Timed (PRET) Machines – p. 11/19

Micro-
architecture

Timing
Model

Perform
measurements on

hardware

Derive timing model automatically from measurements
on the hardware using ideas from automata learning.

à  No manual effort, and
à  (under certain assumptions) provably correct.
à  Also useful to validate assumptions about microarch.

Infer model

Jan Reineke, Saarland 26

Proof-of-concept:
Automatic Modeling of the Cache Hierarchy

¢  Cache Model is important part of Timing Model
¢  Can be characterized by a few parameters:

l  ABC: associativity, block size, capacity
l  Replacement policy

chi [Abel and Reineke, RTAS 2013] derives all of
these parameters fully automatically.

DataTag

DataTag

DataTag

DataTag

A = Associativity

DataTag

DataTag

DataTag

DataTag

...

DataTag

DataTag

DataTag

DataTag

N = Number of Cache Sets

B = Block Size

Jan Reineke, Saarland 27

Example: Intel Core 2 Duo E6750,
 L1 Data Cache

CHAPTER 4. ALGORITHMS

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950

L1 Misses

Figure 4.2: Result of running the simple algorithm with pointer chasing on
an Intel Intel Core 2 Duo E6750 (32kB L1 Cache)

• Non-blocking caches:

• Out-of-order execution:

• Prefetching:

• Other optimizations like way-prediction:

To minimize the e↵ects of non-blocking caches and out-of-order execution,
we can we serialize memory accesses by using a form of “pointer chasing”
where each memory location contains the address of the next access (for more
details on this see section x).

Figure 4.2 shows the result of this modification. Now, a slight jump in the
diagram for the time based approach is visible. But it is hard to find the
exact location of the jump. Moreover, there is also already a small jump
between 31kB and 32kB in the left diagram.

The following algorithm shows our first approach at inferring the associativ-
ity.

The algorithm uses the fact that the cache size is always a multiple of the
way size. Thus, when accessing the memory with a stride of cache size many
bytes, all accesses map to the same cache set. If curAssoc exceeds the actual
associativity, the cache can no longer store all accessed memory locations,
and so we expect to see a jump in the number of misses.

Figures 4.3 and 4.4 show the result of running this algorithm on the same
architecture as above, both with and without pointer chasing.

14

|Misses|

|Size|

Jan Reineke, Saarland 28

Example: Intel Core 2 Duo E6750,
 L1 Data Cache

CHAPTER 4. ALGORITHMS

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950

L1 Misses

Figure 4.2: Result of running the simple algorithm with pointer chasing on
an Intel Intel Core 2 Duo E6750 (32kB L1 Cache)

• Non-blocking caches:

• Out-of-order execution:

• Prefetching:

• Other optimizations like way-prediction:

To minimize the e↵ects of non-blocking caches and out-of-order execution,
we can we serialize memory accesses by using a form of “pointer chasing”
where each memory location contains the address of the next access (for more
details on this see section x).

Figure 4.2 shows the result of this modification. Now, a slight jump in the
diagram for the time based approach is visible. But it is hard to find the
exact location of the jump. Moreover, there is also already a small jump
between 31kB and 32kB in the left diagram.

The following algorithm shows our first approach at inferring the associativ-
ity.

The algorithm uses the fact that the cache size is always a multiple of the
way size. Thus, when accessing the memory with a stride of cache size many
bytes, all accesses map to the same cache set. If curAssoc exceeds the actual
associativity, the cache can no longer store all accessed memory locations,
and so we expect to see a jump in the number of misses.

Figures 4.3 and 4.4 show the result of running this algorithm on the same
architecture as above, both with and without pointer chasing.

14

Capacity = 32 KB

|Misses|

|Size|

Jan Reineke, Saarland 29

Example: Intel Core 2 Duo E6750,
 L1 Data Cache

CHAPTER 4. ALGORITHMS

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950

L1 Misses

Figure 4.2: Result of running the simple algorithm with pointer chasing on
an Intel Intel Core 2 Duo E6750 (32kB L1 Cache)

• Non-blocking caches:

• Out-of-order execution:

• Prefetching:

• Other optimizations like way-prediction:

To minimize the e↵ects of non-blocking caches and out-of-order execution,
we can we serialize memory accesses by using a form of “pointer chasing”
where each memory location contains the address of the next access (for more
details on this see section x).

Figure 4.2 shows the result of this modification. Now, a slight jump in the
diagram for the time based approach is visible. But it is hard to find the
exact location of the jump. Moreover, there is also already a small jump
between 31kB and 32kB in the left diagram.

The following algorithm shows our first approach at inferring the associativ-
ity.

The algorithm uses the fact that the cache size is always a multiple of the
way size. Thus, when accessing the memory with a stride of cache size many
bytes, all accesses map to the same cache set. If curAssoc exceeds the actual
associativity, the cache can no longer store all accessed memory locations,
and so we expect to see a jump in the number of misses.

Figures 4.3 and 4.4 show the result of running this algorithm on the same
architecture as above, both with and without pointer chasing.

14

Capacity = 32 KB

Way Size = 4 KB

|Misses|

|Size|

Jan Reineke, Saarland 30

Replacement Policy

Approach inspired by methods to learn finite
automata. Heavily specialized to problem domain.

Jan Reineke, Saarland 31

Replacement Policy

Approach inspired by methods to learn finite
automata. Heavily specialized to problem domain.

a b
c d
e f

d c
a b
e f

d

x e
d c
a b

x

More information: http://embedded.cs.uni-saarland.de/chi.php

Discovered to our knowledge undocumented
policy of the Intel Atom D525:

Jan Reineke, Saarland 32

Modeling Challenge: Future Work

Extend automation to other parts of the
microarchitecture:
¢  Translation lookaside buffers, branch

predictors
¢  Shared caches in multicores including their

coherency protocols
¢  Out-of-order pipelines?

Jan Reineke, Saarland 33

The Analysis Challenge

Precise & Efficient
Timing Analysis

Our Vision: PRET Machines

PREcision-Timed processors: Performance & Predicability

+ = PRET

(Image: John Harrison’s H4, first clock to solve longitude problem)

Precision-Timed (PRET) Machines – p. 11/19

Timing
Model

Micro-
architecture

?	
 !	

1. INTRODUCTION

WCETH(P) := max

i2Inputs
max

h2States(H)
ETH(P, i, h)

2. REFERENCES

Consider all
possible
program
inputs

Consider all
possible initial
states of the

hardware

Jan Reineke, Saarland 34

The Analysis Challenge

1. INTRODUCTION

WCETH(P) := max

i2Inputs
max

h2States(H)
ETH(P, i, h)

2. REFERENCES

Consider all
possible
program
inputs

Consider all
possible initial
states of the

hardware

Explicitly evaluating ET for all inputs and all
hardware states is not feasible in practice:
¢  There are simply too many.
è  Need for abstraction and thus approximation!

Jan Reineke, Saarland 35

The Analysis Challenge:
State of the Art
Component Analysis Status

Caches,
Branch Target
Buffers

Precise & efficient abstractions, for
•  LRU [Ferdinand, 1999]
Not-so-precise but efficient abstractions, for
•  FIFO, PLRU, MRU [Grund and Reineke,

2008-2011]

Complex
Pipelines

Precise but very inefficient; little abstraction
 Major challenge: timing anomalies

Shared
resources, e.g.
busses, shared
caches, DRAM

No realistic approaches yet
 Major challenge: interference between
hardware threads
 à execution time depends on corunning tasks

Jan Reineke, Saarland 36

A

A

Resource 1

Resource 2

Resource 1

Resource 2

C

B C

B

D E

D E

Scheduling Anomaly

Timing Anomalies

Timing Anomaly =
Local worst-case does not imply Global worst-case

Jan Reineke, Saarland 37

Timing Anomalies

Timing Anomaly =
Local worst-case does not imply Global worst-case

A

A

Cache Miss

Cache Hit

C

Branch Condition
Evaluated

Prefetch B - Miss C

Speculation Anomaly

Jan Reineke, Saarland 38

The Design Challenge

Wanted:
Multi-/many-core architecture with
¢  No timing anomalies
à  precise & efficient analysis of individual cores
¢  Temporal isolation between cores
à  independent/incremental development & analysis

 and high performance!

Jan Reineke, Saarland 39

Approaches to the Design Challenge

At the level of individual cores:
¢  Simple in-order pipelines, with static or no

branch prediction
¢  Scratchpad Memories or LRU Caches

Software-
controlled

caches

Jan Reineke, Saarland 40

Approaches to the Design Challenge

For resources shared among multiple cores:
¢  Temporal partitioning, e.g.

l  TDMA arbitration of buses, shared memories
l  Thread-interleaved pipeline in PRET

¢  Spatial partitioning, e.g.
l  Partition shared caches
l  Partition shared DRAM

à  Temporal isolation

Jan Reineke, Saarland 41

Design Challenge: Predictable Pipelining

from Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 2007.

Pipeline It!

Hennessey and Patterson, Computer Architecture: A Quantitative Approach, 2007.

Jan Reineke, Saarland 42

Pipelining: Hazards

from Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 2007.

Great Except for Hazards

Hennessey and Patterson, Computer Architecture: A Quantitative Approach, 2007.

Jan Reineke, Saarland 43

Forwarding helps, but not all the time…
...But It Does Not Solve Everything...

LD R1, 45(r2)

DADD R5, R1, R7

BE R5, R3, R0

ST R5, 48(R2)

Unpipelined F D E M W F D E M W F D E M W F D E M W

F D E M W

The Dream F D E M W

F D E M W

F D E M W

F D E M W

The Reality F D E M W Memory Hazard

F D E M W Data Hazard

F D E M W Branch Hazard

Jan Reineke, Saarland 44

Solution: PTARM Thread-interleaved Pipelines
[Lickly et al., CASES 2008]

Our Solution: Thread-Interleaved Pipelines

+

An old idea from the 1960s

T1: F D E M W F D E M W

T2: F D E M W F D E M W

T3: F D E M W F D E M W

T4: F D E M W F D E M W

T5: F D E M W F D E M W

But what about memory?

Lee and Messerschmitt,
Pipeline Interleaved
Programmable DSPs,
ASSP-35(9), 1987.

Our Solution: Thread-Interleaved Pipelines

+

An old idea from the 1960s

T1: F D E M W F D E M W

T2: F D E M W F D E M W

T3: F D E M W F D E M W

T4: F D E M W F D E M W

T5: F D E M W F D E M W

But what about memory?

Lee and Messerschmitt,
Pipeline Interleaved
Programmable DSPs,
ASSP-35(9), 1987.

Each thread occupies only one stage of the pipeline at a time
 à No hazards; perfect utilization of pipeline
 à Simple hardware implementation (no forwarding, etc.)
 à Each instruction takes the same amount of time
 à Temporal isolation between different hardware threads

Drawback: reduced single-thread performance

Jan Reineke, Saarland 45

Design Challenge: DRAM Controller

Translates sequences of memory accesses by Clients (CPUs and I/O) into
legal sequences of DRAM commands

l  Needs to obey all timing constraints
l  Needs to insert refresh commands sufficiently often
l  Needs to translate “physical” memory addresses into row/column/

bank tuples

CPU1

CPU1

I/O

...

DRAM
Module

Interconnect
+ Arbitration

Memory
Controller

Jan Reineke, Saarland 46

Dynamic RAM Timing Constraints

DIMMaddr+cmd

chip select 0

16

 data

chip select 1

x16

Device

16

 data

16

 data

16

 data

x16

Device

x16

Device

x16

Device

x16

Device

x16

Device

x16

Device

x16

Device

64

data

Rank 0 Rank 1

address

I/
O

 R
e

g
is

te
rs

+

 D
a

ta
 I

/OAddress
Register

Control

Logic

Mode
Register

16

data

command

chip select

DRAM Device

BankBankBankBank
Row

Address
Mux

Refresh
Counter

I/O
Gating

DRAM
Array

R
o
w

 D
e
c
o
d
e
r

Sense Amplifiers

and Row Buffer

Column Decoder/
Multiplexer

R
o

w

A
d

d
re

s
s

Bank

CapacitorBit line

Word line

Transistor

Capacitor

DRAM Memory Controllers have to conform to different timing constraints
that define minimal distances between consecutive DRAM commands.

Almost all of these constraints are due to the sharing of resources at
different levels of the hierarchy:

Needs to insert
refresh
commands
sufficiently often

Rows within a
bank share
sense amplifiers

Banks within a
DRAM device
share I/O gating
and control logic

Different ranks
share data/address/
command busses

Jan Reineke, Saarland 47

General-Purpose DRAM Controllers

¢  Schedule DRAM commands dynamically
¢  Timing hard to predict even for single client:

l  Timing of request depends on past requests:
•  Request to same/different bank?
•  Request to open/closed row within bank?
•  Controller might reorder requests to minimize latency

l  Controllers dynamically schedule refreshes
¢  No temporal isolation. Timing depends on

behavior of other clients:
l  They influence sequence of “past requests”
l  Arbitration may or may not provide guarantees

Jan Reineke, Saarland 48

Thread 2

Thread 1

General-Purpose DRAM Controllers

Load
B1.R3.C2

Load
B2.R4.C3

Store
B4.R3.C5

Arbitration

Memory
Controller

Load
B3.R3.C2

Load
B3.R5.C3

Store
B2.R3.C5

?Load
B1.R3.C2

Load
B3.R3.C2

Load
B2.R4.C3

Store
B4.R3.C5

Load
B3.R5.C3

Store
B2.R3.C5

Jan Reineke, Saarland 49

Thread 2

Thread 1

General-Purpose DRAM Controllers

Load
B1.R3.C2

Load
B2.R4.C3

Store
B4.R3.C5

Arbitration

Memory
Controller

Load
B3.R3.C2

Load
B3.R5.C3

Store
B2.R3.C5

?Load
B1.R3.C2

Load
B3.R3.C2

Load
B2.R4.C3

Store
B4.R3.C5

Load
B3.R5.C3

Store
B2.R3.C5

Jan Reineke, Saarland 50

General-Purpose DRAM Controllers

Load
B1.R3.C2

Load
B1.R4.C3

Load
B1.R3.C5 …

RAS
B1.R3

CAS
B1.C2

… RAS
B1.R4

CAS
B1.C3

… RAS
B1.R3

CAS
B1.C5

…

RAS
B1.R3

CAS
B1.C2

… RAS
B1.R4

CAS
B1.C3

… CAS
B1.C5

Memory
Controller

?

Jan Reineke, Saarland 51

PRET DRAM Controller: Three Innovations
[Reineke et al., CODES+ISSS 2011]

¢  Expose internal structure of DRAM devices:
l  Expose individual banks within DRAM device as

multiple independent resources

¢  Defer refreshes to the end of transactions
l  Allows to hide refresh latency

¢  Perform refreshes “manually”:
l  Replace standard refresh command with multiple reads

CPU1

CPU1

I/O

...

Interconnect

+ Arbitration

PRET DRAM

Controller DRAM

Module

DRAM

Module

DRAM

Module

DRAM

Bank

Jan Reineke, Saarland 52

PRET DRAM Controller: Exploiting
Internal Structure of DRAM Module

l  Consists of 4-8 banks in 1-2 ranks
•  Share only command and data bus, otherwise independent

l  Partition banks into four groups in alternating ranks
l  Cycle through groups in a time-triggered fashion

Bank
0

Bank
1

Bank
2

Bank
3

Rank 0:

Bank
0

Bank
1

Bank
2

Bank
3

Rank 1:

Jan Reineke, Saarland 53

PRET DRAM Controller: Exploiting
Internal Structure of DRAM Module

l  Consists of 4-8 banks in 1-2 ranks
•  Share only command and data bus, otherwise independent

l  Partition banks into four groups in alternating ranks
l  Cycle through groups in a time-triggered fashion

Bank
0

Bank
1

Bank
2

Bank
3

Rank 0:

Bank
0

Bank
1

Bank
2

Bank
3

Rank 1:

•  Successive accesses to
same group obey timing
constraints
•  Reads/writes to different
groups do not interfere

Jan Reineke, Saarland 54

PRET DRAM Controller: Exploiting
Internal Structure of DRAM Module

l  Consists of 4-8 banks in 1-2 ranks
•  Share only command and data bus, otherwise independent

l  Partition banks into four groups in alternating ranks
l  Cycle through groups in a time-triggered fashion

Bank
0

Bank
1

Bank
2

Bank
3

Rank 0:

Bank
0

Bank
1

Bank
2

Bank
3

Rank 1:

•  Successive accesses to
same group obey timing
constraints
•  Reads/writes to different
groups do not interfere

Provides four
independent and
predictable resources

Jan Reineke, Saarland 55

Conventional DRAM Controller (DRAMSim2)
vs PRET DRAM Controller:
Latency Evaluation

256 512 768 1,024 1,280 1,536 1,792 2,048
0

200

400

600

800 Benefit of burst length 8 over burst length 4

size of transfer [bytes]

la
te

nc
y

[c
yc

le
s]

Shared Predator, BL = 4, accounting for all refreshes
DLr(x): PRET, BL = 4, accounting for all refreshes
Shared Predator, BL = 8, accounting for all refreshes
DLr(x): PRET, BL = 8, accounting for all refreshes

Figure 8: Latencies of Predator and PRET for request sizes up
to 2KB under burst lengths 4 and 8.

5.4 Bandwidth
We describe the peak bandwidth achieved by the PRET DRAM

controller. In the case of the burst length being 4, disregarding
refreshes, we send out four CAS commands every 13 cycles. Each
CAS results in a transfer of a burst of size 8 ·4 = 32 bytes over the
period of two cycles5. The memory controller and the data bus are
running at a frequency of 200 MHz. So, disregarding refreshes the
controller would provide a bandwidth of 200 MHz· 4

13 · 32 bytes ⇥
1.969GB/s. We issue a refresh command in every 60th slot. This
reduces the available bandwidth to 59

60 · 1.969GB/s ⇥ 1.936GB/s,
which are 60.5% of the data bus bandwidth.

For burst length 8, we transfer 8 · 8 = 64 bytes every five cycles
and perform a refresh in every 39th slot, resulting in an available
bandwidth of 200MHz · 38

39 ·
1
5 · 64 bytes ⇥ 2.494GB/s, or 77.95%

of the data bus bandwidth.

6. EXPERIMENTAL EVALUATION
We present experimental results to verify that the design of the

PRET DRAM controller honors the derived analytical bounds. We
have implemented the PRET DRAM controller, and compare it
via simulation with a conventional DRAM controller. We use the
PTARM simulator6 and extend it to interface with both memory
controllers to run synthetic benchmarks that simulate memory ac-
tivity. The PTARM simulator is a C++ simulator that simulates
the PRET architecture with four hardware threads running through
a thread-interleaved pipeline. We use a C++ wrapper around the
DRAMSim2 simulator [17] to simulate memory access latencies
from a conventional DRAM controller. A first-come, first-served
queuing scheme is used to queue up memory requests to the DRAM-
Sim2 simulator. The PRET DRAM controller was also written in
C++ based on the description in Section 4. The benchmarks we use
are all written in C, and compiled using the GNU ARM cross com-
piler. The DMA transfer latencies that are measured begin when
the DMA unit issues its first request and end when the last request
from the DMA unit is completed.

6.1 Experimental Results
We setup our experiment to show the effects of interference on

memory access latency for both memory controllers. We first setup
our main thread to run different programs that initiate fixed-size

5In double-data rate (DDR) memory two transfers are performed
per clock cycle.
6The PTARM simulator is available for download at http://
chess.eecs.berkeley.edu/pret/release/ptarm.

0 0.5 1 1.5 2 2.5 3
0

1,000

2,000

3,000

Interference [# of other threads occupied]

la
te

nc
y

[c
yc

le
s]

4096B transfers, conventional controller
4096B transfers, PRET controller

1024B transfers, conventional controller
1024B transfers, PRET controller

Figure 9: Latencies of conventional and PRET memory con-
troller with varying interference from other threads.

DMA transfers (256, 512, 1024, 2048 and 4096 bytes) at random
intervals. The DMA latencies of the main thread is what is mea-
sured and shown in Figure 9 and Figure 10. To introduce interfer-
ence within the system, we run a combination of two programs on
the other hardware threads in PTARM simulator. The first program
continuously issues DMA requests of large size (4096 bytes) in or-
der to fully utilize the memory bandwidth. The second program
utilizes half the memory bandwidth by issuing DMA requests of
size 4096 bytes half as frequently as the first program. In Figure 9,
we define thread occupancy on the x-axis as the memory bandwidth
occupied by the combination of all threads. 0.5 means we have one
thread running the second program along side the main thread. 1.0
means we have one thread running the first program along side the
main thread. 1.5 means we have one thread running the first pro-
gram, one thread running the second program, and both threads are
running along side the main thread, and so on. 3 is the maximum
we can achieve because the PTARM simulator has a total of four
hardware threads (the main thread occupies one of the four). We
measured the latency of each fixed size transfer for the main thread
to observe the transfer latency in the presence of interference from
memory requests by other threads.

In Figure 9, we show measurements taken from two different
DMA transfer sizes, 1024 and 4096 bytes. The marks in the figure
show the average latency measured over 1000 iterations. The error
bars above and below the marks show the worst-case and best-case
latencies of each transfer size over the same 1000 iterations. In both
cases, without any interference, the conventional DRAM controller
provides better access latencies. This is because without any inter-
ference, the conventional DRAM controller can often exploit row
locality and service requests immediately. The PRET DRAM con-
troller on the other hand uses the periodic pipelined access scheme,
thus even though no other threads are accessing memory, the mem-
ory requests still need to wait for their slot to get access to the
DRAM. However, as interference is gradually introduced, we ob-
serve increases in latency for the conventional DRAM controller.
This could be caused by the first-come, first-served buffer, or by
the internal queueing and handling of requests by DRAMSim2.
The PRET DRAM controller however is unaffected by the inter-
ference created by the other threads. In fact, the latency values
that were measured from the PRET DRAM controller remain the

0 1,000 2,000 3,000 4,000

0

1,000

2,000

3,000

transfer size [bytes]

av
er

ag
e

la
te

nc
y

[c
yc

le
s]

Conventional controller
PRET controller

Figure 10: Latencies of conventional and PRET memory con-
troller with maximum load by interfering threads and varying
transfer size.

same under all different thread occupancies. This demonstrates the
temporal isolation achieved by the PRET DRAM controller. Any
timing analysis on the memory latency for one thread only needs
to be done in the context of that thread. We also see the range of
memory latencies for the conventional DRAM controller increase
as the interference increases. But the range of access latencies for
the PRET DRAM controller not only remains the same through-
out, but is almost negligible for both transfer sizes7. This shows the
predictable nature of the PRET DRAM controller.

In Figure 10 we show the memory latencies under full load (thread
occupancy of 3) for different transfer sizes. This figure shows that
under maximum interference from the other hardware threads, the
PRET DRAM controller is less affected by interference even as
transfer sizes increase. More importantly, when we compare the
numbers from Figure 10 to Figure 8, we confirm that the theoret-
ical bandwidth calculations hold even under maximum bandwidth
stress from the other threads.

7. CONCLUSIONS AND FUTURE WORK
In this paper we presented a DRAM controller design that is

predictable with significantly reduced worst-case access latencies.
Our approach views the DRAM device as multiple independent re-
sources that are accessed in a periodic pipelined fashion. This elim-
inates contention for shared resources within the device to provide
temporally predictable and isolated memory access latencies. We
refresh the DRAM through row accesses instead of standard re-
freshes. This results in improved worst-case access latency at a
slight loss of bandwidth. Latency bounds for our memory con-
troller, determined analytically and confirmed through simulation,
show that our controller is both timing predictable and provides
temporal isolation for memory accesses from different resources.

Thought-provoking challenges remain in the development of an
efficient, yet predictable memory hierarchy. In conventional multi-
core architectures, local memories such as caches or scratchpads
are private, while access to the DRAM is shared. However, in
the thread-interleaved PTARM, the instruction and data scratchpad
memories are shared, while access to the DRAM is not. We have
demonstrated the advantages of privatizing parts of the DRAM for
worst-case latency. It will be interesting to explore the consequences
of the inverted sharing structure on the programming model.

We envision adding instructions to the PTARM that allow threads
to pass ownership of DRAM resources to other threads. This would,

7The range (worst-case latency - best-case latency) was approxi-
mately 90ns for 4096 bytes transfers and approximately 20ns for
1024 byte transfers.

for instance, allow for extremely efficient double-buffering imple-
mentations. We also plan to develop new scratchpad allocation
techniques, which use the PTARM’s DMA units to hide memory
latencies, and which take into account the transfer-size dependent
latency bounds derived in this paper.

8. REFERENCES
[1] B. Akesson, K. Goossens, and M. Ringhofer, “Predator: a

predictable SDRAM memory controller,” in CODES+ISSS.
ACM, 2007, pp. 251–256.

[2] B. Akesson, “Predictable and composable system-on-chip
memory controllers,” Ph.D. dissertation, Eindhoven
University of Technology, Feb. 2010.

[3] M. Paolieri, E. Quiñones, F. Cazorla, and M. Valero, “An
analyzable memory controller for hard real-time CMPs,”
IEEE Embedded Systems Letters, vol. 1, no. 4, pp. 86–90,
2010.

[4] I. Liu, J. Reineke, and E. A. Lee, “A PRET architecture
supporting concurrent programs with composable timing
properties,” in 44th Asilomar Conference on Signals,
Systems, and Computers, November 2010.

[5] S. A. Edwards and E. A. Lee, “The case for the precision
timed (PRET) machine,” in DAC. New York, NY, USA:
ACM, 2007, pp. 264–265.

[6] D. Bui, E. A. Lee, I. Liu, H. D. Patel, and J. Reineke,
“Temporal isolation on multiprocessing architectures,” in
DAC. ACM, June 2011.

[7] B. Jacob, S. W. Ng, and D. T. Wang, Memory Systems:
Cache, DRAM, Disk. Morgan Kaufmann Publishers,
September 2007.

[8] JEDEC, DDR2 SDRAM SPECIFICATION JESD79-2E.,
2008.

[9] B. Akesson, L. Steffens, E. Strooisma, and K. Goossens,
“Real-time scheduling using credit-controlled static-priority
arbitration,” in RTCSA, Aug. 2008, pp. 3 –14.

[10] B. Bhat and F. Mueller, “Making DRAM refresh
predictable,” in ECRTS, 2010, pp. 145–154.

[11] P. Atanassov and P. Puschner, “Impact of DRAM refresh on
the execution time of real-time tasks,” in Proc. IEEE
International Workshop on Application of Reliable
Computing and Communication, Dec. 2001, pp. 29–34.

[12] R. Wilhelm et al., “Memory hierarchies, pipelines, and buses
for future architectures in time-critical embedded systems,”
IEEE TCAD, vol. 28, no. 7, pp. 966–978, 2009.

[13] R. Bourgade, C. Ballabriga, H. Cassé, C. Rochange, and
P. Sainrat, “Accurate analysis of memory latencies for
WCET estimation,” in RTNS, Oct. 2008.

[14] T. Ungerer et al., “MERASA: Multi-core execution of hard
real-time applications supporting analysability,” IEEE Micro,
vol. 99, 2010.

[15] M. Schoeberl, “A java processor architecture for embedded
real-time systems,” Journal of Systems Architecture, vol. 54,
no. 1-2, pp. 265 – 286, 2008.

[16] A. Hansson, K. Goossens, M. Bekooij, and J. Huisken,
“CoMPSoC: A template for composable and predictable
multi-processor system on chips,” ACM TODAES, vol. 14,
no. 1, pp. 1–24, 2009.

[17] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2:
A cycle accurate memory system simulator,” Computer
Architecture Letters, vol. 10, no. 1, pp. 16 –19, Jan. 2011.

Varying interference
for fixed transfer size:

Varying transfer size at
maximal interference:

More information:
http://chess.eecs.berkeley.edu/pret/

Jan Reineke, Saarland 56

Emerging Challenge:
Microarchitecture Selection & Configuration

Embedded Software

Timing Requirements

with ?	

Family of Microarchitectures

= Platform

Jan Reineke, Saarland 57

Emerging Challenge:
Microarchitecture Selection & Configuration

Embedded Software

Timing Requirements

with ?	

Family of Microarchitectures

= Platform

Choices:
•  Processor frequency
•  Sizes and latencies

of local memories
•  Latency and

bandwidth of
interconnect

•  Presence of floating-
point unit

•  …

Jan Reineke, Saarland 58

Emerging Challenge:
Microarchitecture Selection & Configuration

Embedded Software

Timing Requirements

with ?	

Family of Microarchitectures

= Platform

Choices:
•  Processor frequency
•  Sizes and latencies

of local memories
•  Latency and

bandwidth of
interconnect

•  Presence of floating-
point unit

•  …

Select a microarchitecture that
a)  satisfies all timing requirements, and
b)  minimizes cost/size/energy.

Jan Reineke, Saarland 59

Conclusions

Challenges in
modeling
analysis
design
remain.

Jan Reineke, Saarland 60

Conclusions

Challenges in
modeling
analysis
design
remain.

Progress based on
automation
abstraction
partitioning

has been made.

Jan Reineke, Saarland 61

Conclusions

Challenges in
modeling
analysis
design
remain.

Progress based on
automation
abstraction
partitioning

has been made.

Thank you for your attention!

