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The Context: Hard Real-Time Systems

Safety-critical applications:
o Avionics, automotive, train industries, manufacturing

Side airbag in car Crankshaft-synchronous tasks
Reaction in < 10 msec Reaction in < 45 microsec

o Embedded controllers must finish their tasks within
given time bounds.

o Developers would like to know the Worst-Case
Execution Time (WCET) to give a guarantee.
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// Perform the convolution.

for (int 1=0; 1i<10; i++) |
x[1i] = al[i]l*b[j-1i];
// Notify listeners.
notify(x[1i]);

}

Embedded Software

Microarchitecture

The Timing Analysis Problem

‘ Timing Requirements

Jan Reineke, Saarland 3



What does the execution time depend on?

o The input, determining which path is taken

through the program.

o The state of the hardware platform:
Due to caches, pipelining, speculation, etc.
o Interference from the environment:

External interference as seen from the analyzed
task on shared busses, caches, memory.

Simple
CPU

Memory

Jan Reineke, Saarland 4



What does the execution time depend on?

o The input, determining which path is taken
through the program.
o The state of the hardware platform:
Due to caches, pipelining, speculation, etc.
o Interference from the environment:

External interference as seen from the analyzed
task on shared busses, caches, memory.

Complex CPU
(out-of-order ,
execution, <> L1 <> Main
Cache Memory
branch

prediction, etc.)

Jan Reineke, Saarland 5



What does the execution time depend on?

o The input, determining which path is taken
through the program.
o The state of the hardware platform:
Due to caches, pipelining, speculation, etc.
o Interference from the environment:

External interference as seen from the analyzed

task on shared busses, caches, memory.
A

Complex L1

cPu ™| cache [*™

L2 Main
Cache Memory

Complex L1
CPU Cache

+wi) Reineke, Saarland 6



Example of Influence of
Microarchitectural State

' LOAD r2, a
x=a+b; ——| LOAD r1, b
ADD r3,r2,r1

J
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Example of Influence of Corunning Tasks
In Multicores

Radojkovic et al. (ACM TACO, 2012) on Intel Atom
and Intel Core 2 Quad:

up to 14x slow-down due to interference
on shared L2 cache and memory controller
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Challenges

1. Modeling

How to construct sound timing models?

2. Analysis
How to precisely & efficiently bound the WCET?

3. Design

How to design microarchitectures that enable
precise & efficient WCET analysis?
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The Modeling Challenge

Timing
Model

| I B i
i T 35
nsramp
= 8
ten

Timing model = Formal specification of
microarchitecture’s timing

Incorrect timing model
—> possibly incorrect WCET bound.
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Current Process of Deriving Timing Model

Timing
Model
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Current Process of Deriving Timing Model

Timing
Model

> Time-consuming, and
> error-prone.
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1. Future Process of Deriving Timing Model

VHDL Timing
Model ‘ Model
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1. Future Process of Deriving Timing Model

VHDL Timing
Model ‘ Model

Derive timing model automatically from formal
specification of microarchitecture.

> Less manual effort, thus less time-consuming, and
> provably correct.
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2. Future Process of Deriving Timing Model

A

| Perform i

| Timin
B measurements on W Infer model - M dgl

hardware ode

U
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2. Future Process of Deriving Timing Model

Perform

| Timin
Il IR measurements on [l Infer model - M dgl
e hardware ode

U

Derive timing model automatically from measurements
on the hardware using ideas from automata learning.

> No manual effort, and
> (under certain assumptions) provably correct.
> Also useful to validate assumptions about microarch.
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Proof-of-concept:
Automatic Modeling of the Cache Hierarchy

o Cache Model is important part of Timing Model

o Can be characterized by a few parameters:
ABC: associativity, block size, capacity
Replacement policy

<B = Block Size—

I Tag Data Tag Data Tag Data
| Tag Data Tag Data Tag Data
A = Associativity Tag Data Tag Data Tag Data

Tag Data Tag Data Tag Data

< N = Number of Cache Sets >

chi [Abel and Reineke, RTAS 2013] derives all of
these parameters fully automatically.
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Example: Intel Core 2 Duo E6750,
L1 Data Cache

|Misses| soo00
80000

70000 /

60000 /

50000 //

20000 / |1 Misses
30000 /

20000 /

10000 /

0

1234567 8 91011121314151617181920212223242526272829303132333435363738394041424344454647484950 |SIZe|
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Example: Intel Core 2 Duo E6750,
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Example: Intel Core 2 Duo E6750,

L1 Data Cach
Way Size
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e
=4 KB
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xxxxxxxxxxxxxxx
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t

Capacity = 32 KB
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Replacement Policy

Approach inspired by methods to learn finite
automata. Heavily specialized to problem domain.
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Replacement Policy

Approach inspired by methods to learn finite
automata. Heavily specialized to problem domain.

Discovered to our knowledge undocumented
policy of the Intel Atom D525:

d X
N N

ab dc X e
cd >< ab%dc
ef |—>| ef ab

More information: http.//embedded.cs.uni-saarland.de/chi.php
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Modeling Challenge: Future Work

Extend automation to other parts of the
microarchitecture:

o Translation lookaside buffers, branch
predictors

o Shared caches in multicores including their
coherency protocols

o Out-of-order pipelines?
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The Analysis Challenge

P’

[

:, Timing ‘ Precise & Efficient
architecture g Model Timing Analysis
LT - SEEIEE

Consider all Consider all
possible possible initial
program States of the

inputs hardware

\

WCETH(P) := max max FTgx(P,t,h)

1€ Inputs he€ States(H)
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The Analysis Challenge

Consider all Consider all

possible possible initial
program states of the
inputs hardware

\

WCETH(P) := max max FETu(P,t,h)

1€ Inputs h€ States(H)

Explicitly evaluating ET for all inputs and all
hardware states is not feasible in practice:

o There are simply too many.
> Need for abstraction and thus approximation!
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The Analysis Challenge:
State of the Art

Component Analysis Status

Caches, Precise & efficient abstractions, for

Branch Target  LRU [Ferdinand, 1999]

Buffers Not-so-precise but efficient abstractions, for
 FIFO, PLRU, MRU [Grund and Reineke,

2008-2011]

Complex Precise but very inefficient; little abstraction

Pipelines Major challenge: timing anomalies

Shared No realistic approaches yet

resources, e.g.
busses, shared
caches, DRAM

Major challenge: interference between
hardware threads
—> execution time depends on corunning tasks

Jan Reineke, Saarland
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Timing Anomalies

Timing Anomaly =
Local worst-case does not imply Global worst-case

Resource 1 % )
Resource 2

Resource 1 A % )
Resource 2

Scheduling Anomaly
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Timing Anomalies

Timing Anomaly =
Local worst-case does not imply Global worst-case

Branch Condition
Evaluated

|
|
Cache Hit C A %Prefetch B:- Miss I C )
i
Cache Miss C A :I C )
|
|

Speculation Anomaly
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The Design Challenge

Wanted:

Multi-/many-core architecture with
o No timing anomalies

> precise & efficient analysis of individual cores
o Temporal isolation between cores

> independent/incremental development & analysis
and high performance!
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Approaches to the Design Challenge

At the level of individual cores:

o Simple in-order pipelines, with static or no
branch prediction

o Scratchpad Memories or LRU Caches

)

Software-
controlled
caches
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Approaches to the Design Challenge

For resources shared among multiple cores:
o Temporal partitioning, e.g.
TDMA arbitration of buses, shared memories
Thread-interleaved pipeline in PRET
o Spatial partitioning, e.g.
Partition shared caches
Partition shared DRAM

> Temporal isolation
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PC

o

-

ID/EX

Instruction
memory

IF/ID
IRe.10
IR
11..15
IR > _
—e MEM/WB.IR Registers

16 @32

EX/MEM

Branch
taken

ALU

Data
memory

extend

Design Challenge: Predictable Pipelining

MEM/WB

from Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 2007.
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Pipelining: Hazards

Data Hazard (computed branch)

Control Hazard (conditional branch)
| IF/ID ID/EX EX/MEM MEM/WB
4
M
ADD u > Brlfnch
taken
X Zero? > —
F IRe.10 _
ol N )
Instruction| IR L1 _ _— i
memmory 1 MEMwB.IR |Registers X ALU -
M Data
e > u memory M
5 u
Y, .
16‘ Sign- 32
extend
Data Hazard (IR) I

Data Hazard (Memory read/ALU result)

from Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 2007.
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Forwarding helps, but not all the time...

LD R1, 45(r2)
DADD R5, R1, RY
BE R5, R3, RO
ST R5, 48(R2)

Unpipelined  [HRIENMNEERENMWIERNENMNEEENMD

EHRENMW
The Dream 'F|D|E|M|wW
EHRENMW
EHRENMW

F[D[E MW,
The Reality F DI E MW Memory Hazard
E Em Data Hazard
FBRIEYNY Branch Hazard
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Solution: PTARM Thread-interleaved Pipelines
[Lickly et al., CASES 2008]

T1: ERENMNERENM

72:  ERENMNERENM

LSS F (D E M|W|F D E MW

T4: FID/EIMW|FIDIEM|W
T5: FIDIEIMIW|F D E MW

Each thread occupies only one stage of the pipeline at a time
- No hazards; perfect utilization of pipeline

- Simple hardware implementation (no forwarding, etc.)

- Each instruction takes the same amount of time

- Temporal isolation between different hardware threads

Drawback: reduced single-thread performance
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Design Challenge: DRAM Controller

Translates sequences of memory accesses by Clients (CPUs and I/O) into
legal sequences of DRAM commands

Needs to obey all timing constraints
Needs to insert refresh commands sufficiently often
Needs to translate “physical” memory addresses into row/column/

bank tuples
CPUA1
Interconnect Memory DRAM
CPU1 |[«%| +Arbitration Controller Module
1/O
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Dynamic RAM Timing Constraints

DRAM Memory Controllers have to conform to different timing constraints
that define minimal distances between consecutive DRAM commands.

Almost all of these constraints are due to the sharing of resources at
different levels of the hierarchy:

Word line

/

L

Bit line T <— Capacitor
N |

Transistor T

Needs to insert
refresh
commands
sufficiently often

Bank =
5 H
-8 ¢& DRAM
5 ag=
€3 NE Array
il =

Sense Amplifiers
and Row Buffer

T
er)

Rows within a
bank share
sense amplifiers

aaaaaaaa DIMM
__________________ :
DRAM Device A T
Control Ja Device ’-l\ eeeeee a
Logi \ LN H |
|
ogle Bank T ' :
Row —| ! !
Address [} 1
Mode —1 1
Register Mux n e |22 ( eeeeee : eeeeee 1:'
% | |
|
Reffesh - : 1
Counter I | — |
» / data , [ TN /! oevice <+
80 L 1
Addres: ‘3 = fata |
Regist 110 28 #3 ] |
Gating |7 €& H
o+
A =" || 7 Loty L il oveviee [} 4] vevie 1
ccccccccccc r
ccccccccccc
Rank 0 Rank 1
____________________

Banks within a
DRAM device
Share I/O gating
and control logic

Different ranks
share data/address/
command busses
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General-Purpose DRAM Controllers

o Schedule DRAM commands dynamically

o Timing hard to predict even for single client:

Timing of request depends on past requests:
Request to same/different bank?

Request to open/closed row within bank?
Controller might reorder requests to minimize latency

Controllers dynamically schedule refreshes

o No temporal isolation. Timing depends on
behavior of other clients:

They influence sequence of “past requests”
Arbitration may or may not provide guarantees
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General-Purpose DRAM Controllers

Thread 2

»
Thread 1
Load Load Store
B1.R3.C2 B2.R4.C3 B4.R3.C5

Load Load Store
B3.R3.C2 B3.R5.C3 B2.R3.C5

Load
B1.R3.C2

Load
B3.R3.C2

Arbitration

v

Load Store
B2.R4.C3 B4.R3.C5
Memory
Controller

4

Load Store 7
B3.R5.C3 B2.R3.C5
| )
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® General-Purpose DRAM Controllers
Thread 1 Thread 2
Load Load Store Load Load Store
B1.R3.C2 B2.R4.C3 B4.R3.C5 B3.R3.C2 B3.R5.C3 B2.R3.C5
Arbitration
Load Load Load Load Store Store 7
B3.R3.C2 B1.R3.C2 B2.R4.C3 B3.R5.C3 B4.R3.C5 B2.R3.C5
| )

Memory
Controller

4
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Load
B1.R3.C2

RAS
B1.R3

RAS
B1.R3

Memory
Controller

CAS
B1.C2

CAS
B1.C2

A 4

General-Purpose DRAM Controllers

Load
B1.R4.C3

CAS
B1.C3
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PRET DRAM Controller: Three Innovations
[Reineke et al., CODES+ISSS 2011}

o Expose internal structure of DRAM devices:
Expose individual banks within DRAM device as

multiple independent resources

CPU1

CPU1

I/0

¥a

<P

Vad

Interconnect
+ Arbitration

tii

PRET DRAM
Controller

DRAM
Bank

—

o Defer refreshes to the end of transactions
Allows to hide refresh latency
o Perform refreshes “manually”:
Replace standard refresh command with multiple reads
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PRET DRAM Controller: Exploiting

@
Internal Structure of DRAM Module
Consists of 4-8 banks in 1-2 ranks
Share only command and data bus, otherwise independent
Partition banks into four groups in alternating ranks
Cycle through groups in a time-triggered fashion
Rank 0:
Bank Bank Bank Bank
0 1 2 3
Rank 1: Group 3
Bank Bank Bank Bank
0 1 2 3
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« Successive accesses to
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PRET DRAM Controller: Exploiting

@
Internal Structure of DRAM Module
Consists of 4-8 banks in 1-2 ranks
Share only command and data bus, otherwise independent
Partition banks into four groups in alternating ranks
Cycle through groups in a time-triggered fashion
e Successive accesses to
Rank 0: same group obey timing
constraints
B%”k Ba”k Ba”k Bé;”k  Reads/writes to different
groups do not interfere
Rank 1:
an ‘ Group 3 Erowdes four
Bank Bank Bank Bank Inde[.) endent and
0 1 2 3 predictable resources

Jan Reineke, Saarland 54



Conventional DRAM Controller (DRAMSIm2)
vs PRET DRAM Controller:
Latency Evaluation

latency [cycles]

Varying interference
for fixed transfer size:

Varying transfer size at
maximal interference:

I I I I
3.000 | 3,000 |- | —— Conventional controller |
’ _ —o— PRET controller
g
= 2.000 .
2,000 - = A B
B - - _ | =
@,_4/§/$/ : :
L
< | |
1,000 |- = P 1,000
o0
I z 5
8 = >
< | |
0 L | | | | | | | — 0 | | | | |
0 0.5 1 1.5 2 2.5 3 0 1,000 2,000 3,000 4,000

Interference [# of other threads occupied]

—o— 40968 transfers, conventional controller
—— 40968 transfers, PRET controller
—o— 1024B transfers, conventional controller
—=— 1024B transfers, PRET controller

transfer size [bytes]

More information:
http.//chess.eecs.berkeley.edu/pret/
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Emerging Challenge:
Microarchitecture Selection & Configuration

// Perform the convolution.

for (int 1=0; i<10; i++) {
x[1i] = al[i]l*b[j-1i];
// Notify listeners.
notify(x[1i]);

}

Embedded Software

Family of Microarchitectures

Timing Requirements = Flatiorm
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Emerging Challenge:
Microarchitecture Selection & Configuration

// Perform the convolution.

for (int i=0; i<10; i++) { ChOICeS
x[1] = alil*b[j-1i]; ’
// Notify listeners. * Processor frequency

notify (x[il);  Sizes and latencies

of local memories
 Latency and
bandwidth of
Interconnect
* Presence of floating-
point unit

}
Embedded Software

Fallllly Ul iviiorodrorimnecoturco

Timing Requirements = Flatiorm
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Emerging Challenge:
Microarchitecture Selection & Configuration

// Perform the convolution.

for (int i=0; i<10; i++) { ChOIceS'
x[1] = al[i]*b[J-1]; :
// I?Iotify'listeners. - Processor frequency
} Bk My | . Sjzes and latencies
o Select a microarchitecture that 2S

a) satisfies all timing requirements, and
b) minimizes cost/size/energy.

- * Presence of floating-

point unit

Fallllly Ul iviiorodrorimnecoturco

Timing Requirements = Flatiorm
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Conclusions

Challenges in
modeling
analysis
design
remain.
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Conclusions

Challenges in Progress based on
modeling > automation
analysis > abstraction
design > partitioning
remain. has been made.

Thank you for your attention!
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