
Hardware-Software Contracts
for Secure Speculation

Jan Reineke @

Joint work with
Marco Guarnieri, Pepe Vila @ IMDEA Software, Madrid
Boris Köpf @ Microsoft Research, Cambridge, UK

Supported by Intel Strategic Research Alliance (ISRA)  
“Information Flow Tracking across the Hardware-Software Boundary”

2

Exploits speculative execution to
leak sensitive information

Almost all modern processors

 are affected

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, Y. Yarom —  
Spectre Attacks: Exploiting Speculative Execution — S&P 2019

3

Countermeasures

Software-level countermeasures

✓ Example: insert “fences” to selectively terminate speculative execution

✓ Implemented in major compilers (Microsoft Visual C++, Intel ICC, Clang)

Hardware-level countermeasures

✓ Disabling speculation

✓ Delaying speculative loads

✓ Taint tracking of speculative data: STT & NDA

Hardware-level countermeasures

Goals

5

2. Introduce hardware-software contracts  
 to capture their security guarantees

3. Requirements for secure programming based 
 on hardware-software contracts  

1. Capture hardware-level countermeasures in  
 a unifying framework

Outline

6

1. Speculative Execution Attacks 

2. Hardware-level Countermeasures

3. Hardware-Software Contracts 

4. Requirements for Secure Programming

1. Speculative Execution Attacks

7

Microarchitecture
101

8

Core
Executes instructions

Parallelism inside and
across cores

 Cache
 Fast but small memory  
 storing  
 recently accessed data

Die shot of AMD “Barcelona" Quad Core CPU

Background: Caches

9

? ?

Background: Assembly language

10

if (x < A_size)
 y = B[A[x]]

μAssembly = our “toy” assembly language

 c ⟵ x < A_size
 beqz c, END
L1: load t, A + x  
 load y, B + t
END:

Background: Speculative execution

• Predict instructions’ outcomes and speculatively continue execution 

• Rollback changes if speculation was wrong

Only architectural (ISA, “logical”) state,
not microarchitectural state

11

 c ⟵ x < A_size
 beqz c, END
L1: load t, A + x  
 load y, B + t
END:

Background: Branch prediction

12

Predictions based on
branch history &

program structure

Size of array A

Background: Reorder buffer
• Key hardware data structure for  

out-of-order and speculative execution

• Keeps track of “in-flight instructions”

• Example:

13

Entry Instruction Control Dep.

0: c ⟵ x < A_size -

1: beqz c, END -

2: - -

3: - -

… … …

 c ⟵ x < A_size
 beqz c, END
L1: load t, A + x  
 load y, B + t
END:

Entry Instruction Control Dep.

0: c ⟵ x < A_size -

1: beqz c, END -

2: load t, A + x 2

3: - -

… … …

Speculative  
Instruction

Fetch

Background: Reorder buffer
• Key hardware data structure for  

out-of-order and speculative execution

• Keeps track of “in-flight instructions”

• Example:

14

Entry Instruction Control Dep.

0: c ⟵ x < A_size -

1: beqz c, END -

2: - -

3: - -

… … …

 c ⟵ x < A_size
 beqz c, END
L1: load t, A + x  
 load y, B + t
END:

Entry Instruction Control Dep.

0: c ⟵ x < A_size -

1: beqz c, END -

2: load t, A + x 2

3: load y, B + t 2

… … …

Speculative  
Instruction

Fetch
Entry Instruction Control Dep.

0: c ⟵ x < A_size -

1: beqz c, END -

2: load t, A + x 2

3: - -

… … …

Background: Reorder buffer
• Key hardware data structure for  

out-of-order and speculative execution

• Keeps track of “in-flight instructions”

• Example:

15

Entry Instruction Control Dep.

0: c ⟵ x < A_size -

1: beqz c, END -

2: - -

3: - -

… … …

 c ⟵ x < A_size
 beqz c, END
L1: load t, A + x  
 load y, B + t
END:

Entry Instruction Control Dep.

0: c ⟵ 0 -

1: beqz 0, END -

2: load t, A + x 2

3: load y, B + t 2

… … …

Evaluate
x < A_size

Entry Instruction Control Dep.

0: c ⟵ x < A_size -

1: beqz c, END -

2: load t, A + x 2

3: - -

… … …

Entry Instruction Control Dep.

0: c ⟵ x < A_size -

1: beqz c, END -

2: load t, A + x 2

3: load y, B + t 2

… … …

Background: Reorder buffer
• Key hardware data structure for  

out-of-order and speculative execution

• Keeps track of “in-flight instructions”

• Example:

16

Entry Instruction Control Dep.

0: c ⟵ x < A_size -

1: beqz c, END -

2: - -

3: - -

… … …

 c ⟵ x < A_size
 beqz c, END
L1: load t, A + x  
 load y, B + t
END:

Entry Instruction Control Dep.

0: c ⟵ 0 -

1: beqz 0, END -

2: - -

3: - -

… … …

Rollback 
mis-speculation

Entry Instruction Control Dep.

0: c ⟵ x < A_size -

1: beqz c, END -

2: load t, A + x 2

3: - -

… … …

Entry Instruction Control Dep.

0: c ⟵ x < A_size -

1: beqz c, END -

2: load t, A + x 2

3: load y, B + t 2

… … …

Entry Instruction Control Dep.

0: c ⟵ 0 -

1: beqz 0, END -

2: load t, A + x 2

3: load y, B + t 2

… … …

Background: Reorder buffer
• Key hardware data structure for  

out-of-order and speculative execution

• Keeps track of “in-flight instructions”

• Example:

17

Entry Instruction Control Dep.

0: c ⟵ x < A_size -

1: beqz c, END -

2: - -

3: - -

… … …

 c ⟵ x < A_size
 beqz c, END
L1: load t, A + x  
 load y, B + t
END:

Entry Instruction Control Dep.

0: beqz 0, END -

1: - -

2: - -

3: - -

… … …

Retire
Entry Instruction Control Dep.

0: c ⟵ x < A_size -

1: beqz c, END -

2: load t, A + x 2

3: - -

… … …

Entry Instruction Control Dep.

0: c ⟵ x < A_size -

1: beqz c, END -

2: load t, A + x 2

3: load y, B + t 2

… … …

Entry Instruction Control Dep.

0: c ⟵ 0 -

1: beqz 0, END -

2: load t, A + x 2

3: load y, B + t 2

… … …

Cache state

void f(int x):  
 c ⟵ x < A_size
 beqz c, END
L1: load t, A + x  
 load y, B + t
END:

Spectre V1

 1a) Training

18

A_size=16
B[0]B[1] ...B What is in A[128]?

B[A[128]]
]

Persistent beyond
rollback

B[A[128]]

Spectre V1
What is in A[128]?

 1a) Training

 1b) Prepare cache (“Prime”)

 2) Run f(128)

 3) Extract from cache (“Probe”)

f(0);f(0);f(1);f(0);f(1);f(2); …

19

A_size=16
B[0]B[1] ...B B[A[128]]

Cache state

void f(int x):  
 c ⟵ x < A_size
 beqz c, END
L1: load t, A + x  
 load y, B + t
END:

Address
depends on
A[128]

2. Hardware-level Countermeasures

20

A parametric speculative, out-of-order processor

• Hardware-level countermeasures restrict speculative execution

• Intended to work for arbitrary

• (compliant) scheduler
• memory hierarchy
• branch predictor

21

We introduce a processor model that is parametric in
• scheduler
• caches
• branch predictor

A parametric speculative, out-of-order processor 
… formalized as binary relation on hardware states

22

8

2) Caches, Branch predictors, and Schedulers: Rather than
providing a fixed model for caches, branch predictors and
schedulers, our semantics is parametric in such components.
To this end, we only fix the interface to these components,
which is given in Figure 8, constraining how the semantics
may interact with these components. Each of these components
is defined by a set of states, an initial state, and uninterpreted
functions modeling their relevant behavior:

• Caches are equipped with a function access(`,cs) 2
{Hit,Miss} that captures whether accessing memory ad-
dress ` in cache state cs results in a cache hit (Hit) or miss
(Miss), and a function update(`,cs) = cs0 that updates the state
of the cache based on the access to address `. We stress that
cache states cs track only the memory addresses of the blocks
in the cache, not the blocks themselves.

• Branch predictors are equipped with a function
update(bp,`,b) that updates the state bp of the branch predic-
tor by recording that the branch at program counter ` has been
resolved to value b, and predict(bp,`) that, given a predictor
state bp, predicts the outcome of the branch at address `.

• Schedulers determine which pipeline stages to activate
next. Following [14], [19], we model this choice using three
types of directives: (a) fetch is used to fetch and decode the
next instruction pointed by the program counter register pc,
(b) execute i is used to execute the i-th command in the reorder
buffer buf , and (c) retire is used to retire (i.e., apply the
changes to the memory and register file) the first command in
the buffer. Schedulers are equipped with a next(sc) function
that produces the next directive given the scheduler’s state
sc, and a update(sc,buf) function that updates the scheduler’s
state based on the state of the reorder buffer.

3) Microarchitectural states: A µarch. state µ is a 4-tuple
hbuf ,cs,bp,sci where buf is a reorder buffer, cs is the state of
the unified cache (for data and instructions), bp is the branch
predictor state, and sc is the scheduler state.

A µarch. state µ is initial if buf = e and the µarch.
components are in their initial states. Similarly, µ is final
if buf = e . Hence, a hardware configuration hs ,µi is initial
(respectively final) if s and µ are so.

For simplicity, we write hm,a,buf ,cs,bp,sci to represent the
hardware configuration hhm,ai,hbuf ,cs,bp,scii.

B. Hardware semantics

We formalize the hardware semantics of a µASM program p
using a binary relation)✓ HwStates⇥HwStates that maps
hardware states to their successors:

STEP

hm,a,buf ,cs,bpi d
=)hm0,a0,buf 0,cs0,bp0i

d = next(sc) sc0 = update(sc,buf 0#)
hm,a,buf ,cs,bp,sci)hm0,a0,buf 0,cs0,bp0,sc0i

The rule captures one execution step at the µarch. level. The
scheduler is queried to determine the directive d = next(sc) in-
dicating which pipeline step to execute. Next, the µarch. state
is updated by performing one step of the auxiliary relation
hm,a,buf ,cs,bpi d

=)hm0,a0,buf 0,cs0,bp0i, which depends on the
directive d and is formalized below. Finally, the scheduler state

is updated based on the data-independent projection of the
reorder buffer, i.e., sc0 = update(sc,buf 0#). This formalizes the
crucial assumption that the scheduler’s decisions may depend
upon the dependencies between the instructions in the reorder
buffer, but not on the values computed thus far.

For each directive, i.e., fetch,execute i, and retire, we
sketch below the rules that govern the definition of the
auxiliary relations fetch

==), execute i
=====), and retire

===).
1) Fetch: Instructions are fetched in-order. Here we present

selected rules modeling instruction fetch:
FETCH-BRANCH-HIT

a0 = apl(buf ,a) |buf |< w a0(pc) 6=?
p(a0(pc)) = beqz x,` `0 = predict(bp,a0(pc))

access(cs,a0(pc)) = Hit update(cs,a0(pc)) = cs0

hm,a,buf ,cs,bpi fetch
==)hm,a,buf ·pc `0@a0(pc),cs0,bpi

FETCH-MISS
|buf |< w a0 = apl(buf ,a) a0(pc) 6=?

access(cs,a0(pc)) = Miss update(cs,a0(pc)) = cs0

hm,a,buf ,cs,bpi fetch
==)hm,a,buf ,cs0,bpi

In these rules, and in those described later, apl(buf ,a) denotes
the assignment a0 obtained by updating a with the changes
performed by the commands in buf . Concretely, apl(buf ,a)
iteratively applies the pending changes for all commands in
buf as follows: (a) Assignments x e@T set the value of
a0(x) to e if the assignment is resolved (i.e., e 2 Vals) and to
? otherwise (denoting unresolved values). (b) Load operations
load x,e@T set the value of a0(x) to ? (since the load opera-
tion has not been performed yet). (c) Whenever buf contains
a speculation barrier spbarr@T , apl(buf ,a) = lx 2 Regs. ?.
(d) Other instructions are ignored.

The rule FETCH-BRANCH-HIT models the fetch of a branch
instruction beqz x,`. Whenever the reorder buffer buf is
not full (|buf | < w), pc is defined (a0(pc) 6= ?), and the
instruction is in the cache (access(cs,a0(pc)) = Hit), the
branch predictor is queried to obtain the next program counter
`0 = predict(bp,a0(pc)). Next, the cache and the reorder buffer
states are updated. The latter is updated by appending the
command pc `0@a0(pc), which records the change to the
program counter as well as the label of the branch instruction
whose target was predicted. The semantics also contains
rules for fetching jumps jmp e, which append the command
pc e@e to the buffer, and other instructions i, which append
the commands i@e ·pc a0(pc)+1@e to the buffer.

The rule FETCH-MISS models a cache miss when loading
the next instruction. In this case, the cache is updated while the
reorder buffer is not modified. A subsequent fetch triggered by
the scheduler would result in a cache hit and a corresponding
change to the reorder buffer.

2) Execute: Commands in-flight are executed out-of-order,
where the execute i directive triggers the execution of the i-th
command in the buffer. Selected rules are given in Figure 9.

The rule EXECUTE-LOAD-HIT models the successful ex-
ecution of a load (load x,e@T) that results in a cache hit.
In the rule, (|e|)(a0) denotes the result of evaluating e in the
context of the assignment a0 obtained by applying to a all
earlier in-flight commands in buf . Whenever the address is

memory
registers reorder 

buffer cache branch 
predictor scheduler

A parametric speculative, out-of-order processor 
… formalized as binary relation on hardware states

23

8

2) Caches, Branch predictors, and Schedulers: Rather than
providing a fixed model for caches, branch predictors and
schedulers, our semantics is parametric in such components.
To this end, we only fix the interface to these components,
which is given in Figure 8, constraining how the semantics
may interact with these components. Each of these components
is defined by a set of states, an initial state, and uninterpreted
functions modeling their relevant behavior:

• Caches are equipped with a function access(`,cs) 2
{Hit,Miss} that captures whether accessing memory ad-
dress ` in cache state cs results in a cache hit (Hit) or miss
(Miss), and a function update(`,cs) = cs0 that updates the state
of the cache based on the access to address `. We stress that
cache states cs track only the memory addresses of the blocks
in the cache, not the blocks themselves.

• Branch predictors are equipped with a function
update(bp,`,b) that updates the state bp of the branch predic-
tor by recording that the branch at program counter ` has been
resolved to value b, and predict(bp,`) that, given a predictor
state bp, predicts the outcome of the branch at address `.

• Schedulers determine which pipeline stages to activate
next. Following [14], [19], we model this choice using three
types of directives: (a) fetch is used to fetch and decode the
next instruction pointed by the program counter register pc,
(b) execute i is used to execute the i-th command in the reorder
buffer buf , and (c) retire is used to retire (i.e., apply the
changes to the memory and register file) the first command in
the buffer. Schedulers are equipped with a next(sc) function
that produces the next directive given the scheduler’s state
sc, and a update(sc,buf) function that updates the scheduler’s
state based on the state of the reorder buffer.

3) Microarchitectural states: A µarch. state µ is a 4-tuple
hbuf ,cs,bp,sci where buf is a reorder buffer, cs is the state of
the unified cache (for data and instructions), bp is the branch
predictor state, and sc is the scheduler state.

A µarch. state µ is initial if buf = e and the µarch.
components are in their initial states. Similarly, µ is final
if buf = e . Hence, a hardware configuration hs ,µi is initial
(respectively final) if s and µ are so.

For simplicity, we write hm,a,buf ,cs,bp,sci to represent the
hardware configuration hhm,ai,hbuf ,cs,bp,scii.

B. Hardware semantics

We formalize the hardware semantics of a µASM program p
using a binary relation)✓ HwStates⇥HwStates that maps
hardware states to their successors:

STEP

hm,a,buf ,cs,bpi d
=)hm0,a0,buf 0,cs0,bp0i

d = next(sc) sc0 = update(sc,buf 0#)
hm,a,buf ,cs,bp,sci)hm0,a0,buf 0,cs0,bp0,sc0i

The rule captures one execution step at the µarch. level. The
scheduler is queried to determine the directive d = next(sc) in-
dicating which pipeline step to execute. Next, the µarch. state
is updated by performing one step of the auxiliary relation
hm,a,buf ,cs,bpi d

=)hm0,a0,buf 0,cs0,bp0i, which depends on the
directive d and is formalized below. Finally, the scheduler state

is updated based on the data-independent projection of the
reorder buffer, i.e., sc0 = update(sc,buf 0#). This formalizes the
crucial assumption that the scheduler’s decisions may depend
upon the dependencies between the instructions in the reorder
buffer, but not on the values computed thus far.

For each directive, i.e., fetch,execute i, and retire, we
sketch below the rules that govern the definition of the
auxiliary relations fetch

==), execute i
=====), and retire

===).
1) Fetch: Instructions are fetched in-order. Here we present

selected rules modeling instruction fetch:
FETCH-BRANCH-HIT

a0 = apl(buf ,a) |buf |< w a0(pc) 6=?
p(a0(pc)) = beqz x,` `0 = predict(bp,a0(pc))

access(cs,a0(pc)) = Hit update(cs,a0(pc)) = cs0

hm,a,buf ,cs,bpi fetch
==)hm,a,buf ·pc `0@a0(pc),cs0,bpi

FETCH-MISS
|buf |< w a0 = apl(buf ,a) a0(pc) 6=?

access(cs,a0(pc)) = Miss update(cs,a0(pc)) = cs0

hm,a,buf ,cs,bpi fetch
==)hm,a,buf ,cs0,bpi

In these rules, and in those described later, apl(buf ,a) denotes
the assignment a0 obtained by updating a with the changes
performed by the commands in buf . Concretely, apl(buf ,a)
iteratively applies the pending changes for all commands in
buf as follows: (a) Assignments x e@T set the value of
a0(x) to e if the assignment is resolved (i.e., e 2 Vals) and to
? otherwise (denoting unresolved values). (b) Load operations
load x,e@T set the value of a0(x) to ? (since the load opera-
tion has not been performed yet). (c) Whenever buf contains
a speculation barrier spbarr@T , apl(buf ,a) = lx 2 Regs. ?.
(d) Other instructions are ignored.

The rule FETCH-BRANCH-HIT models the fetch of a branch
instruction beqz x,`. Whenever the reorder buffer buf is
not full (|buf | < w), pc is defined (a0(pc) 6= ?), and the
instruction is in the cache (access(cs,a0(pc)) = Hit), the
branch predictor is queried to obtain the next program counter
`0 = predict(bp,a0(pc)). Next, the cache and the reorder buffer
states are updated. The latter is updated by appending the
command pc `0@a0(pc), which records the change to the
program counter as well as the label of the branch instruction
whose target was predicted. The semantics also contains
rules for fetching jumps jmp e, which append the command
pc e@e to the buffer, and other instructions i, which append
the commands i@e ·pc a0(pc)+1@e to the buffer.

The rule FETCH-MISS models a cache miss when loading
the next instruction. In this case, the cache is updated while the
reorder buffer is not modified. A subsequent fetch triggered by
the scheduler would result in a cache hit and a corresponding
change to the reorder buffer.

2) Execute: Commands in-flight are executed out-of-order,
where the execute i directive triggers the execution of the i-th
command in the buffer. Selected rules are given in Figure 9.

The rule EXECUTE-LOAD-HIT models the successful ex-
ecution of a load (load x,e@T) that results in a cache hit.
In the rule, (|e|)(a0) denotes the result of evaluating e in the
context of the assignment a0 obtained by applying to a all
earlier in-flight commands in buf . Whenever the address is

predecessor  
state

successor  
state

directive from scheduler, 
fetch, execute i, retire

Rules capture effect of directives

Example: Fetch

24

8

2) Caches, Branch predictors, and Schedulers: Rather than
providing a fixed model for caches, branch predictors and
schedulers, our semantics is parametric in such components.
To this end, we only fix the interface to these components,
which is given in Figure 8, constraining how the semantics
may interact with these components. Each of these components
is defined by a set of states, an initial state, and uninterpreted
functions modeling their relevant behavior:

• Caches are equipped with a function access(`,cs) 2
{Hit,Miss} that captures whether accessing memory ad-
dress ` in cache state cs results in a cache hit (Hit) or miss
(Miss), and a function update(`,cs) = cs0 that updates the state
of the cache based on the access to address `. We stress that
cache states cs track only the memory addresses of the blocks
in the cache, not the blocks themselves.

• Branch predictors are equipped with a function
update(bp,`,b) that updates the state bp of the branch predic-
tor by recording that the branch at program counter ` has been
resolved to value b, and predict(bp,`) that, given a predictor
state bp, predicts the outcome of the branch at address `.

• Schedulers determine which pipeline stages to activate
next. Following [14], [19], we model this choice using three
types of directives: (a) fetch is used to fetch and decode the
next instruction pointed by the program counter register pc,
(b) execute i is used to execute the i-th command in the reorder
buffer buf , and (c) retire is used to retire (i.e., apply the
changes to the memory and register file) the first command in
the buffer. Schedulers are equipped with a next(sc) function
that produces the next directive given the scheduler’s state
sc, and a update(sc,buf) function that updates the scheduler’s
state based on the state of the reorder buffer.

3) Microarchitectural states: A µarch. state µ is a 4-tuple
hbuf ,cs,bp,sci where buf is a reorder buffer, cs is the state of
the unified cache (for data and instructions), bp is the branch
predictor state, and sc is the scheduler state.

A µarch. state µ is initial if buf = e and the µarch.
components are in their initial states. Similarly, µ is final
if buf = e . Hence, a hardware configuration hs ,µi is initial
(respectively final) if s and µ are so.

For simplicity, we write hm,a,buf ,cs,bp,sci to represent the
hardware configuration hhm,ai,hbuf ,cs,bp,scii.

B. Hardware semantics

We formalize the hardware semantics of a µASM program p
using a binary relation)✓ HwStates⇥HwStates that maps
hardware states to their successors:

STEP

hm,a,buf ,cs,bpi d
=)hm0,a0,buf 0,cs0,bp0i

d = next(sc) sc0 = update(sc,buf 0#)
hm,a,buf ,cs,bp,sci)hm0,a0,buf 0,cs0,bp0,sc0i

The rule captures one execution step at the µarch. level. The
scheduler is queried to determine the directive d = next(sc) in-
dicating which pipeline step to execute. Next, the µarch. state
is updated by performing one step of the auxiliary relation
hm,a,buf ,cs,bpi d

=)hm0,a0,buf 0,cs0,bp0i, which depends on the
directive d and is formalized below. Finally, the scheduler state

is updated based on the data-independent projection of the
reorder buffer, i.e., sc0 = update(sc,buf 0#). This formalizes the
crucial assumption that the scheduler’s decisions may depend
upon the dependencies between the instructions in the reorder
buffer, but not on the values computed thus far.

For each directive, i.e., fetch,execute i, and retire, we
sketch below the rules that govern the definition of the
auxiliary relations fetch

==), execute i
=====), and retire

===).
1) Fetch: Instructions are fetched in-order. Here we present

selected rules modeling instruction fetch:
FETCH-BRANCH-HIT

a0 = apl(buf ,a) |buf |< w a0(pc) 6=?
p(a0(pc)) = beqz x,` `0 = predict(bp,a0(pc))

access(cs,a0(pc)) = Hit update(cs,a0(pc)) = cs0

hm,a,buf ,cs,bpi fetch
==)hm,a,buf ·pc `0@a0(pc),cs0,bpi

FETCH-MISS
|buf |< w a0 = apl(buf ,a) a0(pc) 6=?

access(cs,a0(pc)) = Miss update(cs,a0(pc)) = cs0

hm,a,buf ,cs,bpi fetch
==)hm,a,buf ,cs0,bpi

In these rules, and in those described later, apl(buf ,a) denotes
the assignment a0 obtained by updating a with the changes
performed by the commands in buf . Concretely, apl(buf ,a)
iteratively applies the pending changes for all commands in
buf as follows: (a) Assignments x e@T set the value of
a0(x) to e if the assignment is resolved (i.e., e 2 Vals) and to
? otherwise (denoting unresolved values). (b) Load operations
load x,e@T set the value of a0(x) to ? (since the load opera-
tion has not been performed yet). (c) Whenever buf contains
a speculation barrier spbarr@T , apl(buf ,a) = lx 2 Regs. ?.
(d) Other instructions are ignored.

The rule FETCH-BRANCH-HIT models the fetch of a branch
instruction beqz x,`. Whenever the reorder buffer buf is
not full (|buf | < w), pc is defined (a0(pc) 6= ?), and the
instruction is in the cache (access(cs,a0(pc)) = Hit), the
branch predictor is queried to obtain the next program counter
`0 = predict(bp,a0(pc)). Next, the cache and the reorder buffer
states are updated. The latter is updated by appending the
command pc `0@a0(pc), which records the change to the
program counter as well as the label of the branch instruction
whose target was predicted. The semantics also contains
rules for fetching jumps jmp e, which append the command
pc e@e to the buffer, and other instructions i, which append
the commands i@e ·pc a0(pc)+1@e to the buffer.

The rule FETCH-MISS models a cache miss when loading
the next instruction. In this case, the cache is updated while the
reorder buffer is not modified. A subsequent fetch triggered by
the scheduler would result in a cache hit and a corresponding
change to the reorder buffer.

2) Execute: Commands in-flight are executed out-of-order,
where the execute i directive triggers the execution of the i-th
command in the buffer. Selected rules are given in Figure 9.

The rule EXECUTE-LOAD-HIT models the successful ex-
ecution of a load (load x,e@T) that results in a cache hit.
In the rule, (|e|)(a0) denotes the result of evaluating e in the
context of the assignment a0 obtained by applying to a all
earlier in-flight commands in buf . Whenever the address is

instruction is a  
branch

instruction is a  
branch

applying reorder buffer 
to register state

reorder buffer  
is not full

branch predictor 
says l’ is next

updating 
cache stateadd change of pc

to reorder buffer

Rules capture effect of directive

25

9

Component States Initial state Functions
Cache CacheStates cs0 access : Vals⇥CacheStates! {Hit,Miss} update : Vals⇥CacheStates! CacheStates
Branch predictor BpStates bp0 predict : predict : BpStates⇥Vals! Vals update : BpStates⇥Vals⇥Vals! BpStates
Pipeline scheduler ScStates sc0 next : ScStates! Dir update : ScStates⇥Bufs! ScStates

Fig. 8: Signatures of the microarchitectural components

EXECUTE-LOAD-HIT
|buf |= i�1 a0 = apl(buf ,a)

spbarr 62 buf store x0,e0 62 buf x 6= pc (|e|)(a0) 6=? access(cs,(|e|)(a0)) = Hit update(cs,(|e|)(a0)) = cs0

hm,a,buf · load x,e@T ·buf 0,cs,bpi execute i
=====)hm,a,buf · x m((|e|)(a0))@T ·buf 0,cs0,bpi

EXECUTE-BRANCH-ROLLBACK
|buf |= i�1 a0 = apl(buf ,a) spbarr 62 buf `0 6= e p(`0) = beqz x,`00

(a0(x) = 0^ ` 6= `00)_ (a0(x) 62 Vals\{0,?}^ ` 6= `0 +1) `0 2 {`00,`0 +1}\{`} bp0 = update(bp,`0,`
0)

hm,a,buf ·pc `@`0 ·buf 0,cs,bpi execute i
=====)hm,a,buf ·pc `0@e,cs,bp0i

Fig. 9: Selected rules for execute i

resolved, i.e., (|e|)(a0) 6= ?, and accessing the address results
in a cache hit (access(cs,(|e|)(a0)) = Hit), the reorder buffer
is updated by replacing load x,e@T with x m((|e|)(a0))@T ,
thereby recording that the load operation has been executed
and that the value of x is now m((|e|)(a0)). The cache state is
also updated to account for the memory access to (|e|)(a0).

In contrast, the EXECUTE-BRANCH-ROLLBACK rule mod-
els the resolution of a mis-speculated branch instruction that
results in rolling back the speculatively executed instructions
by dropping their entries from the reorder buffer. Whenever
the predicted value ` disagrees with the outcome `0 of the
instruction beqz x,`00 at address `0, the buffer is updated by
(1) recording the new value of pc (by replacing pc `@`0
with pc `0@e), and (2) squashing all later buffer entries
(by discarding the buffer suffix buf 0). Moreover, the branch
predictor’s state is updated by recording that the branch at
address `0 has been resolved to `0.

3) Retire: Instructions are retired in-order. This is done by
retiring only commands i@T at the head of the reorder buffer
where the instruction i has been resolved, and the tag T is e
indicating that there are no unresolved predictions. Selected
rules for the retire directive are given below:

RETIRE-ASSIGNMENT
buf = x v@e ·buf 0 v 2 Vals

hm,a,buf ,cs,bpi retire
===)hm,a[x 7! v],buf 0,cs,bpi

RETIRE-STORE
buf = store v,n@e ·buf 0

v,n 2 Vals update(cs,n) = cs0

hm,a,buf ,cs,bpi retire
===)hm[n 7! v],a,buf 0,cs0,bpi

The rule RETIRE-ASSIGNMENT models the retirement of a
command x v@e , where the assignment a is permanently
updated by recording that x’s value is now v. In contrast,
RETIRE-STORE models the retirement of store commands
store v,n@e . In this case, the memory m is permanently
updated by writing the value v to address n and the cache

state is updated. Finally, we have rules RETIRE-SKIP and
RETIRE-BARRIER modeling the retirement of skip and spbarr
instructions, which are removed from the reorder buffer with-
out modifying the arch. state.

C. Formalizing the adversary model
We conclude by formalizing the adversary model that we

use in the security analysis in Section VI.
In our analysis, we consider an adversary A that can ob-

serve almost the entire microarchitectural state. Specifically, it
can observe (1) the data-independent projection of the reorder
buffer (i.e., which instructions are in-flight, but not to what
values they are resolved), (2) the state of cache (which stores
only the addresses of the blocks in the cache, not the blocks
themselves), branch predictor, and scheduler. We formalize
this as A = (hm,a,buf ,cs,bp,sci) = hbuf#,cs,bp,sci.

VI. MECHANISMS FOR SECURE SPECULATION

In this section, we show how several recent proposals
for hardware-level secure speculation can be cast within our
framework and we study their security.

We analyze three countermeasures: (1) disabling speculation
(seq in §VI-A), (2) delaying all speculative loads (loadDelay
in §VI-B), and (3) employing hardware-level taint tracking
and selectively delaying tainted instructions (tt in §VI-C). For
each countermeasure ctx, we formalize its semantics using a
relation)ctx obtained by modifying the hardware semantics
from §V (which induces the corresponding trace semantics
{| · |}ctx in the usual way). Additionally, we characterize their
security guarantees by showing which of the contracts from
§III they satisfy; see Figure 11 for a summary of the results.

Unless otherwise specified, all theorems hold for any in-
stantiation of cache, branch predictor, and scheduler.

Before analyzing the countermeasure, we observe that all
possible instances of the hardware semantics satisfy the J ·Kspec

ct
contract, as stated in Theorem 1.

result of instruction at head of 
 reorder buffer is resolved

apply change to registers 
and remove entry from reorder buffer

Capturing countermeasures

26

• Countermeasures restrict freedom of scheduler

• Defined for arbitrary cache and branch predictor

We consider three approaches:

1. Disabling speculation

2. Delaying speculative loads

3. Taint tracking of speculative values

Disabling speculative execution

27

Constrain scheduler to
1. fetch
2. execute 1
3. retire
4. go to 1.

• Obviously eliminates all speculative-execution attacks.
• Really slow.

Delaying speculative loads (Sakalis et al., ISCA 2019)

28

10

Theorem 1. {| · |} ` J · Kspec
ct .

From this, it immediately follows that all countermeasures
presented below satisfy the J · Kspec

ct contract as well.

A. seq: Disabling speculation

A first, drastic countermeasure against speculative execution
attacks is disabling speculative and out-of-order execution. To
model this, we instantiate the hardware semantics by providing
a sequential scheduler that produces directives in a fetch�
execute 1�retire order. The sequential scheduler, formalized
in Appendix B, works as follows:

• Whenever the reorder buffer is empty, the scheduler
selects the fetch directive that adds entries to the buffer.

• If the first entry in the buffer is not resolved, the sched-
uler selects the execute 1 directive. Thus, the instruction is
executed and, potentially, resolved.

• If the first entry in the buffer is resolved, the scheduler
selects the retire directive. Therefore, the instruction is retired
and its changes are written into the architectural state.
That is, the sequential scheduler ensures that instructions are
executed in an in-order, non-speculative fashion.

As expected, instantiating the hardware semantics with
the sequential scheduler (denoted with seq) results in strong
security guarantees. As stated in Theorem 2, seq implements
the J · Kseq

ct interface which exposes only the program counter
and the location of memory accesses.

Theorem 2. {| · |}seq ` J · Kseq
ct .

B. loadDelay: Delaying all speculative loads

Sakalis et al. [3] propose a family of countermeasures that
delay memory loads to avoid leakage. In the following, we
analyze the eager delay of (speculative) loads countermea-
sure. This countermeasure consists in delaying loads until all
sources of mis-speculation have been resolved. We remark that
the hardware semantics of Section V supports speculation only
over branch instructions. Therefore, we model the loadDelay
countermeasure by preventing loads whenever there are pre-
ceding, unresolved branch instructions in the reorder buffer.
Using the terminology of [3], loads are delayed as long as
they are under a so-called control-shadow.

We formalize the loadDelay countermeasure by modifying
the STEP rule of the hardware semantics as follows (changes
are highlighted in blue):

STEP-OTHERS

hm,a,buf ,cs,bpi d
=)hm0,a0,buf 0,cs0,bp0i

d = next(sc) sc0 = update(sc,buf 0#)
d 2 {fetch,retire}_ (d = execute i^buf |i 6= load x,e)

hm,a,buf ,cs,bp,sci)loadDelayhm0,a0,buf 0,cs0,bp0,sc0i

STEP-EAGER-DELAY

hm,a,buf ,cs,bpi d
=)hm0,a0,buf 0,cs0,bp0i

d = next(sc) sc0 = update(sc,buf 0#) d = execute i
buf |i = load x,e 8pc `@`0 2 buf [0..i�1]. `0 = e
hm,a,buf ,cs,bp,sci)loadDelayhm0,a0,buf 0,cs0,bp0,sc0i

Fetching, retiring, and executing all instructions that are not
loads works as before (see STEP-OTHERS rule). However,
load instructions are executed only if all prior branch in-
structions are resolved (see STEP-NAIVE-DELAY rule). This is
captured by requiring that all branch instructions in the buffer
prefix have tag e , i.e., 8pc `@`0 2 buf [0..i�1]. `0 = e .

Thus, loads are delayed until they are guaranteed to be
executed, while other instructions may be freely executed spec-
ulatively and out-of-order. Hence, no data memory accesses
are performed on mis-speculated paths. However, maybe sur-
prisingly, parts of the architectural state can still be leaked
on mis-speculated paths as nested conditional branches may
modify the instruction cache and the branch predictor state.

As a consequence, loadDelay violates the J · Kseq
ct contract

capturing the standard constant-time requirements.

Example 2. This program illustrates that {| · |}loadDelay 6` J ·Kseq
ct :

1 x = A[10]

2 y = not (A[20] | 1)

3 if (y) //branch always unsatisfied
4 if (x) //only reachable speculatively
5 skip

Consider two configurations s and s 0 such that s(A+10) =
0 and s 0(A+10) = 1. Then, JpKseq

ct (s) = JpKseq
ct (s 0) =

load A+10 · load A+20 · pc ?. However, the hardware can
leak information through, e.g., the instruction cache if the
branch at line 3 is speculatively taken. Then, the result of
branch at line 4, which determines whether or not skip at 5
is fetched, leaks whether A[10] (stored in x) is 0 or not,
thereby distinguishing s and s 0.

To capture the guarantees offered by the eager-delay coun-
termeasure, we can use the J · Kseq-spec

ct-pc contract, which may
intuitively be understood as J · Kseq

ct + J · Kspec
pc , i.e., control-

flow and memory accesses are leaked under sequential exe-
cution, and in addition, the program counter is leaked during
speculative execution. This new contract is satisfied by the
countermeasure, leading to Theorem 3.

Theorem 3. {| · |}loadDelay ` J · Kseq-spec
ct-pc .

As the control flow during speculation execution may only
depend upon data previously loaded non-speculatively, the
security of the countermeasure can also be captured by J ·Kseq

arch.

Theorem 4. {| · |}loadDelay ` J · Kseq
arch.

C. tt: Taint tracking of speculative values
Recent work [4], [5] propose to track transient computations

and to selectively delay instructions involving tainted informa-
tion. While these proposals slightly differ in how instructions
are labelled and on the effects of different labels, they share
the same building blocks and provide similar guarantees.

For this reason, we start by presenting an overview of
the Speculative Taint Tracking (STT) [5] and Non-speculative
Data Access (NDA) [4] countermeasures. Next, we introduce
a general extension to the hardware semantics from Section V
for supporting taint-tracking schemes. We continue by formal-
izing a countermeasure inspired by STT and we discuss its
security guarantees, and we conclude by discussing NDA.

Non-loads can be
executed arbitrarily.

Loads are only
executed non-
speculatively.

Question: Does this eliminate all speculative-execution attacks?

Delaying speculative loads (Sakalis et al., ISCA 2019) 
Spectre v1 Example

29

 c ⟵ x < A_size
 beqz c, END
L1: load t, A + x  
 load y, B + t
END:

Will only be performed
non-speculatively.
⟶ Problem solved.

Delaying speculative loads (Sakalis et al., ISCA 2019) 
Variant of Spectre v1 Example

30

 c ⟵ x < A_size
 load t, A + x
 beqz c, END  
L1: beqz t, L2
END:

Unlike entirely non-
speculative execution,
leaks whether A[x] is 0!

t = A[x]
if (x < A_size)
 if (B[t])  
 …

Question: How to capture its security guarantees?

Taint-tracking speculative values  
(STT, Yu et al., MICRO 2019, NDA, Weisse et al. MICRO 2019)

31

• Allow speculative loads, but make sure the loaded values do not leak

• Difference:

• STT: Prevent any “transmit” instruction on data derived from speculative loads

• NDD: Prevent any propagation of speculatively loaded data  
(more conservative than STT)

Taint-tracking speculative values  
(STT, Yu et al., MICRO 2019, NDA, Weisse et al. MICRO 2019)

32

Allows for more speculative and out-of-order execution.
But how secure is it?

11

1) Overview: STT [5] and NDA [4] are two recent taint-
tracking proposals for secure speculation. These countermea-
sures extend a processor with hardware-level taint tracking
to track whether data has been retrieved by a speculatively
executed instruction. The taint-tracking mechanism propagates
taint through the computation and whenever operations are no
longer transient, the taint is removed. Finally, both NDA and
STT selectively delay tainted operations to avoid leaks.

The main difference between the two approaches is that
while STT delays the execution of tainted transmit instructions
(that is, instructions like loads that might leak information),
NDA adopts a more conservative approach that delays the
propagation of data from tainted instructions.

2) Supporting taint tracking: To support taint tracking, we
label entries in the reorder buffer with two labels: S (which
stands for “safe”) and U (which stands for “unsafe”). A labeled
command is of the form hc@T i` where c@T is a reorder
buffer entry and ` 2 {S,U} is a label. The labels S and U form
a lattice with S@ U, and thus for all `, Ut`= U and Su`= S.

Existing proposals differ in (1) how labels are assigned
and propagated, and (2) how labels affect the processor’s
execution. To accommodate different variants for (1) and (2),
we formalize these aspects using two functions:

• The labeling function lbl(buf ul ,buf ,d) computes the new
labels associated with the (unlabeled) buffer buf ul given the
old labeled buffer buf and the directive d determining the
activated pipeline step. This function models how the tracking
works, i.e., how labels are assigned to new instructions and
how they are propagated.

• The unlabeling function unlbl(buf ,d) produces an un-
labeled buffer buf ul starting from a labeled buffer buf and
a directive d. This function models how labels affect the
processor’s semantics in terms of changes to the reorder buffer
(and these changes might depend on the executed pipeline step
modeled by d).
We describe later how these functions can be instantiated to
model STT and NDA.

We formalize the tt countermeasure by modifying the STEP
rule as follows (changes are highlighted in blue):

STEP

d = next(sc) buf ul = unlbl(buf ,d)

hm,a, buf ul ,cs,bpi d
=)hm0,a0, buf 0ul ,cs0,bp0i

sc0 = update(sc,buf 0#) buf 0 = lbl(buf 0ul ,buf ,d)

hm,a,buf ,cs,bp,sci)tthm0,a0buf 0,cs0,bp0,sc0i

The rule differs from the standard STEP rule in three ways:
• Entries in the reorder buffer are labelled.
• Before activating a step in the pipeline, i.e., before apply-

ing one step of d
=), we use the unlabeling function to derive an

unlabeled buffer buf ul = unlbl(buf ,d) representing how labels
affect the reorder buffer entries.

• The buffer produced by the application of d
=) is labeled by

invoking the labeling function buf 0 = lbl(buf 0ul ,buf ,d). There-
fore, the labels in buf 0 are updated to track the information
flows through the computation.

unlbl(buf , fetch) = mask(buf)
unlbl(buf ,retire) = drop(buf)

unlbl(buf ,execute i) =

(
mask(buf) if transmit(buf |i)
drop(buf) otherwise

drop(e) := e
drop(hi@T i` ·buf) := i@T ·drop(buf)

mask(e) := e

mask(hi@T i` ·buf) :=

8
><

>:

x ?@T ·mask(buf) if `= U^
i = x e

i@T ·mask(buf) otherwise

Fig. 10: Unlabeling function unlbl(buf ,d) for STT

3) Speculative taint tracking: Here we present how to
model a countermeasure inspired by STT [5]. As mentioned
above, STT tracks whether data depends on speculatively
accessed data and delays the execution of transient transmit
instructions. These features are reflected in our model:

• In µASM, there are three kinds of transmit instructions:
loads load x,e, stores store x,e, and assignments to the
program counter pc e. We write transmit(i@T) whenever
the instruction i is a transmit instruction.

• To delay only transmit instructions, the unlabeling func-
tion, defined in Figure 10, replaces unsafe assignments x e
with x ? for fetch and execute i directives when the i-th
entry in the buffer is a transmit instruction. This ensures that
transmit instructions are not executed whenever they depend
on unsafe data, which are now mapped to ?. In contrast, the
unlabeling function simply strips the taint-tracking labels for
retire and execute i directives whenever the i-the entry is not
a transmit instruction; thereby allowing the hardware to freely
execute non-transmit instructions.

• The labeling function, formalized in Appendix C, speci-
fies how newly fetched instructions are labeled as well as how
labels are updated during computation, and it works as follows:
– Newly fetched load x,e instructions are labelled as safe if
there is no unresolved branch instruction in the buffer, and
they are labelled unsafe otherwise. In contrast, newly fetched
assignments x e are labelled as unsafe if they depend on
unsafe data (i.e., if one of the registers y occurring in e is
labelled as unsafe), and they are labelled as safe otherwise.
All other newly fetched instructions are labelled as safe.
– Whenever we retire or execute non-branch instructions,
labels are preserved.
– When we execute and resolve a branch instruction (thereby
eliminating one of the sources of speculation), there are two
cases. If an earlier branch instruction has not been resolved
yet, we preserve all labels since all the later instructions are
still transient. In contrast, if all earlier branch instructions
have been resolved, then we label as safe all following
instructions until the next unresolved branch since all these
instructions are non-transient. Moreover, we update the labels
of the remaining entries in the reorder buffer to account for

“Richer” reorder buffer
state captures “taint”

Hiding data that should
not leak

Taint-tracking speculative values  
(STT, Yu et al., MICRO 2019, NDA, Weisse et al. MICRO 2019)

33

t = A[x]
if (x < A_size)
 y = B[t]

 load t, A + x  
 c ⟵ x < A_size
 beqz c, END
L1: load y, B + t
END:

“semantically equivalent”  
to Spectre v1 example

Potentially  
out-of-array-bounds

Leaks A[x] under
both STT and NDA

3. Hardware-Software Contracts

34

Hardware-software contracts
Goals:

• Capture security guarantees in a simple, mechanism-independent manner

• Carve out differences between existing countermeasures

• Serve as a basis for secure programming

35

Meaning of contracts

36

3

A hardware semantics is a deterministic relation) mapping
hardware states hs ,µi to their successors hs 0,µ 0i. A hardware
run is a sequence hs0,µ0i) . . .)hsn,µni such that hs0,µ0i
is initial and hsn,µni is final. For this, we assume that there is
a fixed, initial µarch. state µ0, where, for instance, the reorder
buffer is empty and all caches have been invalidated.

D. Adversary model
We consider adversaries that can observe parts of the

µarch. state during execution. We model hardware observa-
tions as projections to parts of the µarch. state. For instance, a
cache-adversary can be modeled as a function A projecting µ
to its cache component. In the paper, we consider an adversary
A that has access to the state of caches, predictors, and (part
of) the reorder buffer; we formalize A in Section V-C.

Given a program p, {|p|}(s) denotes the trace A (µ0) ·
. . . · A (µn) of hardware observations produced in the run
hs ,µ0i) . . .)hsn,µni. We refer to {|p|} as the hardware trace
semantics (hardware semantics for short) of program p.

III. HARDWARE-SOFTWARE CONTRACTS

The purpose of a contract is to split the responsibilities for
preventing side-channels between software and hardware.

We first formalize the general notion of contracts and we
specify when a hardware platform satisfies a contract. Then we
present several fundamental contracts for secure speculation.

A. Formalizing contracts
A contract is a labeled, deterministic semantics * for

the ISA. Given a program p and an initial arch. state s0,
the labels on the transitions of the corresponding run
s0

`1*s1
`2* . . .

`n*sn define the trace JpK(s0) = `1`2 . . .`n.
The traces of a contract JpK capture which arch. states are

guaranteed to be indistinguishable to an attacker on a hardware
satisfying the contract, which is formalized below.

Definition 1 ({|·|}` J·K). A hardware semantics {|·|} satis-
fies a contract J·K if, for all programs p and all initial
arch. states s ,s 0, if JpK(s)=JpK(s 0), then {|p|}(s)={|p|}(s 0).

Different contracts correspond to different divisions of
security obligations between software and hardware: secrets
at the program level must not affect contract observations,
because then they can become visible to the adversary. Hence,
contracts exposing more observations correspond to hardware
with weaker security guarantees, whereas contracts expos-
ing fewer observations correspond to hardware with stronger
security guarantees. A degenerate case is a contract with
no observations, which is satisfied by an ideal side-channel
resilient platform that securely executes every program.

B. Contracts for secure speculation
We now define four fundamental contracts that characterize

the security guarantees offered by mechanisms for secure
speculation. We derive our contracts as the combination of
two kinds of building blocks.

1) Building blocks for contracts: The first building block
are observer modes, which govern what information a contract
exposes. We define them via labels on the contract semantics.

• The constant-time observer mode (ct for short) is com-
monly used when reasoning about side-channels in crypto-
systems. It uses labels pc `, load n, and store n to expose
the value ` of the program counter and the locations n of load
and store operations. The observer mode can be augmented
with support for variable-latency instructions by additionally
exposing the operands of those instructions as observations,
which we forgo for simplicity.

• The architectural observer mode (arch for short) addi-
tionally exposes the values v that is loaded from memory
locations n via the label load n = v. As registers are set to
zero in the initial arch. state, arch-traces also determine the
values of registers during execution.

The second building block are execution modes that charac-
terize which paths need to be explored to collect observations.
For processors with speculative execution, depending on the
presence and effectiveness of hardware-level countermeasures,
one needs to go beyond those covered by the arch. semantics.

• In the sequential execution mode (seq for short), programs
are executed sequentially and in-order following the arch. se-
mantics.

• In the always-mispredict execution mode (spec for short),
programs are executed sequentially, but incorrect branches
are also executed for a bounded number of steps before
backtracking. This execution mode is based on [12] and
can be used to explore the effects of speculatively executed
instructions at the ISA level.

2) Contract J · Kseq
ct : This contract exposes the program

counter and the locations of memory accesses on sequential,
non-speculative paths; see Figure 2. J · Kseq

ct is a fundamental
baseline that is often implicitly assumed in practice, and that
has also been formalized in [18], [20].

In Section VI-A we show that J ·Kseq
ct is satisfied by a simple

in-order processor without speculation. However, modern out-
of-order processors do not satisfy J · Kseq

ct , as shown below.

Example 1. Consider the vanilla Spectre v1 snippet from
Figure 1a, compiled to µASM:

1 x y < size_A

2 beqz x, ? //checking y < size_A
3 load z,A + y //accessing A[y]
4 z z*64

5 load w, B+z //accessing B[A[y]*64]

Consider arch. states s and s 0 that agree on the observations
on trace pc 3 ·load (A+y) ·load (B+x) (and hence on the con-
tent of array A within bounds), but for which s(A + y) = 0
and s 0(A + y) = 1 for some y>size_A. On processors with
speculation, an adversary with cache access can distinguish s
and s 0, as demonstrated by the Spectre attack [21].

Perhaps surprisingly, processors deploying recent proposals
for secure speculation still violate J · Kseq

ct , see § VI.
3) Contract J · Kspec

ct : This contract additionally exposes the
program counter and the locations of all memory accesses on
speculatively executed paths. It is based on the speculative
semantics from [12] and formalized in Figure 3.

Contract assigns
sequences of observations

to architectural states

States are contract-
indistinguishable.

σ, σ′� States are HW-
indistinguishable.

σ, σ′�

Structure of contracts

37

Contract =  
 Execution Mode · Observer Mode

“How are programs executed” “What is visible about the
execution?”

Two execution modes

38

Sequential (seq) = non-speculative execution

Speculative (spec) = each branch is mispredicted and  
 speculatively executed

Observer modes

39

Constant time (ct) = observer can see addresses of
• loads
• stores
• instruction fetches

Architectural (arch) = ct + observer can see values of loads

Program counter (pc) = observer can see addresses of
• instruction fetches

A Lattice of Contracts

40

5

STEP

p(s(pc)) 6= beqz x,` s t�*
seq
ct s 0

hs ,w +1i · s t�*
spec
ct hs 0,wi · s

ROLLBACK
s = hs 0,w 0i · s0

hs ,0i · s pc s 0(pc)�����*
spec

ct s

BARRIER

p(s(pc)) = spbarr s t�*
seq
ct s 0

hs ,w +1i · s t�*
spec
ct hs 0,0i · s

BRANCH

p(s(pc)) = beqz x,` `correct =

(
` if s(x) = 0
s(pc)+1 otherwise

`mispred 2 {`,s(pc)+1}\ `correct wmispred =

(
w if w = •
w otherwise

hs ,w +1i · s
pc `mispred������*

spec

ct hs [pc 7! `mispred],wmispredi · hs [pc 7! `correct],wi · s

Fig. 3: Definition of J · Kspec
ct contract. Configurations are stacks of hs ,wi, where w 2 N[{•} is the speculative window

denoting how many instructions are left to be executed. (initial arch. states s are treated as hs ,•i). At each computation step,
the w at the top of the stack is reduced by 1 (rules STEP and BRANCH). When executing a branch instruction (rule BRANCH),
the state hs [pc 7! `mispred],wmispredi is pushed on top of the stack, thereby allowing the exploration of the mispredicted branch
for wmispred steps. The correct branch hs [pc 7! `correct],wi is also recorded on the stack; allowing to later roll back speculatively
executed statements. When the w at the top of the stack reaches 0, we pop it (i.e., we backtrack and discard the changes) and
we continue the computation. Speculation barriers trigger a roll back by setting w to 0 (rule BARRIER).

J · K>J · Kseq
ct

J · Kspec
arch

J · Kseq
arch

J · Kseq-spec
ct-pc

J · Kspec
ct

J · K?
Fig. 4: Lattice of contracts. An edge from J · K1 to J · K2
means that J · K1 v J · K2. The J · K> contract is the one without
observations, and J ·K? one exposing all the architectural state.

That is, a program is non-interferent w.r.t. a contract and
a policy, if low-equivalent arch. states are indistinguishable
under the contract, i.e., no information about high memory
locations leaks into the contract’s traces.

Similarly to Def. 3, one can define a notion of non-
interference w.r.t. a hardware semantics {| · |}, written p `
NI(p,{| · |}), where information about high memory locations
cannot flow into hardware observations.

The following proposition, capturing leakage at the hard-
ware level, follows by composition of Definitions 1 and 3:

Proposition 2. If p`NI(p,J·K) and {|·|}`J·K, then p`NI(p,{|·|}).

B. Sandboxing
The goal of sandboxing is to enable the safe execution

of untrusted, potentially malicious code. This is achieved by
ensuring that the untrusted code is confined to a set of tightly
controlled resources. Here we focus on one important aspect:
preventing code from reading outside of its own subset of the
address space. To achieve this, just-in-time compilers enforce
access-control policies by inserting checks to ensure that all
memory accesses happen within the sandbox’s bounds.

We describe sandboxes using policies p , where memory out-
side of the sandbox is declared high. To account for programs
that may escape the sandbox by exploiting speculation across
access-control checks, we make the following distinction:

• Traditional sandboxing approaches [23], [24] check/en-
force vanilla sandboxing: A program p is vanilla-sandboxed
w.r.t. p if p never accesses high memory locations when
executing under the arch. semantics !. In our framework,
being vanilla-sandboxed is equivalent to p`NI(p,J ·Kseq

arch), i.e.,
being non-interferent w.r.t. J · Kseq

arch. This follows from J · Kseq
arch

exposing the value of accessed high memory locations.
• To faithfully reason about sandboxing on out-of-order

and speculative processors, one needs to go beyond vanilla
sandboxing and make sure that the program does not leak any
information that is outside of its sandbox through a covert
channel. We say that program is generally-sandboxed w.r.t.
contract J · K, if it is vanilla-sandboxed and in addition non-
interferent w.r.t J · K, i.e., p ` NI(p,J · K). General sandboxing
together with Proposition 2 guarantees that no data outside
of the sandbox affects what a µarch. adversary (including the
sandboxed program p itself, via probing) can observe on any
platform satisfying J · K.

Def. 4 enables to bridge the gap between vanilla sandboxing
and general sandboxing for a given program.

Definition 4. Program p satisfies weak speculative non-
interference (wSNI) with respect to J · K if for all initial arch.
states s ,s 0: JpKseq

arch(s) = JpKseq
arch(s

0)) JpK(s) = JpK(s 0).

Weak speculative non-interference is a variant of speculative
non-interference, the security checked by Spectector [12].

Proposition 3 shows how wSNI bridges the gap between
vanilla and general sandboxing.

Proposition 3. If program p is vanilla-sandboxed w.r.t. p and
wSNI w.r.t. J ·K, then p is generally-sandboxed w.r.t. p and J ·K.

Hence, to check whether a program p is generally-
sandboxed w.r.t. J ·K and p one can: (1) check/enforce that p is
vanilla-sandboxed w.r.t. p , and (2) verify whether p is wSNI.

C. Constant-time programming
Constant-time programming is a coding discipline for the

implementation of code like cryptographic algorithms that

“Leaks all data  
accessed non-
speculatively”

“Leaks
addresses of

non-spec.
loads/stores/

instruction
fetches”

Security Guarantees

41

12

the non-transient instructions.
Overall, the labeling function ensures that reorder buffer
entries that depend on transiently retrieved data are labelled
as unsafe at every point of the computation.

Concretely, tt delays all transmit instructions that depend on
transiently retrieved (i.e., unsafe) data. However, tt does not
delay transient loads that depend on safe data, as acknowl-
edged also in [5]. This means that parts of the architectural
state can be leaked using speculatively executed instructions.

As shown in Example 3, tt violates the J · Kseq
ct contract.

Example 3. Consider the Spectre v1 variant from Figure 1b,
compiled to µASM:

1 load z,A + y //accessing A[y]
2 x y < size_A

3 beqz x, ? //checking y < size_A
4 z z*64

5 load w, B+z //accessing B[A[y]*64]

Consider two configurations s and s 0 that agree on the
values of A, B, y, and size_A and for which s(y) >
s(size_A), i.e., the array A is speculatively accessed out
of bounds. Furthermore, assume that s(A + y) = 0 and
s 0(A + y) = 1. Then, JpKseq

ct (s) = JpKseq
ct (s 0) = load A+y ·

pc ?. However, the hardware semantics can potentially leak
information through the data cache if the hardware specula-
tively executes the load on line 5. Indeed, the load on line 1
is labeled as S since it is not transient. Therefore, the load
operation on line 5, which depends on the result of 1, is not
delayed (even though operations relying on its result would be
delayed since 5 is labeled as U). Therefore, by probing the state
of the cache an attacker can distinguish whether A[y] = 0

or A[y] = 1, thereby distinguishing s and s 0.

One way to characterize the guarantees provided by the tt
countermeasure is with the J · Kspec

ct contract.

Theorem 5. {| · |}tt ` J · Kspec
ct .

However, we remark that this contract is already satisfied
by the baseline hardware defined in Section V without any
countermeasures. A more meaningful characterization of tt’s
guarantees, stated in Theorem 6, is via the J · Kseq

arch contract.
Intuitively, tt satisfies J · Kseq

arch as it prevents the execution of
transmit instructions based on unsafe transiently retrieved data.

Theorem 6. {| · |}tt ` J · Kseq
arch.

Theorem 6 confirms the results of [5] and provides a clean
characterization of the transient noninterference [5] guarantees
in terms of the J · Kseq

arch contract.
4) Non-speculative data access: Weisse et al. [4] propose

NDA, a family of countermeasures for secure speculation that
also relies on hardware taint tracking. In a nutshell, NDA de-
lays the propagation of speculatively executed instructions un-
til the corresponding speculation sources have been resolved.
NDA comes with two different propagation strategies—strict
and permissive propagation—that can be modeled as follows:

• For both propagation strategies, the unlabeling function
simply replaces all unsafe assignments x e with x ?,
thereby preventing the propagation of unsafe data. This differs
from STT where labels are sometimes stripped to allow the

{| · |}loadDelay

{| · |}tt

{| · |}seqJ · Kseq
ct

J · Kspec
arch

J · Kseq
arch

J · Kseq-spec
ct-pc

J · Kspec
ct

Fig. 11: Security guarantees of secure-speculation mechanisms.

propagation of unsafe data, as long as their propagation does
not leak the data.

• The labeling function differs from the one in tt in how
newly fetched instructions are labeled. For the strict strategy,
all newly fetched transient instructions are labelled as unsafe.
In contrast, only newly fetched transient loads are labeled as
unsafe under the permissive strategy.

Despite these changes, NDA provides similar guarantees
to tt. That is, it satisfies the J · Kspec

ct and J · Kseq
arch contracts.

D. Summary
Figure 11 summarizes the results of this section in the

lattice structure established in §III-C. This yields the first
rigorous comparison of the security guarantees of mechanisms
for secure speculation, and it translates the results from §IV
into a principled basis for programming them securely.

VII. DISCUSSION

A. Scope of the model
With our modeling of a generic microarchitecture and

corresponding side-channel adversaries (§V), we aim to strike
a balance between capturing the central aspects of attacks
on speculative and out-of-order processors, while obtaining
a general and tractable model.

As a consequence, we simplified many aspects of modern
processors. For instance, we model only a simple 3-stage
pipeline, single threaded, and with conditional branch predic-
tion as the only source of speculation. Likewise, we consider
an adversary that can observe instructions in the reorder buffer
and memory blocks in the cache, but not the data they carry.

This modelling is adequate for reasoning about protections
against variants of Spectre v1. However, it does not encompass
features such as store-to-load forwarding or prediction over
memory aliasing, or adversaries that can observe leaks from
internal processor buffers, such as those exploited in data-
sampling attacks [29], [30].

As a consequence, Theorems 1–6 need not extend to these
scenarios. However, our framework for expressing contracts is
not limited to this simple model, as we discuss next.

B. Beyond Spectre v1
We now discuss how to extend our framework to other tran-

sient execution attacks. For each attack, we discuss how to (1)
extend our contracts, and (2) adjust our hardware semantics:

• Spectre-BTB and Spectre-RSB: These variants speculate
respectively over indirect jumps and return instructions. To

= disabling speculation

= delaying  
speculative loads

= taint tracking

4. Requirements for Secure Programming

42

What is secure programming?

43

4

LOAD
p(a(pc)) = load x,e hm,ai�!hm0,a0i

hm,ai load (|e|)(a)�������*
seq

ct hm0,a0i

STORE
p(a(pc)) = store x,e n = (|e|)(a) hm,ai�!hm0,a0i

hm,ai store n����*
seq
ct hm0,a0i

BEQZ-SAT

p(a(pc)) = beqz x,` hm,ai�!hm0,a0i

hm,ai pc a0(pc)�����*
seq

ct hm0,a0i

Fig. 2: J · Kseq
ct contract for a program p - selected rules (here

(|e|)(a) is the result of expression e given assignment a). The
contract is obtained by augmenting the arch. semantics with
observations load n, store n, and pc ` exposing the addresses
of loads, stores, and the program counter, respectively.

In Section VI, we show that speculative out-of-order
processors (with and without mechanisms for secure
speculation) satisfy J · Kspec

ct .
Consider again Example 1: by exposing observations on

mispredicted paths, J · Kspec
ct makes the states s ,s 0 distinguish-

able at the contract level, effectively delegating the responsi-
bility of ensuring that s(A + y) and s 0(A + y) do not carry
secret information to the software side.

4) Contract J · Kseq
arch: This contract exposes the program

counter, the location of all loads and stores, and the values of
all data loaded from memory on standard, i.e. non-speculative,
program paths. The contract is obtained by modifying the
LOAD rule from Figure 2 as follows:

LOAD
p(a(pc)) = load x,e hm,ai�!hm0,a0i

hm,ai load (|e|)(a)=m((|e|)(a))�������������*
seq

archhm0,a0i

As we assume that register values are zeroed in the ini-
tial state, the J · Kseq

arch trace effectively exposes the contents
of registers during execution. While this does not seem to
guarantee any kind of security, J · Kseq

arch does guarantee the
confidentiality of data that is only transiently loaded, thus
effectively preventing speculative disclosure gadgets. In that
sense, the contract J · Kseq

arch is a simple and clean formulation
of the idea behind transient noninterference [5], making it
comparable to the guarantees offered by other contracts, and
providing an actionable interface to software.

5) Special contracts: We informally present a number of
contracts that illustrate our framework’s expressiveness:

• J · K> is the contract that does not expose any observa-
tions and corresponds to a hypothetical side-channel resilient
processor that can securely execute every program.

• J ·Kseq-spec
ct-pc exposes program counter and addresses of loads

during sequential execution, and only the program counter
during speculative execution. That is, it may intuitively be
understood as J · Kseq

ct + J · Kspec
pc .

• J · Kspec
arch exposes the values of data loaded from memory

also during speculatively executed instructions. It corresponds
to a processor that does not offer any confidentiality guarantees
for any accessed data.

• J · K? exposes all arch. state. It could correspond to a
processor vulnerable to all Meltdown-type attacks (see §VII).

C. A lattice of contracts

Finally, we compare contracts in terms of the security
guarantees they offer to software. Intuitively, a contract is
stronger than another, if it guarantees to leak less information
to a microarchitectural adversary.

Definition 2 (J · K1 w J · K2). A contract J · K1 is stronger than
a contract J · K2 if JpK2(s) = JpK2(s 0)) JpK1(s) = JpK1(s 0)
for all programs p and all initial arch. states s ,s 0.

Equivalently, J · K1 w J · K2 holds whenever two arch. states
that can be distinguished by J · K1’s traces can also be distin-
guished by J · K2’s traces.

Note that if J ·K1 exposes only a subset of the labels of J ·K2,
then J · K1 is stronger than J · K2 according to Definition 2. For
example, the instructions explored by spec are also explored
by seq, and the observations of ct are contained in the
observations of arch. This enables us to arrange all contracts
defined in §III-B in the lattice [22] shown in Figure 4.

Finally, as expected, a hardware platform that satisfies a
contract J · K1 also satisfies all weaker contracts J · K2.

Proposition 1. If {| · |} ` J ·K1 and J ·K2 v J ·K1, then {| · |} ` J ·K2.

This implies that processors with stronger contracts J · K1
are backward-compatible in the sense that they can securely
execute any side-channel resilient legacy code that was already
secure under weaker contracts J · K2.

IV. PROGRAMMING AGAINST CONTRACTS

Contracts are the basis for secure programming. Here,
we consider two scenarios that are both instances of secure
programming: In the first, which we call “constant-time pro-
gramming”, the goal is to ensure that a benign program does
not leak confidential data to an adversary while computing on
this data. In the second, which we call “sandboxing”, the goal
is to prevent a potentially malicious program from accessing
confidential data.

A. Secure programming

We begin by framing secure programming as an
information-flow property. To distinguish confidential from
public data, we rely on a policy p : Vals ! {L,H} that labels
memory locations as high (H) or low (L), encoding whether
locations store confidential data or not. Two arch. states s ,s 0

are low-equivalent, written s 'L s 0, iff the values of all low
memory locations are the same.

Definition 3 (p ` NI(p,J · K)). Program p is non-interferent
w.r.t. contract J · K and policy p if for all initial arch.
states s ,s 0: s 'L s 0) JpK(s) = JpK(s 0).

5

STEP

p(s(pc)) 6= beqz x,` s t�*
seq
ct s 0

hs ,w +1i · s t�*
spec
ct hs 0,wi · s

ROLLBACK
s = hs 0,w 0i · s0

hs ,0i · s pc s 0(pc)�����*
spec

ct s

BARRIER

p(s(pc)) = spbarr s t�*
seq
ct s 0

hs ,w +1i · s t�*
spec
ct hs 0,0i · s

BRANCH

p(s(pc)) = beqz x,` `correct =

(
` if s(x) = 0
s(pc)+1 otherwise

`mispred 2 {`,s(pc)+1}\ `correct wmispred =

(
w if w = •
w otherwise

hs ,w +1i · s
pc `mispred������*

spec

ct hs [pc 7! `mispred],wmispredi · hs [pc 7! `correct],wi · s

Fig. 3: Definition of J · Kspec
ct contract. Configurations are stacks of hs ,wi, where w 2 N[{•} is the speculative window

denoting how many instructions are left to be executed. (initial arch. states s are treated as hs ,•i). At each computation step,
the w at the top of the stack is reduced by 1 (rules STEP and BRANCH). When executing a branch instruction (rule BRANCH),
the state hs [pc 7! `mispred],wmispredi is pushed on top of the stack, thereby allowing the exploration of the mispredicted branch
for wmispred steps. The correct branch hs [pc 7! `correct],wi is also recorded on the stack; allowing to later roll back speculatively
executed statements. When the w at the top of the stack reaches 0, we pop it (i.e., we backtrack and discard the changes) and
we continue the computation. Speculation barriers trigger a roll back by setting w to 0 (rule BARRIER).

J · K>J · Kseq
ct

J · Kspec
arch

J · Kseq
arch

J · Kseq-spec
ct-pc

J · Kspec
ct

J · K?
Fig. 4: Lattice of contracts. An edge from J · K1 to J · K2
means that J · K1 v J · K2. The J · K> contract is the one without
observations, and J ·K? one exposing all the architectural state.

That is, a program is non-interferent w.r.t. a contract and
a policy, if low-equivalent arch. states are indistinguishable
under the contract, i.e., no information about high memory
locations leaks into the contract’s traces.

Similarly to Def. 3, one can define a notion of non-
interference w.r.t. a hardware semantics {| · |}, written p `
NI(p,{| · |}), where information about high memory locations
cannot flow into hardware observations.

The following proposition, capturing leakage at the hard-
ware level, follows by composition of Definitions 1 and 3:

Proposition 2. If p`NI(p,J·K) and {|·|}`J·K, then p`NI(p,{|·|}).

B. Sandboxing
The goal of sandboxing is to enable the safe execution

of untrusted, potentially malicious code. This is achieved by
ensuring that the untrusted code is confined to a set of tightly
controlled resources. Here we focus on one important aspect:
preventing code from reading outside of its own subset of the
address space. To achieve this, just-in-time compilers enforce
access-control policies by inserting checks to ensure that all
memory accesses happen within the sandbox’s bounds.

We describe sandboxes using policies p , where memory out-
side of the sandbox is declared high. To account for programs
that may escape the sandbox by exploiting speculation across
access-control checks, we make the following distinction:

• Traditional sandboxing approaches [23], [24] check/en-
force vanilla sandboxing: A program p is vanilla-sandboxed
w.r.t. p if p never accesses high memory locations when
executing under the arch. semantics !. In our framework,
being vanilla-sandboxed is equivalent to p`NI(p,J ·Kseq

arch), i.e.,
being non-interferent w.r.t. J · Kseq

arch. This follows from J · Kseq
arch

exposing the value of accessed high memory locations.
• To faithfully reason about sandboxing on out-of-order

and speculative processors, one needs to go beyond vanilla
sandboxing and make sure that the program does not leak any
information that is outside of its sandbox through a covert
channel. We say that program is generally-sandboxed w.r.t.
contract J · K, if it is vanilla-sandboxed and in addition non-
interferent w.r.t J · K, i.e., p ` NI(p,J · K). General sandboxing
together with Proposition 2 guarantees that no data outside
of the sandbox affects what a µarch. adversary (including the
sandboxed program p itself, via probing) can observe on any
platform satisfying J · K.

Def. 4 enables to bridge the gap between vanilla sandboxing
and general sandboxing for a given program.

Definition 4. Program p satisfies weak speculative non-
interference (wSNI) with respect to J · K if for all initial arch.
states s ,s 0: JpKseq

arch(s) = JpKseq
arch(s

0)) JpK(s) = JpK(s 0).

Weak speculative non-interference is a variant of speculative
non-interference, the security checked by Spectector [12].

Proposition 3 shows how wSNI bridges the gap between
vanilla and general sandboxing.

Proposition 3. If program p is vanilla-sandboxed w.r.t. p and
wSNI w.r.t. J ·K, then p is generally-sandboxed w.r.t. p and J ·K.

Hence, to check whether a program p is generally-
sandboxed w.r.t. J ·K and p one can: (1) check/enforce that p is
vanilla-sandboxed w.r.t. p , and (2) verify whether p is wSNI.

C. Constant-time programming
Constant-time programming is a coding discipline for the

implementation of code like cryptographic algorithms that

“States agree on
public data”

“Executions are
indistinguishable
under contract”

What is secure programming?
Two variants

44

“Sandboxing”
e.g. Javascript in the browser

“Constant-time programming”
e.g. cryptographic code

Sandboxing
“Traditional” sandboxing mechanisms ensure that malicious code  
may not access secret data non-speculatively.

45

if (x < A_size)
 y = B[A[x]]

Appropriate
bounds check Ensures non-interference w.r.t. .

5

STEP

p(s(pc)) 6= beqz x,` s t�*
seq
ct s 0

hs ,w +1i · s t�*
spec
ct hs 0,wi · s

ROLLBACK
s = hs 0,w 0i · s0

hs ,0i · s pc s 0(pc)�����*
spec

ct s

BARRIER

p(s(pc)) = spbarr s t�*
seq
ct s 0

hs ,w +1i · s t�*
spec
ct hs 0,0i · s

BRANCH

p(s(pc)) = beqz x,` `correct =

(
` if s(x) = 0
s(pc)+1 otherwise

`mispred 2 {`,s(pc)+1}\ `correct wmispred =

(
w if w = •
w otherwise

hs ,w +1i · s
pc `mispred������*

spec

ct hs [pc 7! `mispred],wmispredi · hs [pc 7! `correct],wi · s

Fig. 3: Definition of J · Kspec
ct contract. Configurations are stacks of hs ,wi, where w 2 N[{•} is the speculative window

denoting how many instructions are left to be executed. (initial arch. states s are treated as hs ,•i). At each computation step,
the w at the top of the stack is reduced by 1 (rules STEP and BRANCH). When executing a branch instruction (rule BRANCH),
the state hs [pc 7! `mispred],wmispredi is pushed on top of the stack, thereby allowing the exploration of the mispredicted branch
for wmispred steps. The correct branch hs [pc 7! `correct],wi is also recorded on the stack; allowing to later roll back speculatively
executed statements. When the w at the top of the stack reaches 0, we pop it (i.e., we backtrack and discard the changes) and
we continue the computation. Speculation barriers trigger a roll back by setting w to 0 (rule BARRIER).

J · K>J · Kseq
ct

J · Kspec
arch

J · Kseq
arch

J · Kseq-spec
ct-pc

J · Kspec
ct

J · K?
Fig. 4: Lattice of contracts. An edge from J · K1 to J · K2
means that J · K1 v J · K2. The J · K> contract is the one without
observations, and J ·K? one exposing all the architectural state.

That is, a program is non-interferent w.r.t. a contract and
a policy, if low-equivalent arch. states are indistinguishable
under the contract, i.e., no information about high memory
locations leaks into the contract’s traces.

Similarly to Def. 3, one can define a notion of non-
interference w.r.t. a hardware semantics {| · |}, written p `
NI(p,{| · |}), where information about high memory locations
cannot flow into hardware observations.

The following proposition, capturing leakage at the hard-
ware level, follows by composition of Definitions 1 and 3:

Proposition 2. If p`NI(p,J·K) and {|·|}`J·K, then p`NI(p,{|·|}).

B. Sandboxing
The goal of sandboxing is to enable the safe execution

of untrusted, potentially malicious code. This is achieved by
ensuring that the untrusted code is confined to a set of tightly
controlled resources. Here we focus on one important aspect:
preventing code from reading outside of its own subset of the
address space. To achieve this, just-in-time compilers enforce
access-control policies by inserting checks to ensure that all
memory accesses happen within the sandbox’s bounds.

We describe sandboxes using policies p , where memory out-
side of the sandbox is declared high. To account for programs
that may escape the sandbox by exploiting speculation across
access-control checks, we make the following distinction:

• Traditional sandboxing approaches [23], [24] check/en-
force vanilla sandboxing: A program p is vanilla-sandboxed
w.r.t. p if p never accesses high memory locations when
executing under the arch. semantics !. In our framework,
being vanilla-sandboxed is equivalent to p`NI(p,J ·Kseq

arch), i.e.,
being non-interferent w.r.t. J · Kseq

arch. This follows from J · Kseq
arch

exposing the value of accessed high memory locations.
• To faithfully reason about sandboxing on out-of-order

and speculative processors, one needs to go beyond vanilla
sandboxing and make sure that the program does not leak any
information that is outside of its sandbox through a covert
channel. We say that program is generally-sandboxed w.r.t.
contract J · K, if it is vanilla-sandboxed and in addition non-
interferent w.r.t J · K, i.e., p ` NI(p,J · K). General sandboxing
together with Proposition 2 guarantees that no data outside
of the sandbox affects what a µarch. adversary (including the
sandboxed program p itself, via probing) can observe on any
platform satisfying J · K.

Def. 4 enables to bridge the gap between vanilla sandboxing
and general sandboxing for a given program.

Definition 4. Program p satisfies weak speculative non-
interference (wSNI) with respect to J · K if for all initial arch.
states s ,s 0: JpKseq

arch(s) = JpKseq
arch(s

0)) JpK(s) = JpK(s 0).

Weak speculative non-interference is a variant of speculative
non-interference, the security checked by Spectector [12].

Proposition 3 shows how wSNI bridges the gap between
vanilla and general sandboxing.

Proposition 3. If program p is vanilla-sandboxed w.r.t. p and
wSNI w.r.t. J ·K, then p is generally-sandboxed w.r.t. p and J ·K.

Hence, to check whether a program p is generally-
sandboxed w.r.t. J ·K and p one can: (1) check/enforce that p is
vanilla-sandboxed w.r.t. p , and (2) verify whether p is wSNI.

C. Constant-time programming
Constant-time programming is a coding discipline for the

implementation of code like cryptographic algorithms that

HW-level countermeasures 
are adequate for sandboxing.

Constant-time programming
“Traditional” constant-time programming ensures non-
interference w.r.t. .

46

HW-level countermeasures are not fully adequate for
traditional constant-time programming.

5

STEP

p(s(pc)) 6= beqz x,` s t�*
seq
ct s 0

hs ,w +1i · s t�*
spec
ct hs 0,wi · s

ROLLBACK
s = hs 0,w 0i · s0

hs ,0i · s pc s 0(pc)�����*
spec

ct s

BARRIER

p(s(pc)) = spbarr s t�*
seq
ct s 0

hs ,w +1i · s t�*
spec
ct hs 0,0i · s

BRANCH

p(s(pc)) = beqz x,` `correct =

(
` if s(x) = 0
s(pc)+1 otherwise

`mispred 2 {`,s(pc)+1}\ `correct wmispred =

(
w if w = •
w otherwise

hs ,w +1i · s
pc `mispred������*

spec

ct hs [pc 7! `mispred],wmispredi · hs [pc 7! `correct],wi · s

Fig. 3: Definition of J · Kspec
ct contract. Configurations are stacks of hs ,wi, where w 2 N[{•} is the speculative window

denoting how many instructions are left to be executed. (initial arch. states s are treated as hs ,•i). At each computation step,
the w at the top of the stack is reduced by 1 (rules STEP and BRANCH). When executing a branch instruction (rule BRANCH),
the state hs [pc 7! `mispred],wmispredi is pushed on top of the stack, thereby allowing the exploration of the mispredicted branch
for wmispred steps. The correct branch hs [pc 7! `correct],wi is also recorded on the stack; allowing to later roll back speculatively
executed statements. When the w at the top of the stack reaches 0, we pop it (i.e., we backtrack and discard the changes) and
we continue the computation. Speculation barriers trigger a roll back by setting w to 0 (rule BARRIER).

J · K>J · Kseq
ct

J · Kspec
arch

J · Kseq
arch

J · Kseq-spec
ct-pc

J · Kspec
ct

J · K?
Fig. 4: Lattice of contracts. An edge from J · K1 to J · K2
means that J · K1 v J · K2. The J · K> contract is the one without
observations, and J ·K? one exposing all the architectural state.

That is, a program is non-interferent w.r.t. a contract and
a policy, if low-equivalent arch. states are indistinguishable
under the contract, i.e., no information about high memory
locations leaks into the contract’s traces.

Similarly to Def. 3, one can define a notion of non-
interference w.r.t. a hardware semantics {| · |}, written p `
NI(p,{| · |}), where information about high memory locations
cannot flow into hardware observations.

The following proposition, capturing leakage at the hard-
ware level, follows by composition of Definitions 1 and 3:

Proposition 2. If p`NI(p,J·K) and {|·|}`J·K, then p`NI(p,{|·|}).

B. Sandboxing
The goal of sandboxing is to enable the safe execution

of untrusted, potentially malicious code. This is achieved by
ensuring that the untrusted code is confined to a set of tightly
controlled resources. Here we focus on one important aspect:
preventing code from reading outside of its own subset of the
address space. To achieve this, just-in-time compilers enforce
access-control policies by inserting checks to ensure that all
memory accesses happen within the sandbox’s bounds.

We describe sandboxes using policies p , where memory out-
side of the sandbox is declared high. To account for programs
that may escape the sandbox by exploiting speculation across
access-control checks, we make the following distinction:

• Traditional sandboxing approaches [23], [24] check/en-
force vanilla sandboxing: A program p is vanilla-sandboxed
w.r.t. p if p never accesses high memory locations when
executing under the arch. semantics !. In our framework,
being vanilla-sandboxed is equivalent to p`NI(p,J ·Kseq

arch), i.e.,
being non-interferent w.r.t. J · Kseq

arch. This follows from J · Kseq
arch

exposing the value of accessed high memory locations.
• To faithfully reason about sandboxing on out-of-order

and speculative processors, one needs to go beyond vanilla
sandboxing and make sure that the program does not leak any
information that is outside of its sandbox through a covert
channel. We say that program is generally-sandboxed w.r.t.
contract J · K, if it is vanilla-sandboxed and in addition non-
interferent w.r.t J · K, i.e., p ` NI(p,J · K). General sandboxing
together with Proposition 2 guarantees that no data outside
of the sandbox affects what a µarch. adversary (including the
sandboxed program p itself, via probing) can observe on any
platform satisfying J · K.

Def. 4 enables to bridge the gap between vanilla sandboxing
and general sandboxing for a given program.

Definition 4. Program p satisfies weak speculative non-
interference (wSNI) with respect to J · K if for all initial arch.
states s ,s 0: JpKseq

arch(s) = JpKseq
arch(s

0)) JpK(s) = JpK(s 0).

Weak speculative non-interference is a variant of speculative
non-interference, the security checked by Spectector [12].

Proposition 3 shows how wSNI bridges the gap between
vanilla and general sandboxing.

Proposition 3. If program p is vanilla-sandboxed w.r.t. p and
wSNI w.r.t. J ·K, then p is generally-sandboxed w.r.t. p and J ·K.

Hence, to check whether a program p is generally-
sandboxed w.r.t. J ·K and p one can: (1) check/enforce that p is
vanilla-sandboxed w.r.t. p , and (2) verify whether p is wSNI.

C. Constant-time programming
Constant-time programming is a coding discipline for the

implementation of code like cryptographic algorithms that

Need to apply additional SW-level countermeasures.

Thank you for your attention!

47

Find out more in the paper: 
https://arxiv.org/abs/2006.03841

https://arxiv.org/abs/2006.03841

