saarland-informatics-campus.de

Facile:
Fast, Accurate, and Interpretable
Basic-Block Throughput Prediction

Andreas Abel, Saarland University*

Shrey Sharma, Saarland University

This project has received funding from the
European Research Council (ERC) under
the European Union’s Horizon 2020
research and innovation programme (grant
agreement No 101020415)"

Jan Reineke, Saarland University

* now at Google

Performance Prediction/Analysis

Hardware

I

v
Software » | Tool » | Output
 Full applications « Dynamic « Execution time
* Functions * Profiling/sampling « Throughput
* Loops « Tracing * Resource Usage
» Basic blocks « Static » Bottlenecks

* Analytical * Hotspots

 Simulation-based
e ML-based
Hybrid

Performance Prediction/Analysis

H a r d Wa r e — (Intel) x86 systems

I

v
Software » | Tool » | Output
 Full applications « Dynamic « Execution time
* Functions * Profiling/sampling « Throughput
* Loops « Tracing * Resource Usage
» Basic blocks « Static » Bottlenecks

* Analytical * Hotspots

 Simulation-based
e ML-based
Hybrid

x86 Basic-Block Throughput Prediction

a#C OMPILER
RRRRRRRRRRRRRR A(A

llvm-mca

Intel® Architecture Code Analyzer Instruction THroughput Estimator using

MAchine Learning (ITHEMAL)
(IACA)

uiCA - The uops.info Code Analyzer

Use cases for basic block predictors

/

Manual performance As a cost model for
analysis/optimization compilers/superoptimizers

State of the art

Skylake
1.000,0 14 %
100,0 10 %
10,0 I I | 7%
1,0 3%
0,1 0%
IACA 2.3 OSACA LLVM-MCA-15 CQA lthemal UICA

By Average Error [l Time (ms) Il x

Background: Pipeline of Intel Core CPUs

lm
=
= Predecoder
£ 4
i Instruction Queue (1Q)
DSB —000 @@
Instruction Decode Queue
LSD
(IDQ)
v
Renamer / Allocator
retire
Reorder Buffer
a4
Scheduler
| Port 0 I Port 1 I Port 2 I Port 3 I Port 4 I Port 5 |
Hop Hop pop pop Hop Hop
- _ 2 A2 N 4)
C . .
= " : =] =) s
) a -
eI NN
o) > > e '§ s
aa] = > .§ 3 &
] -
< <

Analytical throughput predictor

| o TP = max{FrontEnd, Issue, Ports, Precedence}
in cycles *

per iteration

Analytical throughput predictor: Issue

| o TP = max{FrontEnd, Issue,/Ports, Precedence}
in cycles *

per iteration

number of
uops of the
benchmark

n-—_
Issue = —

l
\. issue width

Analytical throughput predictor: Front end

in cycles *
per iteration

FrontEnd = ¢

o TP = max{FrontEnd, Issue, Ports, Precedence}

number of
uops
unrollin
‘max{Predec,Dec} if benchmark is affected \ e factorg
by the JCC erratum [n u—‘
LSD else-if LSD-is-enabled and LSD =
#uops < IDQWidth /

 DSB else issue width

10

Analytical throughput predictor: Front end

| o TP = max{FrontEnd, Issue, Ports, Precedence}
in cycles *

per iteration

number of length
uops (in bytes)
‘max{Predec,Dec} if benchmark is affected \ /
by the JCC erratum r 'n ’
FrontEnd = ¢ LSD else if LSD is enabled and pgg —) {W—‘ [<32,
#uops—< TDQWidth \ - [> 32.

 DSB else /'

DSB width

11

Analytical throughput predictor: Front end

| o TP = max{FrontEnd, Issue, Ports, Precedence}
in cycles *

per iteration

(max{Predec,Dec}) if benchmark is affected
by the JCC erratum
FrontEnd = < LSD else if LSD is enabled and

#uops < IDQWidth
DSB else

\

12

Analytical throughput predictor: Ports

| o TP = max{FrontEnd, Issue,Ports. Precedence}
in cycles *

per iteration

Examples: 01|15 > 1/3
115 Il

* In general: can be solved using a linear program
 We developed a simpler, more efficient heuristic approach

13

Analytical throughput predictor: Precedence

| ~ TP = max{FrontEnd, Issue, Ports;Precedence}
in cycles * 7

per iteration

loop:

dec rax
dec rJL ::>

Jjnz loop

14

Implementation

uArch.

Instr. data from
uops.info Configuration

N/

[Basic BlockJ—?

FACILE

- - =)

XED
Disassembler

Predicted

; Throughput

15

uops.info: Characterizing Latency, Throughput, and
Port Usage of Instructions on Intel Microarchitectures

Andreas Abel and Jan Reineke
{abel.reineke}@cs.uni-saarland.de
Saarland University
Saarland Informatics Campus
Saarbriicken, Germany

Abstract

Modern microarchitectures are some of the world’s most
complex man-made systems. As a consequence, it is increas-
difficult to predict, explain, let alone optimize the per-
formance of software running on such microarchitectures.
As a basis for and

Providence, RI, USA. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3297858 3304062

1 Introduction

Developing tools that predict, explain, or even optimize the

we would need faithful models of their behavior, which are,
unfortunately, seldom available.

In this paper, we present the design and implementation
of a tool to construct faithful models of the latency, through-
put, and port usage of x86 instructions. To this end, we first
discuss common notions of instruction throughput and port
usage, and introduce a more precise definition of latency that,
in contrast to previous definitions, considers dependencies
between different pairs of input and output operands. We
then develop novel algorithms to infer the latency, through-
put, and port usage based on automatically-generated mi-
crobenchmarks that are more accurate and precise than ex-
isting work.

To facilitate the rapid construction of optimizing compil-
ers and tools for performance prediction, the output of our
toolis provided in a machine-readable format. We provide
experimental results for processors of all generations of In-
tel's Core architecture, i.c. from Nehalem to Coffee Lake,
and discuss various cases where the output of our tool differs
considerably from prior work.

ACM Reference Format:

Andreas Abel and Jan Reineke. 2019. uops.info: Characterizing
Latency, Throughput, and Port Usage of Instructions on Intel Mi-

software is ging duc to th lexity
of today’s microarchitectures. Unfortunately, this challenge
is exacerbated by the lack of a precise documentation of
their behavior. While the high-level structure of modern mi-
croarchitectures is well-known and stable across multiple
generations, lower-level aspects may differ considerably be-
tween microarchitecture generations and are generally not
as well documented. An important aspect with a relatively
strong influence on performance is how ISA instructions
decompose into micro-operations (ops): which ports these
Hops may be executed on: and what their latencies are.
Knowledge of this aspect is required, for instance, to build
precise performance-analysis tools like CQA [8], Kerncraft
[18], or llvm-mea [6]. It is also useful when configuring cycle-
accurate simulators like Zesto [27], gems [7]. McSim+ [3]
or ZSim [31]. Optimizing compilers, such as LLVM [26] and
GCC [15], can profit from detailed instruction characteriza-
tions to generate efficient code for a specific microarchitec-
ture. Similarly, such knowledge is helpful when manually
fine-tuning a picce of code for a specific processor.
Unfortunately, information about the port usage, latency,
and throughput of individual instructions at the required
Level of detail is hard to come by. Intel’s processor manu-
als [23] only contain latency and throughput data for a num-

In 2019 E
Languages and Operating Systems (ASPLOS "19), April 13-17, 2019,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, o post on servers or to redistribute to lsts,requires prior specific
permission and/or a fee. Request permissions from permissions@acm org.
ASPLOS '19, April 13-17, 2019, Providence, R, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6240-5/19/04...$15.00

hitps:/doi org/10.145/3297858 3304062

ber of " ly-used " They do not contain
on the of individual

into pops. nor do they state the execution ports that these
Hops can u

The only way to obtain accurate instruction characteriza-
tions for many recent microarchitectures is thus to perform

using Such

are aided by the availability of performance counters that
provide precise information on the number of elapsed cycles
and the cumulative port usage of instruction sequences. A rel-
atively large body of work [1. 2, 4,9, 10,19, 28-30, 32,33, 35,
36] uses microbenchmarks to infer properties of the memory
hierarchy. Another line of work [5, 13, 14, 25] uses automati-
cally generated microbenchmarks to characterize the energy

ASPLOS 2019

uops.info

Automatic generation of microbenchmarks to measure
the latency, throughput and execution port usage of
individual instructions

uops.info

16

1.000,0

100,0

10,0

1,0

0,1

Evaluation

Skylake

IACA 2.3

OSACA

My

LLVM-MCA-15 CQA lthemal UICA FACILE
Average Error [l Time (ms) M x

14 %

10 %

7%

3 %

0%

17

Predicted Throughput

Accuracy

10*

10°

10°

;101

FACILE
10 A
94
;! pd
7] prat
6- .;-
5 -
4 A .-—-cc-.
31 _—
2 i
1- ji .
0 T T T T T T T T

1 2 3 4 5 6 7 8
Measured Throughput

10

10°

18

Accuracy

FACILE uiCA Ithemal IACA 3.0
10 10 10 : 10 =T
9 — 94 [T 94 5 9 r
10* 10* | 10* ; 10*
81 e o 81 - 81 ' 8 r
- - - 1 -
a a . 3 :
= ' L 10° =) ' g 10° =) ' | 10° =) ' Fadt 10°
2 6 s 2 6 o 2 6 | i - T AE .
= - F; : -
£ s £ P £ .
o .- : o : o |t | : 2
L 4 —n 10 L 4 L . 10 L 44 !'! 10 L 4 10
9 W S i 2 S
=] - b= =] =
L 34 —— = o 3 r - o 34 1 v 3 .
- — - — — y -
= — - F . - A | = I .
24 — 10 2] " =i 10 24 [10 2 : 10
s . !' |
= : |
1 — 11 11 | i 1 :
0 ——— T 10° 0 ——— 10° 0 ———— 10" 0 ———— T 10°
0 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10
Measured Throughput Measured Throughput Measured Throughput Measured Throughput
OSACA llvm-mca Diff Tune CQA
10 10 - 10 : 10
94 " 9 . . > 94 9 -
10* 10* 10* 10*
8 -_— s - [8 E e nie il e o - - ' 8 -
- - - -
2 2 ; 2. 2.
B - = 4 § F w K B e smamEr asan - - i -
S ! 3 = ! 3 = ! 3 = ’ 3
gﬂ 10 %D 10 gﬂ 10 %D " 10
2 64 = = - = ° 6 ¥ d s WENE | 2 6 e L T 2 - i ° 6 - f— -
= g .
ﬁ 54 . s sm— [?: 51 Fazir=iv i E P I i ST R T E 5 e e L ILRT
= - B - 2 O ;O 2 O we 2
8 4] . e . g o 107 0 4l b b b T e i g .na: nem e ——— 10
Q Q Q Q e
2 2 g S ol s
-g 34 . u = . '8 3 [] 1 1 -8 34 s b gm— Bmas B (s me = . . -8 3 . - ——
: g o g e,
& : . - ! =" = R —— T . .
2 P A 10 5] B p 10 D T T . 10 2 e e w2 B : , 10
Lo : TN
1 1 - - 11 1 B 1 — - - - o= -
0 ———— 77— 10° 0 ——————— 10° 0 ————— T 10° 0 —— T 10°
0 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10
Measured Throughput Measured Throughput Measured Throughput Measured Throughput

19

)
=
e

C
O
e

D)

O

)

X
LLI

5N o = Q9
S o o o

0.5
0

(sw) yaewyduaq Jad awi |

20

Summary & Future Work

e Accurate and efficient open-source analytical basic-block TP
predictor

e Provides insights into what the bottlenecks are

e Integrate into compilers/superoptimizers
o Combine with branch prediction or memory hierarchy models
e Combine static and dynamic analyses

github.com/andreas-abel/uiCA/blob/master/facile.py
21

