Enabling Compositionality for
Multicore Timing Analysis

Jan Reineke @ saar | and
university
I —

co mputer sc ience

Joint work with Sebastian Hahn and Michael Jacobs,
to appear in RTNS 2016.

Verimag, Grenoble, September 13, 2016

Common View

Multicore timing analysis is hard because of
interference on shared resources.

Jan Reineke, Saarland 2

But: Timing Analysis for Single Cores

WCET Analysis
= computes bound on execution
time of task in isolation

\>

Response-Time Analysis
= computes bound on response-time
of task accounting for interference on
shared resource

R=C+ & "Rgc

"/dﬂp(l)"T

Jan Reineke, Saarland 3

Natural Extension to Multicores

WCRD Analysis
= computes bound on resource
demand of task in isolation
Resources: CPU, Bus, Cache, ...

\>

Response-Time Analysis
= computes bound on response-time
of task accounting for interference on
shared resources

Jan Reineke, Saarland 4

Example:

Shared Resources: Cores + Bus

C; = worst-case execution time of task I in isolation
| .= worst-case number of bus accesses
B = latency of individual bus access

R=C+

R L

j€hp()NT;|)

)

.C

worst-case
interference on core

J +

E R_I‘_" J) (o, B))

J€hp(i) J

)

worst-case
interference on bus

(unrealistic simplifying assumption:

preemptive execution of bus accesses)

Challenges

Soundness:

What is the worst-case cost of being blocked on
the bus by one other access?

Precision:

IsnOexecution on different resources
overlapped?

Jan Reineke, Saarland 6

Interference Response Curves:
Compositionality Assumption

Worst-case
Execution Time Compositionality
B Assumption
1
Ci =
>
|Interference|

Jan Reineke, Saarland 7

Computation of
Actual Interference Response Curves

Microarchitectural Analysis:

blocked 0 @ blocked = 1
time = time = 1

Model uncertainty about

interference by non-determinism.

Implicit Path Enumeration:

max time. aX..
edge e

Flow constraints +
Loop bounds +
Feasible paths +

Z blockede - xe < I

edge e

plug in different constants to
get different points on curve

Jan Reineke, Saarland 8

Worst-case
Execution Time

Interference Response Curves:
Actual Shape!

Compositionality

Assumption

-

i Actual Shape

imprecise

unsound

>
|Interference|

Jan Reineke, Saarland 9

In some
rare cases:

But mostly:

Why this shape?

Amplifying Timing Anomaly:

Fetch mul Accessldr

ready

ready

J
C Mem str X Fetch mul
[

X Mem Idr >

Exec mul

Program:
Str ...

ldr r1, [r2]
mul r3, r4, r5

C Mem §tr .

X Mem ldr X Fetch mul)

:pralonged

Exec mul

Latency Hiding:

(Mem str)

CExec mul) Exec div)

prolonged
—A N

C Mem str)

CExec mull Exec div)

Jan Reineke, Saarland 10

What to do about it?

Enabling compositionality:

1) (Modify HW)

21 More conservative access penalty
3) More conservative base bound

Jan Reineke, Saarland 11

Worst-case
Execution Time

Enabling Compositionality:
Sound Penalty

—>

i Actual Shape

imprecise

unsound

>
|Interference|

Jan Reineke, Saarland 12

Worst-case
Execution Time

Enabling Compositionality:
Sound Penalty

—>
Actual Shape

really
imprecise

sound

>
|Interference|

Jan Reineke, Saarland 13

Worst-case
Execution Time

Enabling Compositionality:
Sound Base Bound

—>
Actual Shape

imprecise

unsound

>
|Interference|

Jan Reineke, Saarland 14

Enabling Compositionality:
Sound Base Bound

Worst-case
Execution Time

—>
Actual Shape

more
imprecise

sound

>

|Interference|

Jan Reineke, Saarland 15

How to Compute Sound Base Bound:
Intuitively

Worst-case
Execution Time

Implicitly
given by ILP

A |Interference|

* Penalty
Ci Sound base bound
= maximal distance

—>

_/ >

|Interference|

Jan Reineke, Saarland 16

How to Compute Sound Base Bound:
As an ILP

d &
max timee é_)(e. maX% t|mee é.)(eI # bp é.ba
edge e edge e
Flow constraints + Flow constraints +
Loop bounds + Loop bounds +
Feasible paths + Feasible paths +
> blocked. - xe < I blocked: &x. " ba.
edge e edge e

variable rather than constant

Jan Reineke, Saarland 17

As an ILP

How to Compute Sound Base Bound:

max time. aX..
edge e
Flow constraints +

Loop bounds +

d &
% ' AX o 5
max timee axe # bpaba.
edge e
Flow constraints +
Loop bounds +

Feasible paths +

Z blockede - xe < I

edge e

Feasible paths +

blocked: &xe. " ba.
edge e

variable rather than constant

Can be generalized to multiple dimensions: e.g. bus interference + CRPD + refreshes

Jan Reineke, Saarland 18

Some Experimental Results:
Analysis Cost: Sound Base Bound

B Compositional Base Bound Path Analysis
Microarch. Analysis: Generate execution graph
B Microarch. Analysis: Compute reachable abstract states

normalized
analysis runtime

‘ ' \
\¥ 60\\(\\ ‘ \(\(\e\) e«\a\GQ\N 6«\0\(\ o 6/\\’(\ \J\O\)s ((\e’a«

(\5\0 5\3\ 5\0 \(0\\6 QGO :

For quad-core out-of-order processor with store buffer.

Jan Reineke, Saarland 19

Some Experimental Results:
Analysis Precision: No Interference

N
loComp. Base Bound |
0 2S5
O 7)) A O | N !
o 2= 104% | 0 S
- — H |
c'aEg =]
S 20 o |
0Q 04 S S LS
- © O 102% | o H Q2 a? <L30| '\
Ol o] — N 2)
= C >0 S 3 - S S8
5585 2] 8 SR
O 9 3 H ! |_| Dll_l
2 £ 100% - R (e
= 0 \(\ eV, A\ A0 V2
o0 @@\;@c 2 w«\e«\ @%q& % 5«

For quad-core out-of-order processor with store buffer.

Jan Reineke, Saarland 20

ratio to the
bound obtained

by a semi-
integrated analysis

Some Experimental Results:
Analysis Precision: 100% Interference

241.9% 260.2% 255.6% 237.4% 236.9% 243.0% 245.1% 243.7% 241.4%

130% 4 [] [] [] [] . []
- & stalling 10 Comp. Base Boundll I Sound Penalty
120% § 5_ R :
— N — |
— —
— T ° 50 | & &
<IN & | <
110% | 2% X 5 28 e X®| |1 e®
= X e N ™9 NS I B
o < N O o <@ o S — o o I S =
— o O o 2 — S S S [
100% +—LH ‘ ‘ ST S — = ﬂﬂ —LI AL,
adpcm expint jfdctint nsichneu statemate es_lift stopwatch trolleybus geo. mean

For quad-core out-of-order processor with store buffer.

Jan Reineke, Saarland 21

Conclusions

Sound base bound enables compositional
response-time analysis:

o! ~ 8x analysis slowdown (depends heavily on
benchmark and processor configuration)

o! relatively small imprecision

Jan Reineke, Saarland 22

