
Enabling Compositionality for
Multicore Timing Analysis

Jan Reineke @

Joint work with Sebastian Hahn and Michael Jacobs,
to appear in RTNS 2016.

Verimag, Grenoble, September 13, 2016

c o mputer sc i en ce

saar l an d
u n ive r si t y

Jan Reineke, Saarland 2

Common View

Multicore timing analysis is hard because of
interference on shared resources.

Jan Reineke, Saarland 3

But: Timing Analysis for Single Cores

Response-Time Analysis
= computes bound on response-time

of task accounting for interference on
shared resource

WCET Analysis
= computes bound on execution

time of task in isolation

Ri = Ci +
Ri

Tj

!

"
"
"

#

$
$
$j%hp(i)

& ' Cj

Jan Reineke, Saarland 4

Natural Extension to Multicores

Response-Time Analysis
= computes bound on response-time

of task accounting for interference on
shared resources

WCRD Analysis
= computes bound on resource

demand of task in isolation
Resources: CPU, Bus, Cache, ...

Jan Reineke, Saarland 5

Example:
Shared Resources: Cores + Bus

Ci = worst-case execution time of task i in isolation
! i = worst-case number of bus accesses
B = latency of individual bus access

Ri =Ci +
Ri

Tj

⎡

⎢
⎢
⎢

⎤

⎥
⎥
⎥j∈hp(i)∩Γi

∑ ⋅Cj

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟+

Ri + Ji

Tj

⎡

⎢
⎢
⎢

⎤

⎥
⎥
⎥j∈hp(i)

∑ ⋅ (σ j ⋅B)
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

worst-case
interference on core

worst-case
interference on bus

(unrealistic simplifying assumption:
preemptive execution of bus accesses)

Jan Reineke, Saarland 6

Challenges

Soundness:
What is the worst-case cost of being blocked on
the bus by one other access?

Precision:
IsnÔt execution on different resources
overlapped?

Jan Reineke, Saarland 7

Interference Response Curves:
Compositionality Assumption

|Interference|

Worst-case
Execution Time

Ci

1
B

Compositionality
Assumption

Jan Reineke, Saarland 8

Computation of
Actual Interference Response Curves

be incorrect even for simple microarchitectures. In Section 4
we will then discuss three remedies to this problem.

In response-time analysis, each contribution tc j of a de-
composition can be approximated by combining the results of
corresponding low-level analyses of each involved task. Such
analyses focus on the timing contributions of the system
constituents during the response time of a given task p. We
denote the set of traces from the release of task p until the end
of p’s execution, including periods in which p is preempted
by other tasks, by Tp ✓ T. Thus, for the response-time of a
given task p, we can derive:

max
! ! Tp

|! |  max
! ! Tp

n!

j=1

tc j (!) Def. compositionality


n!

j=1

max
! ! Tp

tc j (!) Monotonicity of
!


n!

j=1

Analysis j (p) Analysis correctness

In conventional single-core response-time analysis for fixed-
priority scheduling, only Analysis ideal(p) is considered

Analysis ideal(p) = Rp = Cp +
"

q! hp(p)

#
Rp

Tq

$
áCq, (3)

where Cp is a bound on task p’s execution time in isolation
obtained by a low-level analysis, and Tp is the period of p.
In multi-core response-time analysis [7] each Analysis j (p)
similarly aggregates the bounds on the contributions of each
task computed by corresponding low-level analyses. In that
case, the di! erent analyses, (Analysis j (p))j=1 ,...,n, are cou-
pled through the task’s response time Rp.

2.2 Low-Level Timing Analysis
In this section, we describe a slight generalisation of to-

day’s de-facto standard approach to WCET analysis. This
generalisation [21], which we call semi-integrated analysis,
allows to analyse a program’s execution time in terms of the
amount of interference it experiences on shared resources. We
will use this generalisation to evaluate the imprecision and
possible unsoundness of compositional analysis in Sections 3
and 5. Further, it is the basis of one of the two approaches to
enable compositionality by analysis described in Section 4.

We distinguish three analysis phases: 1. value and control-
ßow analysis, 2. microarchitectural analysis , and 3. path
analysis. The first phase computes properties of the program
that are independent of the underlying microarchitecture, in
particular the possible values of registers and memory cells
at di! erent points in the program, as well as loop bounds
and other constraints on the set of feasible program paths.
This information is used in the two following analysis phases.

As the microarchitecture determines each instruction’s
timing, microarchitectural analysis characterises all possible
execution traces of a given task. It is practically infeasible to
enumerate them all due to their sheer number. Thus the anal-
ysis operates on abstract microarchitectural states [43], which
each implicitly represent a large set of concrete microarchi-
tectural states. In particular, abstract microarchitectural
states completely abstract from the values of registers and
memory cells, which are characterised in Phase 1. They
do model the state of the pipeline, and of the caches, for
which good abstractions are known. In a fully-integrated

s1

s2

s3

s4

s5

s6

blocked= 0
time = 1

blocked= 0
time = 1

blocked= 1
time = 1

blocked= 0
time = 1

blocked= 0
time = 1

(a) One edge per processor cycle.

s1

s3 s6

blocked= 0
time = 2

blocked= 1
time = 3

(b) Compressed chains. One
edge represents multiple cycles.

Figure 2: Variants of microarchitectural execution graphs.

analysis, abstract states would also comprises the state of
the co-running tasks and the exact state of the peripherals
such as a DRAM controller. Despite the precision of such an
approach, such analyses [16, 24, 22] cannot handle realistic
hardware platforms without crippling assumptions—due to
the size of the state space. In a semi-integrated analysis [21],
which we describe here, microarchitectural states further
abstract from the co-running cores and the exact state of the
peripherals to coarse information about whether the shared
bus is blocked or a DRAM refresh is ongoing.

Microarchitectural analysis begins with the set of abstract
states in which the program under analysis is about to enter
the pipeline for execution. Then the analysis successively
computes the abstract states that arise within one processor
cycle—until the program under analysis has left the pipeline
and finished execution. The abstraction introduces non-
determinism upon analysing the e! ect of one processor cycle,
e.g. whether a cache access is a hit, or a bus access is blocked
by another access of a co-running task. Thus, an abstract
microarchitectural state can have multiple possible successor
states. If two abstract states are su" ciently “similar” they
can be joined to a single abstract state to speed up the
analysis.
Based on the set of reachable abstract states, microar-

chitectural analysis generates an abstract microarchitectural
execution graph (aka prediction-file [42]). The nodes in this
graph are abstract states and the edges describe the evolu-
tion during a processor cycle as shown in Figure 2a. For
e" ciency of the following path analysis, the resulting graph
is compressed by replacing chains of edges by a single edge
resulting in Figure 2b (see [42] for details). In the compressed
graph, each edge e is annotated with weights, in particular
the number of processor cycles time e. To model the impact
of interference such as shared-bus blocking, additional edge
weights can be used to capture the number of interfering
events occurring during the processor cycles modelled by an
edge, e.g. the number of interfering bus accesses blocking an
access to the shared bus blockede. For example, in state s1 in
Figure 2a, due to the abstraction of the state of co-running
tasks, it is unknown whether bus access will be blocked or
not, resulting in non-determinism, where one successor edge
is labelled with blocked= 0 and the other with blocked= 1.
Finally, path analysis determines the longest execution

trace through the microarchitectural execution graph. The
standard approach, implicit path enumeration [27], is to en-
code the longest-path problem as an Integer Linear Program
(ILP). For each edge e in the graph, a frequency variable xe

is used to model the number of times e is taken. To obtain
an upper timing bound, the objective function then is

max
"

edge e

time e áxe. (4)

Microarchitectural Analysis:

Model uncertainty about
interference by non-determinism.

Implicit Path Enumeration:

be incorrect even for simple microarchitectures. In Section 4
we will then discuss three remedies to this problem.

In response-time analysis, each contribution tcj of a de-
composition can be approximated by combining the results of
corresponding low-level analyses of each involved task. Such
analyses focus on the timing contributions of the system
constituents during the response time of a given task p. We
denote the set of traces from the release of task p until the end
of p’s execution, including periods in which p is preempted
by other tasks, by Tp ✓ T. Thus, for the response-time of a
given task p, we can derive:

max
! ! Tp

|! |  max
! ! Tp

n!

j=1

tcj (!) Def. compositionality


n!

j=1

max
! ! Tp

tcj (!) Monotonicity of
!


n!

j=1

Analysis j (p) Analysis correctness

In conventional single-core response-time analysis for fixed-
priority scheduling, only Analysis ideal(p) is considered

Analysis ideal(p) = Rp = Cp +
"

q! hp(p)

#
Rp

Tq

$
áCq, (3)

where Cp is a bound on task p’s execution time in isolation
obtained by a low-level analysis, and Tp is the period of p.
In multi-core response-time analysis [7] each Analysis j (p)
similarly aggregates the bounds on the contributions of each
task computed by corresponding low-level analyses. In that
case, the di↵erent analyses, (Analysis j (p))j=1,...,n, are cou-
pled through the task’s response time Rp.

2.2 Low-Level Timing Analysis
In this section, we describe a slight generalisation of to-

day’s de-facto standard approach to WCET analysis. This
generalisation [21], which we call semi-integrated analysis,
allows to analyse a program’s execution time in terms of the
amount of interference it experiences on shared resources. We
will use this generalisation to evaluate the imprecision and
possible unsoundness of compositional analysis in Sections 3
and 5. Further, it is the basis of one of the two approaches to
enable compositionality by analysis described in Section 4.

We distinguish three analysis phases: 1. value and control-
flow analysis, 2. microarchitectural analysis, and 3. path
analysis. The first phase computes properties of the program
that are independent of the underlying microarchitecture, in
particular the possible values of registers and memory cells
at di↵erent points in the program, as well as loop bounds
and other constraints on the set of feasible program paths.
This information is used in the two following analysis phases.

As the microarchitecture determines each instruction’s
timing, microarchitectural analysis characterises all possible
execution traces of a given task. It is practically infeasible to
enumerate them all due to their sheer number. Thus the anal-
ysis operates on abstract microarchitectural states [43], which
each implicitly represent a large set of concrete microarchi-
tectural states. In particular, abstract microarchitectural
states completely abstract from the values of registers and
memory cells, which are characterised in Phase 1. They
do model the state of the pipeline, and of the caches, for
which good abstractions are known. In a fully-integrated

s1

s2

s3

s4

s5

s6

blocked = 0
time = 1

blocked = 0
time = 1

blocked = 1
time = 1

blocked = 0
time = 1

blocked = 0
time = 1

(a) One edge per processor cycle.

s1

s3 s6

blocked = 0
time = 2

blocked = 1
time = 3

(b) Compressed chains. One
edge represents multiple cycles.

Figure 2: Variants of microarchitectural execution graphs.

analysis, abstract states would also comprises the state of
the co-running tasks and the exact state of the peripherals
such as a DRAM controller. Despite the precision of such an
approach, such analyses [16, 24, 22] cannot handle realistic
hardware platforms without crippling assumptions—due to
the size of the state space. In a semi-integrated analysis [21],
which we describe here, microarchitectural states further
abstract from the co-running cores and the exact state of the
peripherals to coarse information about whether the shared
bus is blocked or a DRAM refresh is ongoing.

Microarchitectural analysis begins with the set of abstract
states in which the program under analysis is about to enter
the pipeline for execution. Then the analysis successively
computes the abstract states that arise within one processor
cycle—until the program under analysis has left the pipeline
and finished execution. The abstraction introduces non-
determinism upon analysing the e↵ect of one processor cycle,
e.g. whether a cache access is a hit, or a bus access is blocked
by another access of a co-running task. Thus, an abstract
microarchitectural state can have multiple possible successor
states. If two abstract states are su�ciently “similar” they
can be joined to a single abstract state to speed up the
analysis.
Based on the set of reachable abstract states, microar-

chitectural analysis generates an abstract microarchitectural
execution graph (aka prediction-file [42]). The nodes in this
graph are abstract states and the edges describe the evolu-
tion during a processor cycle as shown in Figure 2a. For
e�ciency of the following path analysis, the resulting graph
is compressed by replacing chains of edges by a single edge
resulting in Figure 2b (see [42] for details). In the compressed
graph, each edge e is annotated with weights, in particular
the number of processor cycles timee. To model the impact
of interference such as shared-bus blocking, additional edge
weights can be used to capture the number of interfering
events occurring during the processor cycles modelled by an
edge, e.g. the number of interfering bus accesses blocking an
access to the shared bus blockede. For example, in state s1 in
Figure 2a, due to the abstraction of the state of co-running
tasks, it is unknown whether bus access will be blocked or
not, resulting in non-determinism, where one successor edge
is labelled with blocked = 0 and the other with blocked = 1.
Finally, path analysis determines the longest execution

trace through the microarchitectural execution graph. The
standard approach, implicit path enumeration [27], is to en-
code the longest-path problem as an Integer Linear Program
(ILP). For each edge e in the graph, a frequency variable xe

is used to model the number of times e is taken. To obtain
an upper timing bound, the objective function then is

max
"

edge e

timee áxe. (4)

The microarchitectural execution graph is encoded via ßow
conservation constraints for each vertex in the graph. Fur-
thermore, cycles in the graph are bounded using loop bound
information. More details on such ILP formulations can be
found in [42].

If an upper bound on the amount of interference IÑe.g.
on the shared busÑis known, an interference constraint

X

edge e

blockede · xe  I (5)

can be added to exclude paths that experience an infeasi-
ble amount of interference [21]. Similar constraints can be
formulated to bound the impact of DRAM refreshes or the
impact of cache misses due to preemptions, provided the
graph is annotated with corresponding weights.

Throughout the paper, we refer to the analysis described
above that models interference by non-determinism as asemi-
integrated analysis. It is apparent that Analysis ideal from
Section 2.1, which can assume the absence of interference is
more e! cient: less non-determinism needs to be considered
in the microarchitectural analysis and the ILP path analy-
sis formulation becomes simpler with fewer constraints. In
particular, no interference constraint is required.

3. THREATS TO COMPOSITIONALITY
All approaches involved with timing compositionality which

we encountered in the literature feature a composition op-
erator that is linear w.r.t. interferenceÑsimilar to the one
described in Section 2.1, i.e., each unit of interference is
assumed to contribute a Þxed penalty of additional execution
cycles. This system model assumption is sound if a unit
of interference can never cause more additional execution
time than given by the penalty, and it is precise if a unit of
interference almost always increases execution time by the
penalty.

To validate these two assumptions, we introduce inter-
ference response curves. The interference response curve of
a task bounds its interference-induced additional execution
time in terms of the amount of interference that the task
experiences during its execution. We use a semi-integrated
analysis as described in Section 2.2 to compute such bounds.
Here, interference may be quantiÞed by the number of addi-
tional cache misses due to preemptions, the number of DRAM
refreshes, or the number of blocking accesses at the shared
bus. In this paper, we focus w.l.o.g. only on interference
caused by shared-bus blocking.

For a given program, the interference response curve is
implicitly given by the integer linear program used in the
path analysis as described in Section 2.2. A single point
on the curve can be computed by choosing a corresponding
constant amount of interference I in the ILP constraints.

Figure 3a shows the interference response curves for several
programs w.r.t. shared-bus blocking. The underlying hard-
ware conÞgurationÑa dual-core machine with round-robin
event-driven arbitrationÑis described in detail in Section 5.2.
In round-robin arbitration, a single access can be blocked
by at most one concurrent access per co-running core. Thus,
there is a maximal amount of interference that can a " ect
the execution of a program. The y-axis shows the additional
execution time due to interference, relative to the direct
e" ect of this maximal interference. A curve corresponding
to perfect compositionality would have a slope of one with a
y-intercept of zero.

0% 20% 40% 60% 80% 100%
0%

20%

40%

60%

80%

100%

% of maximal amount of interference

%
of

th
e

di
re

ct
e

"
ec

t
of

10
0%

in
te

rf
er

en
ce

jfdctint
expint
stopwatch
lift

(a) From 0 to max interference.

0% 1% 2% 3% 4% 5%
0%

1%

2%

3%

4%

5%

% of maximal amount of interference %
of

th
e

di
re

ct
e

"
ec

t
of

10
0%

in
te

rf
er

en
ce

(b) Zoom in on 0% to 5%.

Figure 3: Sampled interference response curves for four pro-
grams. 100 samples each. ConÞguration 4, see Section 5.2.

Figure 3b zooms in on the interval from 0% to 5% of
the maximal amount of interference that a " ects a given
benchmark. We make two observations:

Observation 1. For some programs, the additional exe-
cution time due to shared-bus interference exceeds the expected
direct e! ect penalty. See Figure 3b.

Observation 2. For some programs, a significant portion
of the expected additional latency is hidden. See Figure 3a.

In general, it depends both on the core architecture and
the particular shared resource whether a drop in slope of the
curve can be observed: Using, e.g., Þxed-priority bus arbitra-
tion, all interfering accesses canÑin the worst caseÑblock a
single access, and so very little of their contributions canÑin
the worst caseÑbe hidden. Under round-robin arbitration,
on the other hand, the ability of the core to overlap bus
blocking with other computations determines the drop in
slope of the curve.

The interference response curve can be multi-dimensional
modelling the cumulative e " ects of multiple di " erent sources
of interference.

3.1 Amplifying Timing Anomalies
Timing anomalies [29, 34] are a well-known challenge for

timing analysis. Due to the non-determinism in the mi-
croarchitectural analysis, an abstract state can have multiple
successors. One of them is often considered to be thelocal
worst case (e.g. shared bus blocked, or additional cache
miss) with a bounded direct e! ect on the execution time as
described in Section 2.1.

A non-deterministic choice where the local worst case
doesnot imply the global worst case is known as a timing
anomaly. Microarchitectural analysis thus needs to follow all
possible successors to obtain a sound upper bound, which
can be expensive. Such anomalies are not harmful w.r.t.
compositionality and are thus not the focus of this paper.

However, Lundqvist and Stenstr ¬om [29] found a second
type of anomaly. While servicing the local worst case the
abstract pipeline state can change in a way that leads to
an indirect e! ect, i.e. an additional execution time increase
beyond the direct e" ect penalty. We call a non-deterministic
choice, an amplifying anomaly, if the overall execution time
increases bymore than the direct e " ect, i.e. there is a positive
indirect e" ect.

Considering the combination operator presented in Sec-
tion 2.1, it is apparent that this poses a challenge for timing
compositionality. Ignoring indirect e " ects leads tounsound
bounds, which is supported by our Observation 1.

Flow constraints +
Loop bounds +
Feasible paths +

plug in different constants to
get different points on curve

Jan Reineke, Saarland 9

Interference Response Curves:
Actual Shape!

|Interference|

Worst-case
Execution Time

Ci

Compositionality
Assumption

Actual Shape

imprecise

unsound

Jan Reineke, Saarland 10

Why this shape?

Fetch mul
ready

Accessldr
ready

Mem str Fetch mul Mem ldr

Exec mul

Mem str Mem ldr Fetch mul

Exec mulprolonged

Program:
str ...
...
ldr r1, [r2]
mul r3, r4, r5

Figure 4: Amplifying timing anomaly upon uncertainty of
length of store accessstr , e.g. due to shared-bus blocking.

Mem str

Exec mul Exec div

Mem str

Exec mul Exec div

prolonged

Figure 5: The execution of two subsequent arithmetic in-
structions hiding the latency of a preceding store.

The microarchitectural analysis of dynamically-scheduled
(a.k.a. out-of-order) processors is known to be prone to am-
plifying timing anomalies. Lundqvist and Stenstr ¬om [29]
provide examples of amplifying timing anomalies triggered
by uncertainty about the cache behaviour and the varying
latencies for cache hits and misses. Such anomalies can also
be triggered by uncertainty about the memory latency due
to shared-bus blocking.

As one of the contributions of this paper, we observe
amplifying timing anomalies even in the analysis of low-
complexity processors comparable to an ARMR! Cortex R! -
M4 [3]. In the following, we provide an example, which we
encountered during the microarchitectural analysis of the
benchmark program bsort100.c taken from [15]. We found
this anomaly during the analysis of the in-order pipeline with
store bu! er described in Section 5.2.

In Figure 4, we show the relevant program snippet and
the amplifying anomaly triggered by the uncertainty of the
duration of the store memory access str . The upper case
depicts the situation that str Þnishes fast, while the lower
case depicts the situation that the accessstr is prolonged, e.g.
by bus blocking. As stores are bu! ered, str can complete
and leave the pipeline so that the execution of subsequent
instructions can advance in the pipeline. In both cases,
the fetch of instruction mul becomes ready, but is blocked
because the memory is busy with str . The data access of the
load ldr becomes ready during the prolonged part of str .
After access str Þnished, the fetch of mul is started in the
upper case as it is the only ready access. In the lower case,
there are two ready accesses: the fetch ofmul and the data
access ofldr . As in the aforementioned Cortex R! -M4 [3],
the data access is prioritised over the instruction fetch and
thus ldr starts. In both cases, mul can only execute after
it has been fetched. In the upper case,mulÕs execution can
be overlapped with the (independent) load whereas this is
not possible in the lower case. Finally, the incurred penalty
on the execution time is larger than the prolongation of the
access. The indirect e! ect in this example is determined by
the execution latency of mul.

3.2 Hiding Latencies
In Figure 3a, we observe that there can be signiÞcant

latency hiding e! ects. Thus, a timing bound that is derived
compositionally may signiÞcantly overestimate the bound
derived by a semi-integrated analysis.

The reason is that parts of memory accessesÑthus also
parts of shared-bus blockingÑcan overlap with computa-

unso
und with

out HW
modiÞca

tio
n

overestimation due to
indirect e ! ects

in penalty

0% 20% 40% 60% 80% 100%

20%

40%

60%

80%

100%

% of maximal amount of interference

%
of

th
e

di
re

ct
e

!
ec

t
of

10
0%

in
te

rf
er

en
ce

Interference Response Curve

Stalling (HW modiÞcation)

Compositional Base Bound

Sound Penalty

*
! overestimation due to indirect e ! ects in base bound

performance loss
due to stalling

overestimation due to
missed latency hiding

Figure 6: Overview of approaches to obtain a sound de-
composition. Di ! erent sources of under-/over-estimation
distinguished.

tc
id

ea
l

s1

s4

s2

s5

s3

s6

po
te

nt
ia

l

indirect
e

!
ect

Âbl

bl

Âbl

bl

Âbl

direct e! ect tcbus

(a) Without Stalling

tc
id

ea
l

s1

s4

s1

s4

s1

s4

no indirect e! ects

=
=

Âbl

bl

Âbl

bl

Âbl

direct e! ect tcbus

(b) With Stalling

Figure 7: Example: snippet of a cycle-wise microarchitectural
execution graph.

tions within the processor pipeline. This e ! ectively hides
parts of the overall latency. The better a microarchitecture
can hide latencies, the less precise compositionally derived
bounds will be. As an example, consider Figure 5. A store
operation is performed in the background memory, while
subsequent arithmetic instructions execute concurrently due
to pipelining and the presence of a store bu! er. For the
overall execution time, it is irrelevant whether the store is
prolonged or not, as in both cases the memory latency is
hidden by the execution of independent operations.

4. ENABLING COMPOSITIONALITY
In the following, we present three di ! erent solutions to es-

tablish a sound decompositionÑranging from microarchitec-
tural design changes to new analysis techniques. Although we
focus on interference by shared-bus blocking, all approaches
can be applied for other sources of interference as well. The
e! ects of the three approaches on analysis precision and
soundness are summarised in Figure 6.

4.1 By Hardware Design: Pipeline Stalling
The Þrst approach is to eliminate indirect e! ects by hard-

ware design and thus allow the sound use of the decomposi-
tion introduced in Section 2.1 using direct e ! ects as penalties.
Consider the execution graph snippet in Figure 7a that shows
the behaviour of an access that can be blocked (bl) at the
bus. The ideal timing contribution tc ideal covers the timing
behaviour under the absence of bus blocking (s4). Timing
compositionality is violated if a trace starting from s5 or s6

is longer than every trace starting from s4, i.e. there is an

Latency Hiding:

Fetch mul
ready

Accessldr
ready

Mem str Fetch mul Mem ldr

Exec mul

Mem str Mem ldr Fetch mul

Exec mulprolonged

Program:
str ...
...
ldr r1, [r2]
mul r3, r4, r5

Figure 4: Amplifying timing anomaly upon uncertainty of
length of store accessstr , e.g. due to shared-bus blocking.

Mem str

Exec mul Exec div

Mem str

Exec mul Exec div

prolonged

Figure 5: The execution of two subsequent arithmetic in-
structions hiding the latency of a preceding store.

The microarchitectural analysis of dynamically-scheduled
(a.k.a. out-of-order) processors is known to be prone to am-
plifying timing anomalies. Lundqvist and Stenstr ¬om [29]
provide examples of amplifying timing anomalies triggered
by uncertainty about the cache behaviour and the varying
latencies for cache hits and misses. Such anomalies can also
be triggered by uncertainty about the memory latency due
to shared-bus blocking.

As one of the contributions of this paper, we observe
amplifying timing anomalies even in the analysis of low-
complexity processors comparable to an ARMR! Cortex R! -
M4 [3]. In the following, we provide an example, which we
encountered during the microarchitectural analysis of the
benchmark program bsort100.c taken from [15]. We found
this anomaly during the analysis of the in-order pipeline with
store bu! er described in Section 5.2.

In Figure 4, we show the relevant program snippet and
the amplifying anomaly triggered by the uncertainty of the
duration of the store memory access str . The upper case
depicts the situation that str Þnishes fast, while the lower
case depicts the situation that the accessstr is prolonged, e.g.
by bus blocking. As stores are bu! ered, str can complete
and leave the pipeline so that the execution of subsequent
instructions can advance in the pipeline. In both cases,
the fetch of instruction mul becomes ready, but is blocked
because the memory is busy with str . The data access of the
load ldr becomes ready during the prolonged part of str .
After access str Þnished, the fetch of mul is started in the
upper case as it is the only ready access. In the lower case,
there are two ready accesses: the fetch ofmul and the data
access ofldr . As in the aforementioned Cortex R! -M4 [3],
the data access is prioritised over the instruction fetch and
thus ldr starts. In both cases, mul can only execute after
it has been fetched. In the upper case,mulÕs execution can
be overlapped with the (independent) load whereas this is
not possible in the lower case. Finally, the incurred penalty
on the execution time is larger than the prolongation of the
access. The indirect e! ect in this example is determined by
the execution latency of mul.

3.2 Hiding Latencies
In Figure 3a, we observe that there can be signiÞcant

latency hiding e! ects. Thus, a timing bound that is derived
compositionally may signiÞcantly overestimate the bound
derived by a semi-integrated analysis.

The reason is that parts of memory accessesÑthus also
parts of shared-bus blockingÑcan overlap with computa-

unso
und with

out HW
modiÞca

tio
n

overestimation due to
indirect e ! ects

in penalty

0% 20% 40% 60% 80% 100%

20%

40%

60%

80%

100%

% of maximal amount of interference

%
of

th
e

di
re

ct
e

!
ec

t
of

10
0%

in
te

rf
er

en
ce

Interference Response Curve

Stalling (HW modiÞcation)

Compositional Base Bound

Sound Penalty

*
! overestimation due to indirect e ! ects in base bound

performance loss
due to stalling

overestimation due to
missed latency hiding

Figure 6: Overview of approaches to obtain a sound de-
composition. Di ! erent sources of under-/over-estimation
distinguished.

tc
id

ea
l

s1

s4

s2

s5

s3

s6

po
te

nt
ia

l

indirect
e

!
ect

Âbl

bl

Âbl

bl

Âbl

direct e! ect tcbus

(a) Without Stalling

tc
id

ea
l

s1

s4

s1

s4

s1

s4

no indirect e! ects

=
=

Âbl

bl

Âbl

bl

Âbl

direct e! ect tcbus

(b) With Stalling

Figure 7: Example: snippet of a cycle-wise microarchitectural
execution graph.

tions within the processor pipeline. This e ! ectively hides
parts of the overall latency. The better a microarchitecture
can hide latencies, the less precise compositionally derived
bounds will be. As an example, consider Figure 5. A store
operation is performed in the background memory, while
subsequent arithmetic instructions execute concurrently due
to pipelining and the presence of a store bu! er. For the
overall execution time, it is irrelevant whether the store is
prolonged or not, as in both cases the memory latency is
hidden by the execution of independent operations.

4. ENABLING COMPOSITIONALITY
In the following, we present three di ! erent solutions to es-

tablish a sound decompositionÑranging from microarchitec-
tural design changes to new analysis techniques. Although we
focus on interference by shared-bus blocking, all approaches
can be applied for other sources of interference as well. The
e! ects of the three approaches on analysis precision and
soundness are summarised in Figure 6.

4.1 By Hardware Design: Pipeline Stalling
The Þrst approach is to eliminate indirect e! ects by hard-

ware design and thus allow the sound use of the decomposi-
tion introduced in Section 2.1 using direct e ! ects as penalties.
Consider the execution graph snippet in Figure 7a that shows
the behaviour of an access that can be blocked (bl) at the
bus. The ideal timing contribution tc ideal covers the timing
behaviour under the absence of bus blocking (s4). Timing
compositionality is violated if a trace starting from s5 or s6

is longer than every trace starting from s4, i.e. there is an

Amplifying Timing Anomaly:

In some
rare cases:

But mostly:

Jan Reineke, Saarland 11

What to do about it?

Enabling compositionality:
1)! (Modify HW)
2)! More conservative access penalty

3)! More conservative base bound

Jan Reineke, Saarland 12

Enabling Compositionality:
Sound Penalty

|Interference|

Worst-case
Execution Time

Ci

Actual Shape

imprecise

unsound

Jan Reineke, Saarland 13

Enabling Compositionality:
Sound Penalty

|Interference|

Worst-case
Execution Time

Ci

Actual Shape

imprecise

unsound

really
imprecise

sound

Jan Reineke, Saarland 14

Enabling Compositionality:
Sound Base Bound

|Interference|

Worst-case
Execution Time

Ci

Actual Shape

imprecise

unsound

Jan Reineke, Saarland 15

Enabling Compositionality:
Sound Base Bound

|Interference|

Worst-case
Execution Time

Ci

Actual Shape

imprecise

unsound

more
imprecise

sound

Jan Reineke, Saarland 16

How to Compute Sound Base Bound:
Intuitively

|Interference|

Worst-case
Execution Time

Ci

Implicitly
given by ILP

Sound base bound
= maximal distance

|Interference|
* Penalty

Jan Reineke, Saarland 17

How to Compute Sound Base Bound:
As an ILP

be incorrect even for simple microarchitectures. In Section 4
we will then discuss three remedies to this problem.

In response-time analysis, each contribution tcj of a de-
composition can be approximated by combining the results of
corresponding low-level analyses of each involved task. Such
analyses focus on the timing contributions of the system
constituents during the response time of a given task p. We
denote the set of traces from the release of task p until the end
of p’s execution, including periods in which p is preempted
by other tasks, by Tp ✓ T. Thus, for the response-time of a
given task p, we can derive:

max
! ! Tp

|! |  max
! ! Tp

n!

j=1

tcj (!) Def. compositionality


n!

j=1

max
! ! Tp

tcj (!) Monotonicity of
!


n!

j=1

Analysis j (p) Analysis correctness

In conventional single-core response-time analysis for fixed-
priority scheduling, only Analysis ideal(p) is considered

Analysis ideal(p) = Rp = Cp +
"

q! hp(p)

#
Rp

Tq

$
áCq, (3)

where Cp is a bound on task p’s execution time in isolation
obtained by a low-level analysis, and Tp is the period of p.
In multi-core response-time analysis [7] each Analysis j (p)
similarly aggregates the bounds on the contributions of each
task computed by corresponding low-level analyses. In that
case, the di↵erent analyses, (Analysis j (p))j=1,...,n, are cou-
pled through the task’s response time Rp.

2.2 Low-Level Timing Analysis
In this section, we describe a slight generalisation of to-

day’s de-facto standard approach to WCET analysis. This
generalisation [21], which we call semi-integrated analysis,
allows to analyse a program’s execution time in terms of the
amount of interference it experiences on shared resources. We
will use this generalisation to evaluate the imprecision and
possible unsoundness of compositional analysis in Sections 3
and 5. Further, it is the basis of one of the two approaches to
enable compositionality by analysis described in Section 4.

We distinguish three analysis phases: 1. value and control-
flow analysis, 2. microarchitectural analysis, and 3. path
analysis. The first phase computes properties of the program
that are independent of the underlying microarchitecture, in
particular the possible values of registers and memory cells
at di↵erent points in the program, as well as loop bounds
and other constraints on the set of feasible program paths.
This information is used in the two following analysis phases.

As the microarchitecture determines each instruction’s
timing, microarchitectural analysis characterises all possible
execution traces of a given task. It is practically infeasible to
enumerate them all due to their sheer number. Thus the anal-
ysis operates on abstract microarchitectural states [43], which
each implicitly represent a large set of concrete microarchi-
tectural states. In particular, abstract microarchitectural
states completely abstract from the values of registers and
memory cells, which are characterised in Phase 1. They
do model the state of the pipeline, and of the caches, for
which good abstractions are known. In a fully-integrated

s1

s2

s3

s4

s5

s6

blocked = 0
time = 1

blocked = 0
time = 1

blocked = 1
time = 1

blocked = 0
time = 1

blocked = 0
time = 1

(a) One edge per processor cycle.

s1

s3 s6

blocked = 0
time = 2

blocked = 1
time = 3

(b) Compressed chains. One
edge represents multiple cycles.

Figure 2: Variants of microarchitectural execution graphs.

analysis, abstract states would also comprises the state of
the co-running tasks and the exact state of the peripherals
such as a DRAM controller. Despite the precision of such an
approach, such analyses [16, 24, 22] cannot handle realistic
hardware platforms without crippling assumptions—due to
the size of the state space. In a semi-integrated analysis [21],
which we describe here, microarchitectural states further
abstract from the co-running cores and the exact state of the
peripherals to coarse information about whether the shared
bus is blocked or a DRAM refresh is ongoing.

Microarchitectural analysis begins with the set of abstract
states in which the program under analysis is about to enter
the pipeline for execution. Then the analysis successively
computes the abstract states that arise within one processor
cycle—until the program under analysis has left the pipeline
and finished execution. The abstraction introduces non-
determinism upon analysing the e↵ect of one processor cycle,
e.g. whether a cache access is a hit, or a bus access is blocked
by another access of a co-running task. Thus, an abstract
microarchitectural state can have multiple possible successor
states. If two abstract states are su�ciently “similar” they
can be joined to a single abstract state to speed up the
analysis.
Based on the set of reachable abstract states, microar-

chitectural analysis generates an abstract microarchitectural
execution graph (aka prediction-file [42]). The nodes in this
graph are abstract states and the edges describe the evolu-
tion during a processor cycle as shown in Figure 2a. For
e�ciency of the following path analysis, the resulting graph
is compressed by replacing chains of edges by a single edge
resulting in Figure 2b (see [42] for details). In the compressed
graph, each edge e is annotated with weights, in particular
the number of processor cycles timee. To model the impact
of interference such as shared-bus blocking, additional edge
weights can be used to capture the number of interfering
events occurring during the processor cycles modelled by an
edge, e.g. the number of interfering bus accesses blocking an
access to the shared bus blockede. For example, in state s1 in
Figure 2a, due to the abstraction of the state of co-running
tasks, it is unknown whether bus access will be blocked or
not, resulting in non-determinism, where one successor edge
is labelled with blocked = 0 and the other with blocked = 1.
Finally, path analysis determines the longest execution

trace through the microarchitectural execution graph. The
standard approach, implicit path enumeration [27], is to en-
code the longest-path problem as an Integer Linear Program
(ILP). For each edge e in the graph, a frequency variable xe

is used to model the number of times e is taken. To obtain
an upper timing bound, the objective function then is

max
"

edge e

timee áxe. (4)

The microarchitectural execution graph is encoded via ßow
conservation constraints for each vertex in the graph. Fur-
thermore, cycles in the graph are bounded using loop bound
information. More details on such ILP formulations can be
found in [42].

If an upper bound on the amount of interference IÑe.g.
on the shared busÑis known, an interference constraint

X

edge e

blockede · xe  I (5)

can be added to exclude paths that experience an infeasi-
ble amount of interference [21]. Similar constraints can be
formulated to bound the impact of DRAM refreshes or the
impact of cache misses due to preemptions, provided the
graph is annotated with corresponding weights.

Throughout the paper, we refer to the analysis described
above that models interference by non-determinism as asemi-
integrated analysis. It is apparent that Analysis ideal from
Section 2.1, which can assume the absence of interference is
more e! cient: less non-determinism needs to be considered
in the microarchitectural analysis and the ILP path analy-
sis formulation becomes simpler with fewer constraints. In
particular, no interference constraint is required.

3. THREATS TO COMPOSITIONALITY
All approaches involved with timing compositionality which

we encountered in the literature feature a composition op-
erator that is linear w.r.t. interferenceÑsimilar to the one
described in Section 2.1, i.e., each unit of interference is
assumed to contribute a Þxed penalty of additional execution
cycles. This system model assumption is sound if a unit
of interference can never cause more additional execution
time than given by the penalty, and it is precise if a unit of
interference almost always increases execution time by the
penalty.

To validate these two assumptions, we introduce inter-
ference response curves. The interference response curve of
a task bounds its interference-induced additional execution
time in terms of the amount of interference that the task
experiences during its execution. We use a semi-integrated
analysis as described in Section 2.2 to compute such bounds.
Here, interference may be quantiÞed by the number of addi-
tional cache misses due to preemptions, the number of DRAM
refreshes, or the number of blocking accesses at the shared
bus. In this paper, we focus w.l.o.g. only on interference
caused by shared-bus blocking.

For a given program, the interference response curve is
implicitly given by the integer linear program used in the
path analysis as described in Section 2.2. A single point
on the curve can be computed by choosing a corresponding
constant amount of interference I in the ILP constraints.

Figure 3a shows the interference response curves for several
programs w.r.t. shared-bus blocking. The underlying hard-
ware conÞgurationÑa dual-core machine with round-robin
event-driven arbitrationÑis described in detail in Section 5.2.
In round-robin arbitration, a single access can be blocked
by at most one concurrent access per co-running core. Thus,
there is a maximal amount of interference that can a " ect
the execution of a program. The y-axis shows the additional
execution time due to interference, relative to the direct
e" ect of this maximal interference. A curve corresponding
to perfect compositionality would have a slope of one with a
y-intercept of zero.

0% 20% 40% 60% 80% 100%
0%

20%

40%

60%

80%

100%

% of maximal amount of interference

%
of

th
e

di
re

ct
e

"
ec

t
of

10
0%

in
te

rf
er

en
ce

jfdctint
expint
stopwatch
lift

(a) From 0 to max interference.

0% 1% 2% 3% 4% 5%
0%

1%

2%

3%

4%

5%

% of maximal amount of interference %
of

th
e

di
re

ct
e

"
ec

t
of

10
0%

in
te

rf
er

en
ce

(b) Zoom in on 0% to 5%.

Figure 3: Sampled interference response curves for four pro-
grams. 100 samples each. ConÞguration 4, see Section 5.2.

Figure 3b zooms in on the interval from 0% to 5% of
the maximal amount of interference that a " ects a given
benchmark. We make two observations:

Observation 1. For some programs, the additional exe-
cution time due to shared-bus interference exceeds the expected
direct e! ect penalty. See Figure 3b.

Observation 2. For some programs, a significant portion
of the expected additional latency is hidden. See Figure 3a.

In general, it depends both on the core architecture and
the particular shared resource whether a drop in slope of the
curve can be observed: Using, e.g., Þxed-priority bus arbitra-
tion, all interfering accesses canÑin the worst caseÑblock a
single access, and so very little of their contributions canÑin
the worst caseÑbe hidden. Under round-robin arbitration,
on the other hand, the ability of the core to overlap bus
blocking with other computations determines the drop in
slope of the curve.

The interference response curve can be multi-dimensional
modelling the cumulative e " ects of multiple di " erent sources
of interference.

3.1 Amplifying Timing Anomalies
Timing anomalies [29, 34] are a well-known challenge for

timing analysis. Due to the non-determinism in the mi-
croarchitectural analysis, an abstract state can have multiple
successors. One of them is often considered to be thelocal
worst case (e.g. shared bus blocked, or additional cache
miss) with a bounded direct e! ect on the execution time as
described in Section 2.1.

A non-deterministic choice where the local worst case
doesnot imply the global worst case is known as a timing
anomaly. Microarchitectural analysis thus needs to follow all
possible successors to obtain a sound upper bound, which
can be expensive. Such anomalies are not harmful w.r.t.
compositionality and are thus not the focus of this paper.

However, Lundqvist and Stenstr ¬om [29] found a second
type of anomaly. While servicing the local worst case the
abstract pipeline state can change in a way that leads to
an indirect e! ect, i.e. an additional execution time increase
beyond the direct e" ect penalty. We call a non-deterministic
choice, an amplifying anomaly, if the overall execution time
increases bymore than the direct e " ect, i.e. there is a positive
indirect e" ect.

Considering the combination operator presented in Sec-
tion 2.1, it is apparent that this poses a challenge for timing
compositionality. Ignoring indirect e " ects leads tounsound
bounds, which is supported by our Observation 1.

Flow constraints +
Loop bounds +
Feasible paths +

variable rather than constant

Flow constraints +
Loop bounds +
Feasible paths +

indirect e! ect caused by bus blocking which is not captured
by tc ideal .

A technique to eliminate indirect e ! ects by hardware design
is to stall the core while a memory access is blocked at the
shared bus. If the core is stalled, the state of the core
does not change as e.g. instructions cannot advance in the
pipeline. In Figure 7b, this results in states s1, s2, and
s3Ñand consequently s4, s5, and s6Ñbeing identical. Thus,
they exhibit the same subsequent timing behaviour which is
soundly covered by tc ideal .

Besides the indirect e! ects, the stalling approach also elim-
inates any hiding of the additional latency due to interference.
This can degrade average-case performance.

4.2 By Analysis: Sound Penalty
Adjusting the microarchitectural design is often not fea-

sible due to practical or economical reasons. As a second
approach, we turn the timing contributions and the com-
bination operator described in Section 2.1 into a sound de-
composition. In order to do so, we adjust the penalties used
in the combination operator. The bus blocking penalty bp
should not only account for the direct e ! ect of one blocking
access but alsoinclude all indirect e! ects possibly caused
by this access. The calculation of sound penalties needs an
in-depth analysis of the underlying microarchitecture. To
the best of our knowledge, no techniques are available to
calculate the maximal possible indirect e! ect for a realisitic
microarchitecture. Rather, there are scenarios known as
domino e! ects where indirect e! ects are not even bounded
by a constant [36]. For such microarchitectures, the sound
penalty approach cannot be applied.

In reality, indirect e ! ects happen only rarely and under
speciÞc circumstances. If the indirect e! ects are incorporated
into the penalty, they are always taken into account, i.e.
for every interfering access. Considering the dotted line in
Figure 6, it is apparent that such an approach will lead to a
drastic overestimation of the actual timing.

In Section 5, we experimentally determineÑper programÑ
the respective minimum penalty required to over-approximate
the interference response curve. Sound program-independent
penalties would have to be at least as high. For a given
program p, we can use an integer linear programÑsimilar to
the formulation we present in Section 4.3Ñto check whether
a conjectured penalty is sound. Using this check in a binary
search, we can calculate a penalty that is sound for p. Due
to space constraints, details on this calculation can be found
in our extended technical report [18].

4.3 By Analysis: Compositional Base Bound
Now, we present a sound and reasonably precise approach

to obtain timing contributions that can be used in a composi-
tional way during schedulability analysisÑwithout modifying
the underlying hardware and even in the presence of domino
e! ects.

The idea is to account for the rare indirect e ! ects in the
ÒidealÓ execution time contribution. To this end, we adjust
the decomposition from Section 2.1 with the focus on shared-
bus blocking as follows:

¥ The baseexecution time ignoring the direct e ! ects of
shared-bus blocking but taking into account all possible
indirect e ! ects tcbase (!) = b ! Wbase ,

¥ the number of accesses interfering on the shared bus
tcbus (!) = ba ! Wbus .

For this decomposition the combination operator is deÞned as:
!

(b, ba) = b+ bp ába, (6)

where bp denotes the direct e! ect timing penalty.
How can tcbase (!) = b be soundly approximated? In

Section 2 we describe a path analysis via Implicit Path
Enumeration that uses an ILP to obtain the longest path
through the microarchitectural execution graph, satisfying
constraints such as the interference constraint. As the ILP is
an implicit encoding of the interference response curve, we
can modify it to compute a sound approximation of b, which
we term a compositional base bound. In addition to the ILP
variables xe that model the execution count of edges in the
execution graph, we introduce an integer variable ba to model
the amount of interference. The interference constraint for
shared-bus blocking then becomes

"

edge e

blockede áxe " ba. (7)

We want to Þnd a value b such that the linear approximation#
(b, ba) = b+ bp ába is greater than or equal to the interfer-

ence response curve for all possible values ofba. We obtain
the smallest such b, i.e. a sound base bound, by maximising

max

$

%
"

edge e

time e áxe

&

' # bp ába. (8)

Intuitively, the Þrst term captures the entire execution time
of the program, including interference on the shared resource
(under the interference constraint in Equation 7). The second
term, bp ába, captures the share of execution time that is
explained by the direct e! ects of interference for an amount
of interference ba. So the di! erence between the two captures
the share of execution time not explained by the direct e ! ects
of interference. This includes uninterfered execution but also
indirect interference e! ects. By maximizing over all possible
amounts of interference ba, the solution to this ILP provides
an upper bound on the execution time that is not explained
by direct interference e! ects, i.e., the compositional base
bound. Thus the compositional base bound includes the
maximum possible indirect e! ects for the program under
analysis. A formal proof of correctness of this approach is
given in [18].

This approach can be generalised to multiple dimensions,
i.e. to multiple sources of interference such as shared-bus
blocking and DRAM refreshes and cache misses due to pre-
emption. In this case, we introduce integer variables i 1, . . . , i n

and corresponding interference constraints for each source of
interference. The objective function then becomes

max

$

%
"

edge e

time e áxe

&

' #
n"

k =1

pk ái k , (9)

where pk is the direct e! ect penalty for interference of type k.

5. EXPERIMENTAL EVALUATION
In this section, we evaluate the implications of the pro-

posed approaches on analysis e" ciency and precision. A
rough qualitative comparison is given in Table 1: If we em-
ploy stalling, we e" ciently obtain precise bounds by construc-
tion, however the actual average-case system performance

indirect e! ect caused by bus blocking which is not captured
by tc ideal .

A technique to eliminate indirect e ! ects by hardware design
is to stall the core while a memory access is blocked at the
shared bus. If the core is stalled, the state of the core
does not change as e.g. instructions cannot advance in the
pipeline. In Figure 7b, this results in states s1, s2, and
s3Ñand consequently s4, s5, and s6Ñbeing identical. Thus,
they exhibit the same subsequent timing behaviour which is
soundly covered by tc ideal .

Besides the indirect e! ects, the stalling approach also elim-
inates any hiding of the additional latency due to interference.
This can degrade average-case performance.

4.2 By Analysis: Sound Penalty
Adjusting the microarchitectural design is often not fea-

sible due to practical or economical reasons. As a second
approach, we turn the timing contributions and the com-
bination operator described in Section 2.1 into a sound de-
composition. In order to do so, we adjust the penalties used
in the combination operator. The bus blocking penalty bp
should not only account for the direct e ! ect of one blocking
access but alsoinclude all indirect e! ects possibly caused
by this access. The calculation of sound penalties needs an
in-depth analysis of the underlying microarchitecture. To
the best of our knowledge, no techniques are available to
calculate the maximal possible indirect e! ect for a realisitic
microarchitecture. Rather, there are scenarios known as
domino e! ects where indirect e! ects are not even bounded
by a constant [36]. For such microarchitectures, the sound
penalty approach cannot be applied.

In reality, indirect e ! ects happen only rarely and under
speciÞc circumstances. If the indirect e! ects are incorporated
into the penalty, they are always taken into account, i.e.
for every interfering access. Considering the dotted line in
Figure 6, it is apparent that such an approach will lead to a
drastic overestimation of the actual timing.

In Section 5, we experimentally determineÑper programÑ
the respective minimum penalty required to over-approximate
the interference response curve. Sound program-independent
penalties would have to be at least as high. For a given
program p, we can use an integer linear programÑsimilar to
the formulation we present in Section 4.3Ñto check whether
a conjectured penalty is sound. Using this check in a binary
search, we can calculate a penalty that is sound for p. Due
to space constraints, details on this calculation can be found
in our extended technical report [18].

4.3 By Analysis: Compositional Base Bound
Now, we present a sound and reasonably precise approach

to obtain timing contributions that can be used in a composi-
tional way during schedulability analysisÑwithout modifying
the underlying hardware and even in the presence of domino
e! ects.

The idea is to account for the rare indirect e ! ects in the
ÒidealÓ execution time contribution. To this end, we adjust
the decomposition from Section 2.1 with the focus on shared-
bus blocking as follows:

¥ The baseexecution time ignoring the direct e ! ects of
shared-bus blocking but taking into account all possible
indirect e ! ects tcbase (!) = b ! Wbase ,

¥ the number of accesses interfering on the shared bus
tcbus (!) = ba ! Wbus .

For this decomposition the combination operator is deÞned as:
!

(b, ba) = b+ bp ába, (6)

where bp denotes the direct e! ect timing penalty.
How can tcbase (!) = b be soundly approximated? In

Section 2 we describe a path analysis via Implicit Path
Enumeration that uses an ILP to obtain the longest path
through the microarchitectural execution graph, satisfying
constraints such as the interference constraint. As the ILP is
an implicit encoding of the interference response curve, we
can modify it to compute a sound approximation of b, which
we term a compositional base bound. In addition to the ILP
variables xe that model the execution count of edges in the
execution graph, we introduce an integer variable ba to model
the amount of interference. The interference constraint for
shared-bus blocking then becomes

"

edge e

blockede áxe " ba. (7)

We want to Þnd a value b such that the linear approximation#
(b, ba) = b+ bp ába is greater than or equal to the interfer-

ence response curve for all possible values ofba. We obtain
the smallest such b, i.e. a sound base bound, by maximising

max

$

%
"

edge e

time e áxe

&

' # bp ába. (8)

Intuitively, the Þrst term captures the entire execution time
of the program, including interference on the shared resource
(under the interference constraint in Equation 7). The second
term, bp ába, captures the share of execution time that is
explained by the direct e! ects of interference for an amount
of interference ba. So the di! erence between the two captures
the share of execution time not explained by the direct e ! ects
of interference. This includes uninterfered execution but also
indirect interference e! ects. By maximizing over all possible
amounts of interference ba, the solution to this ILP provides
an upper bound on the execution time that is not explained
by direct interference e! ects, i.e., the compositional base
bound. Thus the compositional base bound includes the
maximum possible indirect e! ects for the program under
analysis. A formal proof of correctness of this approach is
given in [18].

This approach can be generalised to multiple dimensions,
i.e. to multiple sources of interference such as shared-bus
blocking and DRAM refreshes and cache misses due to pre-
emption. In this case, we introduce integer variables i 1, . . . , i n

and corresponding interference constraints for each source of
interference. The objective function then becomes

max

$

%
"

edge e

time e áxe

&

' #
n"

k =1

pk ái k , (9)

where pk is the direct e! ect penalty for interference of type k.

5. EXPERIMENTAL EVALUATION
In this section, we evaluate the implications of the pro-

posed approaches on analysis e" ciency and precision. A
rough qualitative comparison is given in Table 1: If we em-
ploy stalling, we e" ciently obtain precise bounds by construc-
tion, however the actual average-case system performance

Jan Reineke, Saarland 18

How to Compute Sound Base Bound:
As an ILP

be incorrect even for simple microarchitectures. In Section 4
we will then discuss three remedies to this problem.

In response-time analysis, each contribution tcj of a de-
composition can be approximated by combining the results of
corresponding low-level analyses of each involved task. Such
analyses focus on the timing contributions of the system
constituents during the response time of a given task p. We
denote the set of traces from the release of task p until the end
of p’s execution, including periods in which p is preempted
by other tasks, by Tp ✓ T. Thus, for the response-time of a
given task p, we can derive:

max
! ! Tp

|! |  max
! ! Tp

n!

j=1

tcj (!) Def. compositionality


n!

j=1

max
! ! Tp

tcj (!) Monotonicity of
!


n!

j=1

Analysis j (p) Analysis correctness

In conventional single-core response-time analysis for fixed-
priority scheduling, only Analysis ideal(p) is considered

Analysis ideal(p) = Rp = Cp +
"

q! hp(p)

#
Rp

Tq

$
áCq, (3)

where Cp is a bound on task p’s execution time in isolation
obtained by a low-level analysis, and Tp is the period of p.
In multi-core response-time analysis [7] each Analysis j (p)
similarly aggregates the bounds on the contributions of each
task computed by corresponding low-level analyses. In that
case, the di↵erent analyses, (Analysis j (p))j=1,...,n, are cou-
pled through the task’s response time Rp.

2.2 Low-Level Timing Analysis
In this section, we describe a slight generalisation of to-

day’s de-facto standard approach to WCET analysis. This
generalisation [21], which we call semi-integrated analysis,
allows to analyse a program’s execution time in terms of the
amount of interference it experiences on shared resources. We
will use this generalisation to evaluate the imprecision and
possible unsoundness of compositional analysis in Sections 3
and 5. Further, it is the basis of one of the two approaches to
enable compositionality by analysis described in Section 4.

We distinguish three analysis phases: 1. value and control-
flow analysis, 2. microarchitectural analysis, and 3. path
analysis. The first phase computes properties of the program
that are independent of the underlying microarchitecture, in
particular the possible values of registers and memory cells
at di↵erent points in the program, as well as loop bounds
and other constraints on the set of feasible program paths.
This information is used in the two following analysis phases.

As the microarchitecture determines each instruction’s
timing, microarchitectural analysis characterises all possible
execution traces of a given task. It is practically infeasible to
enumerate them all due to their sheer number. Thus the anal-
ysis operates on abstract microarchitectural states [43], which
each implicitly represent a large set of concrete microarchi-
tectural states. In particular, abstract microarchitectural
states completely abstract from the values of registers and
memory cells, which are characterised in Phase 1. They
do model the state of the pipeline, and of the caches, for
which good abstractions are known. In a fully-integrated

s1

s2

s3

s4

s5

s6

blocked = 0
time = 1

blocked = 0
time = 1

blocked = 1
time = 1

blocked = 0
time = 1

blocked = 0
time = 1

(a) One edge per processor cycle.

s1

s3 s6

blocked = 0
time = 2

blocked = 1
time = 3

(b) Compressed chains. One
edge represents multiple cycles.

Figure 2: Variants of microarchitectural execution graphs.

analysis, abstract states would also comprises the state of
the co-running tasks and the exact state of the peripherals
such as a DRAM controller. Despite the precision of such an
approach, such analyses [16, 24, 22] cannot handle realistic
hardware platforms without crippling assumptions—due to
the size of the state space. In a semi-integrated analysis [21],
which we describe here, microarchitectural states further
abstract from the co-running cores and the exact state of the
peripherals to coarse information about whether the shared
bus is blocked or a DRAM refresh is ongoing.

Microarchitectural analysis begins with the set of abstract
states in which the program under analysis is about to enter
the pipeline for execution. Then the analysis successively
computes the abstract states that arise within one processor
cycle—until the program under analysis has left the pipeline
and finished execution. The abstraction introduces non-
determinism upon analysing the e↵ect of one processor cycle,
e.g. whether a cache access is a hit, or a bus access is blocked
by another access of a co-running task. Thus, an abstract
microarchitectural state can have multiple possible successor
states. If two abstract states are su�ciently “similar” they
can be joined to a single abstract state to speed up the
analysis.
Based on the set of reachable abstract states, microar-

chitectural analysis generates an abstract microarchitectural
execution graph (aka prediction-file [42]). The nodes in this
graph are abstract states and the edges describe the evolu-
tion during a processor cycle as shown in Figure 2a. For
e�ciency of the following path analysis, the resulting graph
is compressed by replacing chains of edges by a single edge
resulting in Figure 2b (see [42] for details). In the compressed
graph, each edge e is annotated with weights, in particular
the number of processor cycles timee. To model the impact
of interference such as shared-bus blocking, additional edge
weights can be used to capture the number of interfering
events occurring during the processor cycles modelled by an
edge, e.g. the number of interfering bus accesses blocking an
access to the shared bus blockede. For example, in state s1 in
Figure 2a, due to the abstraction of the state of co-running
tasks, it is unknown whether bus access will be blocked or
not, resulting in non-determinism, where one successor edge
is labelled with blocked = 0 and the other with blocked = 1.
Finally, path analysis determines the longest execution

trace through the microarchitectural execution graph. The
standard approach, implicit path enumeration [27], is to en-
code the longest-path problem as an Integer Linear Program
(ILP). For each edge e in the graph, a frequency variable xe

is used to model the number of times e is taken. To obtain
an upper timing bound, the objective function then is

max
"

edge e

timee áxe. (4)

The microarchitectural execution graph is encoded via ßow
conservation constraints for each vertex in the graph. Fur-
thermore, cycles in the graph are bounded using loop bound
information. More details on such ILP formulations can be
found in [42].

If an upper bound on the amount of interference IÑe.g.
on the shared busÑis known, an interference constraint

X

edge e

blockede · xe  I (5)

can be added to exclude paths that experience an infeasi-
ble amount of interference [21]. Similar constraints can be
formulated to bound the impact of DRAM refreshes or the
impact of cache misses due to preemptions, provided the
graph is annotated with corresponding weights.

Throughout the paper, we refer to the analysis described
above that models interference by non-determinism as asemi-
integrated analysis. It is apparent that Analysis ideal from
Section 2.1, which can assume the absence of interference is
more e! cient: less non-determinism needs to be considered
in the microarchitectural analysis and the ILP path analy-
sis formulation becomes simpler with fewer constraints. In
particular, no interference constraint is required.

3. THREATS TO COMPOSITIONALITY
All approaches involved with timing compositionality which

we encountered in the literature feature a composition op-
erator that is linear w.r.t. interferenceÑsimilar to the one
described in Section 2.1, i.e., each unit of interference is
assumed to contribute a Þxed penalty of additional execution
cycles. This system model assumption is sound if a unit
of interference can never cause more additional execution
time than given by the penalty, and it is precise if a unit of
interference almost always increases execution time by the
penalty.

To validate these two assumptions, we introduce inter-
ference response curves. The interference response curve of
a task bounds its interference-induced additional execution
time in terms of the amount of interference that the task
experiences during its execution. We use a semi-integrated
analysis as described in Section 2.2 to compute such bounds.
Here, interference may be quantiÞed by the number of addi-
tional cache misses due to preemptions, the number of DRAM
refreshes, or the number of blocking accesses at the shared
bus. In this paper, we focus w.l.o.g. only on interference
caused by shared-bus blocking.

For a given program, the interference response curve is
implicitly given by the integer linear program used in the
path analysis as described in Section 2.2. A single point
on the curve can be computed by choosing a corresponding
constant amount of interference I in the ILP constraints.

Figure 3a shows the interference response curves for several
programs w.r.t. shared-bus blocking. The underlying hard-
ware conÞgurationÑa dual-core machine with round-robin
event-driven arbitrationÑis described in detail in Section 5.2.
In round-robin arbitration, a single access can be blocked
by at most one concurrent access per co-running core. Thus,
there is a maximal amount of interference that can a " ect
the execution of a program. The y-axis shows the additional
execution time due to interference, relative to the direct
e" ect of this maximal interference. A curve corresponding
to perfect compositionality would have a slope of one with a
y-intercept of zero.

0% 20% 40% 60% 80% 100%
0%

20%

40%

60%

80%

100%

% of maximal amount of interference

%
of

th
e

di
re

ct
e

"
ec

t
of

10
0%

in
te

rf
er

en
ce

jfdctint
expint
stopwatch
lift

(a) From 0 to max interference.

0% 1% 2% 3% 4% 5%
0%

1%

2%

3%

4%

5%

% of maximal amount of interference %
of

th
e

di
re

ct
e

"
ec

t
of

10
0%

in
te

rf
er

en
ce

(b) Zoom in on 0% to 5%.

Figure 3: Sampled interference response curves for four pro-
grams. 100 samples each. ConÞguration 4, see Section 5.2.

Figure 3b zooms in on the interval from 0% to 5% of
the maximal amount of interference that a " ects a given
benchmark. We make two observations:

Observation 1. For some programs, the additional exe-
cution time due to shared-bus interference exceeds the expected
direct e! ect penalty. See Figure 3b.

Observation 2. For some programs, a significant portion
of the expected additional latency is hidden. See Figure 3a.

In general, it depends both on the core architecture and
the particular shared resource whether a drop in slope of the
curve can be observed: Using, e.g., Þxed-priority bus arbitra-
tion, all interfering accesses canÑin the worst caseÑblock a
single access, and so very little of their contributions canÑin
the worst caseÑbe hidden. Under round-robin arbitration,
on the other hand, the ability of the core to overlap bus
blocking with other computations determines the drop in
slope of the curve.

The interference response curve can be multi-dimensional
modelling the cumulative e " ects of multiple di " erent sources
of interference.

3.1 Amplifying Timing Anomalies
Timing anomalies [29, 34] are a well-known challenge for

timing analysis. Due to the non-determinism in the mi-
croarchitectural analysis, an abstract state can have multiple
successors. One of them is often considered to be thelocal
worst case (e.g. shared bus blocked, or additional cache
miss) with a bounded direct e! ect on the execution time as
described in Section 2.1.

A non-deterministic choice where the local worst case
doesnot imply the global worst case is known as a timing
anomaly. Microarchitectural analysis thus needs to follow all
possible successors to obtain a sound upper bound, which
can be expensive. Such anomalies are not harmful w.r.t.
compositionality and are thus not the focus of this paper.

However, Lundqvist and Stenstr ¬om [29] found a second
type of anomaly. While servicing the local worst case the
abstract pipeline state can change in a way that leads to
an indirect e! ect, i.e. an additional execution time increase
beyond the direct e" ect penalty. We call a non-deterministic
choice, an amplifying anomaly, if the overall execution time
increases bymore than the direct e " ect, i.e. there is a positive
indirect e" ect.

Considering the combination operator presented in Sec-
tion 2.1, it is apparent that this poses a challenge for timing
compositionality. Ignoring indirect e " ects leads tounsound
bounds, which is supported by our Observation 1.

Flow constraints +
Loop bounds +
Feasible paths +

variable rather than constant

Flow constraints +
Loop bounds +
Feasible paths +

indirect e! ect caused by bus blocking which is not captured
by tc ideal .

A technique to eliminate indirect e ! ects by hardware design
is to stall the core while a memory access is blocked at the
shared bus. If the core is stalled, the state of the core
does not change as e.g. instructions cannot advance in the
pipeline. In Figure 7b, this results in states s1, s2, and
s3Ñand consequently s4, s5, and s6Ñbeing identical. Thus,
they exhibit the same subsequent timing behaviour which is
soundly covered by tc ideal .

Besides the indirect e! ects, the stalling approach also elim-
inates any hiding of the additional latency due to interference.
This can degrade average-case performance.

4.2 By Analysis: Sound Penalty
Adjusting the microarchitectural design is often not fea-

sible due to practical or economical reasons. As a second
approach, we turn the timing contributions and the com-
bination operator described in Section 2.1 into a sound de-
composition. In order to do so, we adjust the penalties used
in the combination operator. The bus blocking penalty bp
should not only account for the direct e ! ect of one blocking
access but alsoinclude all indirect e! ects possibly caused
by this access. The calculation of sound penalties needs an
in-depth analysis of the underlying microarchitecture. To
the best of our knowledge, no techniques are available to
calculate the maximal possible indirect e! ect for a realisitic
microarchitecture. Rather, there are scenarios known as
domino e! ects where indirect e! ects are not even bounded
by a constant [36]. For such microarchitectures, the sound
penalty approach cannot be applied.

In reality, indirect e ! ects happen only rarely and under
speciÞc circumstances. If the indirect e! ects are incorporated
into the penalty, they are always taken into account, i.e.
for every interfering access. Considering the dotted line in
Figure 6, it is apparent that such an approach will lead to a
drastic overestimation of the actual timing.

In Section 5, we experimentally determineÑper programÑ
the respective minimum penalty required to over-approximate
the interference response curve. Sound program-independent
penalties would have to be at least as high. For a given
program p, we can use an integer linear programÑsimilar to
the formulation we present in Section 4.3Ñto check whether
a conjectured penalty is sound. Using this check in a binary
search, we can calculate a penalty that is sound for p. Due
to space constraints, details on this calculation can be found
in our extended technical report [18].

4.3 By Analysis: Compositional Base Bound
Now, we present a sound and reasonably precise approach

to obtain timing contributions that can be used in a composi-
tional way during schedulability analysisÑwithout modifying
the underlying hardware and even in the presence of domino
e! ects.

The idea is to account for the rare indirect e ! ects in the
ÒidealÓ execution time contribution. To this end, we adjust
the decomposition from Section 2.1 with the focus on shared-
bus blocking as follows:

¥ The baseexecution time ignoring the direct e ! ects of
shared-bus blocking but taking into account all possible
indirect e ! ects tcbase (!) = b ! Wbase ,

¥ the number of accesses interfering on the shared bus
tcbus (!) = ba ! Wbus .

For this decomposition the combination operator is deÞned as:
!

(b, ba) = b+ bp ába, (6)

where bp denotes the direct e! ect timing penalty.
How can tcbase (!) = b be soundly approximated? In

Section 2 we describe a path analysis via Implicit Path
Enumeration that uses an ILP to obtain the longest path
through the microarchitectural execution graph, satisfying
constraints such as the interference constraint. As the ILP is
an implicit encoding of the interference response curve, we
can modify it to compute a sound approximation of b, which
we term a compositional base bound. In addition to the ILP
variables xe that model the execution count of edges in the
execution graph, we introduce an integer variable ba to model
the amount of interference. The interference constraint for
shared-bus blocking then becomes

"

edge e

blockede áxe " ba. (7)

We want to Þnd a value b such that the linear approximation#
(b, ba) = b+ bp ába is greater than or equal to the interfer-

ence response curve for all possible values ofba. We obtain
the smallest such b, i.e. a sound base bound, by maximising

max

$

%
"

edge e

time e áxe

&

' # bp ába. (8)

Intuitively, the Þrst term captures the entire execution time
of the program, including interference on the shared resource
(under the interference constraint in Equation 7). The second
term, bp ába, captures the share of execution time that is
explained by the direct e! ects of interference for an amount
of interference ba. So the di! erence between the two captures
the share of execution time not explained by the direct e ! ects
of interference. This includes uninterfered execution but also
indirect interference e! ects. By maximizing over all possible
amounts of interference ba, the solution to this ILP provides
an upper bound on the execution time that is not explained
by direct interference e! ects, i.e., the compositional base
bound. Thus the compositional base bound includes the
maximum possible indirect e! ects for the program under
analysis. A formal proof of correctness of this approach is
given in [18].

This approach can be generalised to multiple dimensions,
i.e. to multiple sources of interference such as shared-bus
blocking and DRAM refreshes and cache misses due to pre-
emption. In this case, we introduce integer variables i 1, . . . , i n

and corresponding interference constraints for each source of
interference. The objective function then becomes

max

$

%
"

edge e

time e áxe

&

' #
n"

k =1

pk ái k , (9)

where pk is the direct e! ect penalty for interference of type k.

5. EXPERIMENTAL EVALUATION
In this section, we evaluate the implications of the pro-

posed approaches on analysis e" ciency and precision. A
rough qualitative comparison is given in Table 1: If we em-
ploy stalling, we e" ciently obtain precise bounds by construc-
tion, however the actual average-case system performance

indirect e! ect caused by bus blocking which is not captured
by tc ideal .

A technique to eliminate indirect e ! ects by hardware design
is to stall the core while a memory access is blocked at the
shared bus. If the core is stalled, the state of the core
does not change as e.g. instructions cannot advance in the
pipeline. In Figure 7b, this results in states s1, s2, and
s3Ñand consequently s4, s5, and s6Ñbeing identical. Thus,
they exhibit the same subsequent timing behaviour which is
soundly covered by tc ideal .

Besides the indirect e! ects, the stalling approach also elim-
inates any hiding of the additional latency due to interference.
This can degrade average-case performance.

4.2 By Analysis: Sound Penalty
Adjusting the microarchitectural design is often not fea-

sible due to practical or economical reasons. As a second
approach, we turn the timing contributions and the com-
bination operator described in Section 2.1 into a sound de-
composition. In order to do so, we adjust the penalties used
in the combination operator. The bus blocking penalty bp
should not only account for the direct e ! ect of one blocking
access but alsoinclude all indirect e! ects possibly caused
by this access. The calculation of sound penalties needs an
in-depth analysis of the underlying microarchitecture. To
the best of our knowledge, no techniques are available to
calculate the maximal possible indirect e! ect for a realisitic
microarchitecture. Rather, there are scenarios known as
domino e! ects where indirect e! ects are not even bounded
by a constant [36]. For such microarchitectures, the sound
penalty approach cannot be applied.

In reality, indirect e ! ects happen only rarely and under
speciÞc circumstances. If the indirect e! ects are incorporated
into the penalty, they are always taken into account, i.e.
for every interfering access. Considering the dotted line in
Figure 6, it is apparent that such an approach will lead to a
drastic overestimation of the actual timing.

In Section 5, we experimentally determineÑper programÑ
the respective minimum penalty required to over-approximate
the interference response curve. Sound program-independent
penalties would have to be at least as high. For a given
program p, we can use an integer linear programÑsimilar to
the formulation we present in Section 4.3Ñto check whether
a conjectured penalty is sound. Using this check in a binary
search, we can calculate a penalty that is sound for p. Due
to space constraints, details on this calculation can be found
in our extended technical report [18].

4.3 By Analysis: Compositional Base Bound
Now, we present a sound and reasonably precise approach

to obtain timing contributions that can be used in a composi-
tional way during schedulability analysisÑwithout modifying
the underlying hardware and even in the presence of domino
e! ects.

The idea is to account for the rare indirect e ! ects in the
ÒidealÓ execution time contribution. To this end, we adjust
the decomposition from Section 2.1 with the focus on shared-
bus blocking as follows:

¥ The baseexecution time ignoring the direct e ! ects of
shared-bus blocking but taking into account all possible
indirect e ! ects tcbase (!) = b ! Wbase ,

¥ the number of accesses interfering on the shared bus
tcbus (!) = ba ! Wbus .

For this decomposition the combination operator is deÞned as:
!

(b, ba) = b+ bp ába, (6)

where bp denotes the direct e! ect timing penalty.
How can tcbase (!) = b be soundly approximated? In

Section 2 we describe a path analysis via Implicit Path
Enumeration that uses an ILP to obtain the longest path
through the microarchitectural execution graph, satisfying
constraints such as the interference constraint. As the ILP is
an implicit encoding of the interference response curve, we
can modify it to compute a sound approximation of b, which
we term a compositional base bound. In addition to the ILP
variables xe that model the execution count of edges in the
execution graph, we introduce an integer variable ba to model
the amount of interference. The interference constraint for
shared-bus blocking then becomes

"

edge e

blockede áxe " ba. (7)

We want to Þnd a value b such that the linear approximation#
(b, ba) = b+ bp ába is greater than or equal to the interfer-

ence response curve for all possible values ofba. We obtain
the smallest such b, i.e. a sound base bound, by maximising

max

$

%
"

edge e

time e áxe

&

' # bp ába. (8)

Intuitively, the Þrst term captures the entire execution time
of the program, including interference on the shared resource
(under the interference constraint in Equation 7). The second
term, bp ába, captures the share of execution time that is
explained by the direct e! ects of interference for an amount
of interference ba. So the di! erence between the two captures
the share of execution time not explained by the direct e ! ects
of interference. This includes uninterfered execution but also
indirect interference e! ects. By maximizing over all possible
amounts of interference ba, the solution to this ILP provides
an upper bound on the execution time that is not explained
by direct interference e! ects, i.e., the compositional base
bound. Thus the compositional base bound includes the
maximum possible indirect e! ects for the program under
analysis. A formal proof of correctness of this approach is
given in [18].

This approach can be generalised to multiple dimensions,
i.e. to multiple sources of interference such as shared-bus
blocking and DRAM refreshes and cache misses due to pre-
emption. In this case, we introduce integer variables i 1, . . . , i n

and corresponding interference constraints for each source of
interference. The objective function then becomes

max

$

%
"

edge e

time e áxe

&

' #
n"

k =1

pk ái k , (9)

where pk is the direct e! ect penalty for interference of type k.

5. EXPERIMENTAL EVALUATION
In this section, we evaluate the implications of the pro-

posed approaches on analysis e" ciency and precision. A
rough qualitative comparison is given in Table 1: If we em-
ploy stalling, we e" ciently obtain precise bounds by construc-
tion, however the actual average-case system performance

Can be generalized to multiple dimensions: e.g. bus interference + CRPD + refreshes

Jan Reineke, Saarland 19

Some Experimental Results:
Analysis Cost: Sound Base Bound

Table 1: Overview of the approaches with their strengths
and weaknesses.

Proposed Approach
Analysis

E! ciency
Analysis
Precision

Average-case
Performance

Stalling ! ! !
Sound penalty ! ! !
Compositional base bound " " !
Semi-integrated analysis ! ! !

likely is signiÞcantly degraded. Note that a thorough evalua-
tion of actual performance is out of the scope of this paper.
Due to modelling interference by non-determinism in the
microarchitectural analysis, the compositional base bound
approach is expected to be less e�cient than the two other
approaches based on stalling or sound penalties. However,
it should result in more precise bounds than the approach
based on sound penalties, while still sacriÞcing some preci-
sion compared with a semi-integrated analysis. In contrast to
the other approaches, the semi-integrated analysis requires
an additional run of the path analysis whenever a di ↵erent
amount of interference is to be considered, e.g. in a Þxed-
point iteration during response-time analysis. The following
experimental evaluation sheds light on how signiÞcant the
di↵erences are quantitatively.

5.1 Experimental Setup
We employ our timing analysis framework LLVMTA. The

framework allows to run context-sensitive analyses on the
binary-level program representation of the LLVM compiler
infrastructure. It provides state-of-the-art techniques for
microarchitectural analysis [43] and path analysis [42].

Table 3 provides an overview of the benchmark programs
used for evaluation. Besides the M¬alardalen benchmark
suite (M) [15], we use programs generated from models devel-
oped in the SCADE suite including the examples delivered
with SCADE (S), own models (O), and a model provided by
an industrial partner (I).

5.2 Hardware Configurations
We evaluate the proposed approaches on hardware con-

Þgurations of di↵ering complexity. The processors under
analysis feature either two, four, or eight cores. We consider
two di↵erent types of cores: the simpler type has a Þve-stage
in-order pipeline, while the more complex one has an out-of-
order pipeline with Tomasulo dynamic scheduling, both as
described in detail in [19]. The out-of-order pipeline has a
reorder bu↵er of size 8 and a 4-entry instruction queue which
issues multiple instructions to either the Load-/Store-Unit or
one of two arithmetic functional units executing instructions
with variable latency. Both pipelines employ static branch
prediction, where conditional branches are predicted not
taken. The out-of-order pipeline additionally features spec-
ulative execution. Optionally, store instructions are passed
through a store bu↵er (a.k.a. write bu ↵er) of size one that
allows the pipeline to complete the store instruction while
the memory operation is performed in the background.

The cores access the shared bus via private instruction
and data caches of size 1 KiB with associativity 2 and LRU
replacement policy. As the benchmarks are small, we con-
sequently choose such a small cache size. Upon concurrent
instruction and data cache misses, the resulting data access
is prioritised over the instruction access. The shared bus
employs round-robin event-driven arbitration and is directly

Table 2: Overview of evaluated core conÞgurations.

ConÞguration Core Type 1-entry Store Bu " er Mem. Latency

1 in-order no 5
2 in-order yes 5
3 in-order yes 10
4 out-of-order yes 5
5 out-of-order yes 10

adpcm
expint

jfdctint
nsichneu

statemate

stopwatch
es lift

trolleybus

geo. mean0
2
4
6
8

no
rm

al
iz

ed

an
al

ys
is

ru
nt

im
e

Compositional Base Bound Path Analysis
Microarch. Analysis: Generate execution graph
Microarch. Analysis: Compute reachable abstract states

Figure 8: E�ciency: analysis modelling interference by non-
determinism versus Analysis ideal assuming the absence of
interference. Selected benchmarks and geometric mean over
all benchmark programs. ConÞguration 4, quad core.

connected to an SRAM background memory with a latency
of either 5 or 10 processor cycles.

For the evaluation, we choose the Þve core conÞgurations
listed in Table 2 out of the eight possible combinations.
Pipelines without store bu ↵ers waste the potential of hiding
parts of the store latency and are rarely found in real-world
processors. Hence, we consider only one conÞguration with-
out a store bu↵er.

For the sake of brevity, we focus on the results for selected
representative benchmarks and a quad-core processor with
core ConÞguration 4 in Table 2 if not stated otherwise. Con-
Þguration 4 featuring out-of-order execution, a store bu↵er,
and a memory latency of 5 exhibits the most potential for
overlapping e↵ects: We prefer ConÞguration 4 over 5 as a
larger share of the shorter memory latency can be hidden by
overlapping the execution of other instructions. Condensed
evaluation results including analysis e�ciencyÑi.e. memory
consumption and analysis runtimeÑand analysis precision
for all hardware conÞgurations as well as Þne-grained results
for each individual benchmark can be found in our extended
technical report [18].

Note, that while we do not precisely model any particular
commercial processor, the microarchitectural concepts used
in the di ↵erent conÞgurations can be found in real processors.
As an example, the ARM R! Cortex R! -M4 processor features
a three-stage in-order pipeline with an optional pipelined
ßoating-point unit and a store bu ↵er of size one. Data ac-
cesses are prioritised over instruction accesses [4, 3]. The
ARM R! Cortex R! -A5 features an in-order pipeline with dy-
namic branch prediction and a 4-entry store bu ↵er [1]. The
ARM R! Cortex R! -A9 features a complex out-of-order pipeline
with dynamic branch prediction and a 4-entry store bu ↵er [2].

5.3 Analysis Efficiency
The stalling and sound penalty approaches both allow

to employ an e�cient microarchitectural analysis that can
assume the absence of interference. Thecompositional base
bound approach as well as thesemi-integrated analysis, on
the other hand, model the interference as non-determinism
during microarchitectural analysis. This results in larger
execution graphs and more expensive path analysis, as it has
to take additional constraints into account.

For quad-core out-of-order processor with store buffer.

Jan Reineke, Saarland 20

Some Experimental Results:
Analysis Precision: No Interference

For quad-core out-of-order processor with store buffer.

adpcm
expint

jfdctint
nsichneu

statemate
es lift

stopwatch

trolleybus

geo. mean100%

102%

104%

10
0
.0

%

10
1
.0

%

10
0
.1

%

10
3
.0

% 10
4
.4

%

10
0
.6

%

10
3
.3

%

10
0
.5

%

10
0
.7

%

ra
tio

to
th

e
b

ou
nd

ob
ta

in
ed

by
a

se
m

i-
in

te
gr

at
ed

an
al

ys
is

Comp. Base Bound

(a) With no interference.

adpcm expint jfdctint nsichneu statemate es lift stopwatch trolleybus geo. mean100%

110%

120%

130%

10
1
.9

%

11
1
.7

%

11
3
.2

%

99
.2

%

98
.9

%

10
0
.3

%

10
2
.7

%

10
0
.2

%

10
2
.6

%

10
1
.9

%

11
2
.1

%

11
3
.3

%

10
0
.1

%

10
0
.2

%

10
0
.5

%

10
3
.7

%

10
0
.4

%

10
2
.8

%

241.9% 260.2% 255.6% 237.4% 236.9% 243.0% 245.1% 243.7% 241.4%

ra
tio

to
th

e
b

ou
nd

ob
ta

in
ed

by
a

se
m

i-
in

te
gr

at
ed

an
al

ys
is

Stalling Comp. Base Bound Sound Penalty

(b) With maximum interference. For the sound penalty approach, we choose a penalty
of 15 cycles per interfering memory access according to Table 3 (forth column).

Figure 9: Ratio of the approaches to the semi-integrated timing bound for a certain amount of interference. ConÞguration 4,
quad-core processor.

We examine the cost of modelling interference via non-
determinism in Figure 8. The Þrst bar represents the analysis
assuming the absence of interference, the second bar repre-
sents the compositional base bound analysis. The numbers
are normalised w.r.t. the Þrst bar. The bars are divided
into the subphases of the analysis: computing the reachable
abstract microarchitectural states, computing the execution
graph, and Þnally the path analysis. The preprocessing phase
including value and loop bound analysis took less than 1% of
the analysis time and is thus omitted. The analysis runtime
increases by a factor of 3.4 to 16.5 with a geometric mean of
8.6 across all benchmarks. The analysis memory consump-
tion increases by a factor of 2.1 to 7.5 with a geometric mean
of 4.8 across all benchmarks. The complete evaluation run
of the compositional base bound approach for all benchmarks
and four cores with ConÞguration 4 took less than 7 hours
and 30 minutes and 9.5 GiB memory on an Intel R! CoreTM i5
machine clocked at 3.3 GHz. Detailed results can be found
in the extended technical report [18].

In the context of low-level WCET analysis, it is common
for analyses to run for hours for a single benchmark tar-
geting a complex hardware platform. Thus, our evaluation
demonstrates that the compositional base bound approachÑ
although more expensive than the other approachesÑhas
practically acceptable analysis cost.

5.4 Analysis Precision
No technique is known to derive sound, general penalties

for interfering events on realistic microarchitectures. How-
ever, we can compute sound penalties for each particular
benchmark as sketched in Section 4.2. The results for the
Þve hardware conÞgurations and all benchmarks are shown
in Table 3. The maximally observed penalty was three times
the memory latency for an out-of-order core with a store
bu! er. As expected, the impact of indirect e! ects increases
with increasing hardware complexity, and maybe surprisingly
with shorter memory latencies. With longer latencies, the
pipeline is more likely to converge while performing a single
memory access, i.e. each stage of the pipeline waits for the
memory access to complete. In the converged case, addi-
tional interference does not change the pipeline state and
cannot cause indirect e! ects. Thus, shorter memory latencies
leave more potential for indirect e ! ects due to additional
interference. Except for the simplest conÞguration, taking
the direct e! ect as penalty is incorrect for many benchmarks.

We evaluate the precision of the proposed approaches
against the semi-integrated analysis of the respective bench-
mark programs at the extremal points, i.e. with no and with
maximal interference. The maximal imprecision relative to

Table 3: Penalty including indirect e ! ects: Minimum penalty
per interfering memory access for each benchmark to ob-
tain a sound overapproximation. Hardware conÞgurations
(1,2,3,4,5) as in Table 2.

Benchmark Penalty in cycles

M adpcm (5, 10, 19, 10, 17)
M bs (5, 5, 10, 5, 10)
M bsort100 (5, 6, 14, 7, 10)
M cnt (5, 10, 20, 8, 10)
M compress (5, 11, 14, 9, 10)
M crc (5, 9, 14, 11, 10)
M edn (5, 10, 17, 11, 11)
M expint (5, 9, 20, 10, 10)
M fdct (5, 9, 10, 10, 10)
M ↵t1 (5, 9, 10, 10, 10)
M fibcall (5, 5, 10, 5, 10)
M fir (5, 6, 10, 9, 10)
M insertsort (5, 5, 10, 13, 10)
M janne (5, 6, 10, 9, 10)
M jfdctint (5, 9, 17, 10, 10)
M lms (5, 10, 10, 12, 14)
M ludcmp (5, 6, 10, 9, 10)
M matmult (5, 10, 20, 9, 13)
M minver (5, 10, 20, 10, 16)

Benchmark Penalty in cycles

M ndes (5, 10, 10, 9, 10)
M ns (5, 8, 10, 9, 28)
M nsichneu (5, 10, 14, 9, 10)
M prime (5, 5, 10, 10, 10)
M qsort (5, 10, 20, 10, 14)
M qurt (5, 10, 14, 8, 10)
M select (5, 5, 20, 10, 10)
M sqrt (5, 7, 10, 7, 12)
M statemate (5, 10, 17, 10, 10)
M st (5, 10, 17, 9, 10)
M ud (5, 10, 12, 10, 10)
M whet (5, 10, 10, 9, 10)
S cruisectrl (5, 9, 16, 9, 10)
S stopwatch (5, 10, 14, 11, 10)
O es lift (5, 9, 11, 9, 10)
S flight ctrl (5, 10, 15, 13, 10)
S pilot (5, 10, 16, 13, 25)
O roboDog (5, 8, 11, 15, 10)
I trolleybus (5, 10, 12, 11, 10)

semi-integrated analysis usually occurs at one of those two
points. In Figure 9a, we provide the ratio of the composi-
tional base bound to the timing bound without interference.
The ratios reßect the maximal impact of potential positive
indirect e! ects on the overall execution time. The other two
approaches to enable compositionality are by construction
precise in the case where no interference occurs.

In Figure 9b, we provide the ratio of the timing bounds
obtained with each approach to the timing bound obtained
using the semi-integrated analysis, under maximal interfer-
ence. For the sound penalty approach, we use the maximum
program-dependent penalty from Table 3. The Þrst ob-
servation is that the sound penalty approach is extremely
imprecise at maximal interference. The results also show
that even at maximal interference the naive decomposition
using direct e! ects as penalty (Section 2.1) is generally un-
sound (see benchmarksstatemate and nsichneu) if the
hardware is not modiÞed accordingly. If the core employs
the stalling mechanism, the presented results are sound and
show that stalling can improve worst-case bounds in rare
cases by eliminating indirect e! ects. In general, however,
average- and even worst-case system performance is degraded
by stalling. The compositional base bound approach is sound
without hardware modiÞcations at acceptable precision: At
maximal interference, we observe an average overestimation
of around 3% relative to the semi-integrated approach. There
are, however, exceptions (see benchmarksexpint and jfd-
ctint) where the overestimation reaches up to 13%.

Jan Reineke, Saarland 21

Some Experimental Results:
Analysis Precision: 100% Interference

For quad-core out-of-order processor with store buffer.

adp
cm
exp

int

jfd
cti

nt

nsi
chn

eu

sta
tem

ate
es

lift

sto
pw

atc
h

tro
lley

bu
s

geo
. mean

100%

102%

104%

1
0
0
.0
%

1
0
1
.0
%

1
0
0
.1
%

1
0
3
.0
% 1
0
4
.4
%

1
0
0
.6
%

1
0
3
.3
%

1
0
0
.5
%

1
0
0
.7
%

ra
tio

to
th

e
b

ou
nd

ob
ta

in
ed

by
a

se
m

i-
in

te
gr

at
ed

an
al

ys
is

Comp. Base Bound

(a) With no interference.

adpcm expint jfdctint nsichneu statemate es lift stopwatch trolleybus geo. mean100%

110%

120%

130%

1
0
1
.9
%

1
1
1
.7
%

1
1
3
.2
%

9
9
.2
%

9
8
.9
%

1
0
0
.3
%

1
0
2
.7
%

1
0
0
.2
%

1
0
2
.6
%

1
0
1
.9
%

1
1
2
.1
%

1
1
3
.3
%

1
0
0
.1
%

1
0
0
.2
%

1
0
0
.5
%

1
0
3
.7
%

1
0
0
.4
%

1
0
2
.8
%

241.9% 260.2% 255.6% 237.4% 236.9% 243.0% 245.1% 243.7% 241.4%

ra
tio

to
th

e
b

ou
nd

ob
ta

in
ed

by
a

se
m

i-
in

te
gr

at
ed

an
al

ys
is

Stalling Comp. Base Bound Sound Penalty

(b) With maximum interference. For the sound penalty approach, we choose a penalty
of 15 cycles per interfering memory access according to Table 3 (forth column).

Figure 9: Ratio of the approaches to the semi-integrated timing bound for a certain amount of interference. ConÞguration 4,
quad-core processor.

We examine the cost of modelling interference via non-
determinism in Figure 8. The Þrst bar represents the analysis
assuming the absence of interference, the second bar repre-
sents the compositional base bound analysis. The numbers
are normalised w.r.t. the Þrst bar. The bars are divided
into the subphases of the analysis: computing the reachable
abstract microarchitectural states, computing the execution
graph, and Þnally the path analysis. The preprocessing phase
including value and loop bound analysis took less than 1% of
the analysis time and is thus omitted. The analysis runtime
increases by a factor of 3.4 to 16.5 with a geometric mean of
8.6 across all benchmarks. The analysis memory consump-
tion increases by a factor of 2.1 to 7.5 with a geometric mean
of 4.8 across all benchmarks. The complete evaluation run
of the compositional base bound approach for all benchmarks
and four cores with ConÞguration 4 took less than 7 hours
and 30 minutes and 9.5 GiB memory on an Intel R! CoreTM i5
machine clocked at 3.3 GHz. Detailed results can be found
in the extended technical report [18].

In the context of low-level WCET analysis, it is common
for analyses to run for hours for a single benchmark tar-
geting a complex hardware platform. Thus, our evaluation
demonstrates that the compositional base bound approachÑ
although more expensive than the other approachesÑhas
practically acceptable analysis cost.

5.4 Analysis Precision
No technique is known to derive sound, general penalties

for interfering events on realistic microarchitectures. How-
ever, we can compute sound penalties for each particular
benchmark as sketched in Section 4.2. The results for the
Þve hardware conÞgurations and all benchmarks are shown
in Table 3. The maximally observed penalty was three times
the memory latency for an out-of-order core with a store
bu↵er. As expected, the impact of indirect e↵ects increases
with increasing hardware complexity, and maybe surprisingly
with shorter memory latencies. With longer latencies, the
pipeline is more likely to converge while performing a single
memory access, i.e. each stage of the pipeline waits for the
memory access to complete. In the converged case, addi-
tional interference does not change the pipeline state and
cannot cause indirect e↵ects. Thus, shorter memory latencies
leave more potential for indirect e ↵ects due to additional
interference. Except for the simplest conÞguration, taking
the direct e↵ect as penalty is incorrect for many benchmarks.

We evaluate the precision of the proposed approaches
against the semi-integrated analysis of the respective bench-
mark programs at the extremal points, i.e. with no and with
maximal interference. The maximal imprecision relative to

Table 3: Penalty including indirect e ↵ects: Minimum penalty
per interfering memory access for each benchmark to ob-
tain a sound overapproximation. Hardware conÞgurations
(1,2,3,4,5) as in Table 2.

Benchmark Penalty in cycles

M adpcm (5, 10, 19, 10, 17)
M bs (5, 5, 10, 5, 10)
M bsort100 (5, 6, 14, 7, 10)
M cnt (5, 10, 20, 8, 10)
M compress (5, 11, 14, 9, 10)
M crc (5, 9, 14, 11, 10)
M edn (5, 10, 17, 11, 11)
M expint (5, 9, 20, 10, 10)
M fdct (5, 9, 10, 10, 10)
M ! t1 (5, 9, 10, 10, 10)
M Þbcall (5, 5, 10, 5, 10)
M Þr (5, 6, 10, 9, 10)
M insertsort (5, 5, 10, 13, 10)
M janne (5, 6, 10, 9, 10)
M jfdctint (5, 9, 17, 10, 10)
M lms (5, 10, 10, 12, 14)
M ludcmp (5, 6, 10, 9, 10)
M matmult (5, 10, 20, 9, 13)
M minver (5, 10, 20, 10, 16)

Benchmark Penalty in cycles

M ndes (5, 10, 10, 9, 10)
M ns (5, 8, 10, 9, 28)
M nsichneu (5, 10, 14, 9, 10)
M prime (5, 5, 10, 10, 10)
M qsort (5, 10, 20, 10, 14)
M qurt (5, 10, 14, 8, 10)
M select (5, 5, 20, 10, 10)
M sqrt (5, 7, 10, 7, 12)
M statemate (5, 10, 17, 10, 10)
M st (5, 10, 17, 9, 10)
M ud (5, 10, 12, 10, 10)
M whet (5, 10, 10, 9, 10)
S cruisectrl (5, 9, 16, 9, 10)
S stopwatch (5, 10, 14, 11, 10)
O es lift (5, 9, 11, 9, 10)
S ßight ctrl (5, 10, 15, 13, 10)
S pilot (5, 10, 16, 13, 25)
O roboDog (5, 8, 11, 15, 10)
I trolleybus (5, 10, 12, 11, 10)

semi-integrated analysis usually occurs at one of those two
points. In Figure 9a, we provide the ratio of the composi-
tional base bound to the timing bound without interference.
The ratios reßect the maximal impact of potential positive
indirect e↵ects on the overall execution time. The other two
approaches to enable compositionality are by construction
precise in the case where no interference occurs.

In Figure 9b, we provide the ratio of the timing bounds
obtained with each approach to the timing bound obtained
using the semi-integrated analysis, under maximal interfer-
ence. For the sound penalty approach, we use the maximum
program-dependent penalty from Table 3. The Þrst ob-
servation is that the sound penalty approach is extremely
imprecise at maximal interference. The results also show
that even at maximal interference the naive decomposition
using direct e↵ects as penalty (Section 2.1) is generally un-
sound (see benchmarksstatemate and nsichneu) if the
hardware is not modiÞed accordingly. If the core employs
the stalling mechanism, the presented results are sound and
show that stalling can improve worst-case bounds in rare
cases by eliminating indirect e↵ects. In general, however,
average- and even worst-case system performance is degraded
by stalling. The compositional base bound approach is sound
without hardware modiÞcations at acceptable precision: At
maximal interference, we observe an average overestimation
of around 3% relative to the semi-integrated approach. There
are, however, exceptions (see benchmarksexpint and jfd-
ctint) where the overestimation reaches up to 13%.

Jan Reineke, Saarland 22

Conclusions

Sound base bound enables compositional
response-time analysis:
¢! ~ 8x analysis slowdown (depends heavily on

benchmark and processor configuration)

¢! relatively small imprecision

