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Common View

Multicore timing analysis is hard because of
interference on shared resources.
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But: Timing Analysis for Single Cores

WCET Analysis
= computes bound on execution
time of task in isolation

\>

Response-Time Analysis
= computes bound on response-time
of task accounting for interference on
shared resource

R=C+ & "Rgc
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Natural Extension to Multicores

WCRD Analysis
= computes bound on resource
demand of task in isolation
Resources: CPU, Bus, Cache, ...

\>

Response-Time Analysis
= computes bound on response-time
of task accounting for interference on
shared resources

Jan Reineke, Saarland 4



Example:

Shared Resources: Cores + Bus

C; = worst-case execution time of task I in isolation
| .= worst-case number of bus accesses
B = latency of individual bus access
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worst-case
interference on bus

(unrealistic simplifying assumption:

preemptive execution of bus accesses)



Challenges

Soundness:

What is the worst-case cost of being blocked on
the bus by one other access?

Precision:

IsnOexecution on different resources
overlapped?
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Interference Response Curves:
Compositionality Assumption

Worst-case
Execution Time Compositionality
B Assumption
1
Ci =
>
|Interference|
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Computation of
Actual Interference Response Curves

Microarchitectural Analysis:

blocked 0 @ blocked = 1
time = time = 1

Model uncertainty about

interference by non-determinism.

Implicit Path Enumeration:

max time. aX..
edge e

Flow constraints +
Loop bounds +
Feasible paths +

Z blockede - xe < I

edge e

plug in different constants to
get different points on curve
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Worst-case
Execution Time

Interference Response Curves:
Actual Shape!

Compositionality

Assumption

-

i Actual Shape

imprecise

unsound

>
|Interference|
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In some
rare cases:

But mostly:

Why this shape?

Amplifying Timing Anomaly:

Fetch mul Accessldr

ready

ready

J
C Mem str X Fetch mul
[

X Mem Idr >

Exec mul

Program:
Str ...

ldr r1, [r2]
mul r3, r4, r5

C Mem §tr .

X Mem ldr X Fetch mul )

:pralonged

Exec mul

Latency Hiding:

( Mem str )

CExec mul) Exec div)

prolonged
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C Mem str )

CExec mull Exec div)

Jan Reineke, Saarland 10



What to do about it?

Enabling compositionality:

1) (Modify HW)

21 More conservative access penalty
3) More conservative base bound
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Worst-case
Execution Time

Enabling Compositionality:
Sound Penalty

—>

i Actual Shape

imprecise

unsound

>
|Interference|
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Worst-case
Execution Time

Enabling Compositionality:
Sound Penalty

—>
Actual Shape

really
imprecise

sound

>
|Interference|
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Worst-case
Execution Time

Enabling Compositionality:
Sound Base Bound

—>
Actual Shape

imprecise

unsound

>
|Interference|
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Enabling Compositionality:
Sound Base Bound

Worst-case
Execution Time

—>
Actual Shape

more
imprecise

sound

>

|Interference|
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How to Compute Sound Base Bound:
Intuitively

Worst-case
Execution Time

Implicitly
given by ILP

A |Interference|

* Penalty
Ci Sound base bound
= maximal distance

—>

_/ >

|Interference|
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How to Compute Sound Base Bound:
As an ILP

d &
max timee é_)(e. maX% t|mee é.)(eI # bp é.ba
edge e edge e
Flow constraints + Flow constraints +
Loop bounds + Loop bounds +
Feasible paths + Feasible paths +
> blocked. - xe < I blocked: &x. " ba.
edge e edge e

variable rather than constant
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As an ILP

How to Compute Sound Base Bound:

max time. aX..
edge e
Flow constraints +

Loop bounds +

d &
% ' AX o 5
max timee axe # bpaba.
edge e
Flow constraints +
Loop bounds +

Feasible paths +

Z blockede - xe < I

edge e

Feasible paths +

blocked: &xe. " ba.
edge e

variable rather than constant

Can be generalized to multiple dimensions: e.g. bus interference + CRPD + refreshes
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Some Experimental Results:
Analysis Cost: Sound Base Bound

B Compositional Base Bound Path Analysis
Microarch. Analysis: Generate execution graph
B Microarch. Analysis: Compute reachable abstract states

normalized
analysis runtime
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For quad-core out-of-order processor with store buffer.
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Some Experimental Results:
Analysis Precision: No Interference
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For quad-core out-of-order processor with store buffer.
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ratio to the
bound obtained

by a semi-
integrated analysis

Some Experimental Results:
Analysis Precision: 100% Interference
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For quad-core out-of-order processor with store buffer.
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Conclusions

Sound base bound enables compositional
response-time analysis:

o! ~ 8x analysis slowdown (depends heavily on
benchmark and processor configuration)

o! relatively small imprecision
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