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Instruction set architecture (ISA)

High-level languages

Microarchitecture

Compiler

Implementation



ISA Abstraction: Benefits

5

Instruction set architecture (ISA)

Can program independently of  
microarchitecture
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Applications are:

• Data-driven: e.g. deep neural networks

• Distributed: e.g. locally + in the cloud

• Open: e.g. untrusted code in the browser

• Real-time: interacting with the physical environment

What are the implications for HW/SW contracts?
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Instruction set architecture (ISA)
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Programs have no control over timing

Can implement arbitrary unpredictable optimizations  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Instruction set architecture (ISA)

Microarchitecture

Manual Modeling

Microarchitectural timing model

Refinement 

models timing behavior  
+ still no control over timing

Models are �
   limited to particular microarchitectures �
+ probably incorrect �
+ yield expensive or imprecise analysis

unpredictable
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Timed Instruction Set Architecture

Programs have a timed semantics that is efficiently predictable

Programs have control over timing

Admit wide range of high-performance  
microarchitectural implementations
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S. Hahn and J. Reineke: 

Design and Analysis of SIC:  
A Provably Timing-Predictable Pipelined Processor Core  
RTSS 2018

Some answers:
D. Bui, E. Lee, I. Liu, H. Patel, and J. Reineke: 

Temporal Isolation on Multiprocessing Architectures  
DAC 2011
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Instruction set architecture (ISA)

Impossible to program securely on top of ISA 
  cryptographic algorithms?

  sandboxing untrusted code?

Can implement arbitrary insecure optimizations  
as long as ISA semantics are obeyed

No guarantees about side channels
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A Way Forward: HW/SW Security Contracts
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Hardware-Software Contract = ISA + X

Can program securely on top contract 
independently of microarchitecture

Can implement arbitrary insecure optimizations  
as long as contract is obeyed

Succinctly captures 

possible information leakage 
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Exploits speculative 
execution

Almost all modern CPUs

 are affected

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, Y. Yarom — | 
Spectre Attacks: Exploiting Speculative Execution — S&P 2019 14
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2. Executed speculatively
1. x is out of bounds

Example: Spectre v1 Gadget

15

1. if (x < A_size)

2.   y = A[x]

3.   z = B[y*512]

4. end

3. Leaks A[x] via data cache
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What security 
properties do HW 
countermeasures 

enforce?


How can we program 
securely?
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M. Guarnieri, B. Köpf, J. Reineke, and P. Vila

Hardware-Software Contracts for Secure Speculation

S&P (Oakland) 2021
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HW/SW Contracts  
for Secure Speculation

SandboxingConstant-time

Secure 
Programming

No countermeasures

Load Delay
Taint Tracking

No speculationHardware 
Countermeasures

simple mechanism-independent
preciseDesiderata:
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Ingredients of a Formalization
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Instruction Set Architecture 
Arch. states:  
Arch. semantics:    

σ
σ ⇝ σ′￼

Microarchitecture 
Hardware states:  
Hardware semantics:    

⟨σ, μ⟩
⟨σ, μ⟩ ⇒ ⟨σ′￼, μ′￼⟩

Adversary model 
μArch traces: {|p |}(σ) = μ0μ1…μn
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 Contract 
  A deterministic, labelled semantics  for the ISAτ

Observations expose security-relevant μArch events

  Contract traces: [[p]](σ) = τ1τ2…τn

 Contract satisfaction

  Hardware  satisfies contract  if for all programs  and  
    arch. states , : if    then   

{| ⋅ |} [[⋅]] p
σ σ′￼ [[p]](σ) = [[p]](σ′￼) {|p |}(σ) = {|p |}(σ′￼)
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Contract =  
 Execution Mode · Observer Mode

How are programs executed? What is visible about the 
execution?



Contracts for Secure Speculation

26

Contract =  
 Execution Mode · Observer Mode
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Contract =  
 Execution Mode · Observer Mode

pc — only program counter

ct — pc + addr. of loads and stores

arch — ct + loaded values  

Contracts for Secure Speculation

27
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28
Leaks “everything”

Leaks “nothing”

Leaks addresses 
of non-spec. 
loads/stores/

instruction 
fetches

Leaks all data  
accessed non-
speculatively

Leaks addresses of all loads/stores/
instruction fetches

spec-ct

seq-ct
seq-arch

spec-arch

seq-ct+spec-pc

⟙
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Different schedulers for different 
countermeasures
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Instructions are executed sequentially: 
(fetch, execute, retire)*

🥳 No speculative leaks 🥳

Satisfies seq-ct
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Delaying loads until all sources of 
speculation are resolvedSecurity guarantees?
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B[z] delayed until  
x < A_size is resolved

🥳 No speculative leaks 🥳

z = A[x]  
if (x < A_size) 
	  y = B[z]
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35

z = A[x]

if (x < A_size) 
	 if (z==0) 
	 	 skip

if (z==0) is not delayed

Program speculatively  

leaks A[x] 😞

Observation: Can only leak data 
accessed non-speculatively

Satisfies seq-arch

Satisfies seq-ct+spec-pc
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Propagate taint through computation

Delay tainted operations

Taint speculatively loaded data
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z = A[x]  
if (x < A_size) 
	  y = B[z]

A[x]tagged as safe 
 

B[z] not delayed

Program speculatively  

leaks A[x] 😞Also satisfies seq-arch



No Countermeasures [The World until 2018]

39

if (x < A_size) 
	  z = A[x] 
	  y = B[z]



No Countermeasures [The World until 2018]

39

Leaks addressed of speculative 
and non-speculative accessesif (x < A_size) 

	  z = A[x] 
	  y = B[z]



No Countermeasures [The World until 2018]

39

Leaks addressed of speculative 
and non-speculative accessesif (x < A_size) 

	  z = A[x] 
	  y = B[z]
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40

spec-ct

seq-ct
seq-arch

spec-arch

seq-ct+spec-pc

no 
speculation

Load 
Delay

Taint 
Tracking

no 
countermeasure
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42

Program  is non-interferent wrt contract  and policy   
if for all arch. states , : if  then   

p [[⋅]] π
σ σ′￼ σ ≈π σ′￼ [[p]](σ) = [[p]](σ′￼)

Specify secret data

If  is non-interferent wrt contract  and policy ,  
and hardware  satisfies , then  

 is non-interferent wrt hardware  and policy 

p [[⋅]] π
{| ⋅ |} [[⋅]]

p {| ⋅ |} π

  Theorem  
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Traditional SB wrt policy   non-interference wrt seq-arch and   π ≡ π

  General SB wrt  and    
    Traditional SB wrt  + non-interference wrt  and 

π [[⋅]] ≡
π π [[⋅]]

Programs never access high memory 
locations (out-of-sandbox)
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Find out more in our paper:
M. Guarnieri, B. Köpf, J. Reineke, and P. Vila

Hardware-Software Contracts for Secure Speculation

S&P (Oakland) 2021
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Should strive for simple and  
mechanism-independent contracts.


