Hardware-Software Contracts for
Safe and Secure Systems

e®
T

Jan Reineke @ "HWU"

UNIVERSITAT
DES
SAARLANDES

Joint work with

NVarco Guarniert, Pepe Vila @ IMDEA Software, Madrid

Soris KOpt @ Microsoft Research, Cambridge, UK

Andreas Abel, Sebastian Hahn, Valentin Touzeau @ Saarland University

Supported by the European Research Council and an
Intel Strategic Research Alliance (ISRA)

The Need for HW/SW Contracts

"Stone-age” Computing

Applications implemented data transformations:
e.g. payroll processing

"Stone-age” Computing

Applications implemented data transformations:
e.g. payroll processing

Hardware:
® isolated, on-site
® |imited interaction with environment

4

Author: ArnoldReinhold License: CC BY-SA 3.0

https://commons.wikimedia.org/wiki/User:ArnoldReinhold
https://creativecommons.org/licenses/by-sa/3.0

"Stone-age” Computing

Applications implemented data transformations:
e.g. payroll processing

Hardware:
® isolated, on-site
® |imited interaction with environment

4

Author: ArnoldReinhold License: CC BY-SA 3.0

HW/SW Contract: Instruction Set Architecture

3

https://commons.wikimedia.org/wiki/User:ArnoldReinhold
https://creativecommons.org/licenses/by-sa/3.0

ISA Abstraction

High-level languages

j Compiler

Instruction set architecture (ISA)

J Implementation

Microarchitecture

ISA Abstraction: Benefits

Can program independently of
microarchitecture

Instruction set architecture (ISA)

Can implement arbitrary optimizations
as long as ISA semantics are obeyed

"Modern" (?) Computing

Applications are:

® Data-driven: e.g. deep neural networks
® Distributed: e.g. locally + in the cloud

® Open: e.g. untrusted code in the browser §@® ;
® Real-time: interacting with the physical environment

"Modern" (?) Computing

Applications are:

® Data-driven: e.g. deep neural networks

® Distributed: e.g. locally + in the cloud

® Open: e.g. untrusted code in the browser {@ o
® Real-time: interacting with the physical environment

What are the implications for HW/SW contracts?

Inadequacy of the ISA + current pArchitectures:
Real-time Systems

Instruction set architecture (ISA) Abstracts from time

Inadequacy of the ISA + current pArchitectures:
Real-time Systems

Instruction set architecture (ISA) Abstracts from time

Can implement arbitrary unpredictable optimizations
as long as ISA semantics are obeyed

Inadequacy of the ISA + current pArchitectures:
Real-time Systems

Programs do not have a timed semantics
Programs have no control over timing

Instruction set architecture (ISA) Abstracts from time

Can implement arbitrary unpredictable optimizations
as long as ISA semantics are obeyed

State-of-the-art:
Handcrafted Microarchitectural Timing Models

Instruction set architecture (ISA)

J Refinement

Microarchitectural timing model| — models timing behavior

+ still no control over timing

[Manual Modeling

Microarchitecture <-———————————— unpredictable

8

State-of-the-art:
Handcrafted Microarchitectural Timing Models

Models are

Instruction set architecture (I1SA) limited to particular microarchitectures

+ probably incorrect
J Refinement + yield expensive or imprecise analysis

Microarchitectural timing model| — models timing behavior

+ still no control over timing

Manual Modeling

Microarchitecture <-———————————— unpredictable

8

Wanted: Timed HW/SW Contracts

Timed Instruction Set Architecture

Wanted: Timed HW/SW Contracts

Timed Instruction Set Architecture

Admit wide range of high-performance
microarchitectural implementations

Wanted: Timed HW/SW Contracts

Programs have a timed semantics that is efficiently predictable
Programs have control over timing

Timed Instruction Set Architecture

Admit wide range of high-performance
microarchitectural implementations

Wanted: Timed HW/SW Contracts

Some answers:
D. Bui, E. Lee, I. Liu, H. Patel, and J. Reineke:

Temporal Isolation on Multiprocessing Architectures
DAC 2011

S. Hahn and J. Reineke:
Design and Analysis of SIC:

A Provably Timing-Predictable Pipelined Processor Core
RTSS 2018

10

Inadequacy of the ISA + current pArchitectures:
Side-channel security

Instruction set architecture (ISA) | No guarantees about side channels

11

Inadequacy of the ISA + current pArchitectures:
Side-channel security

Instruction set architecture (ISA) | No guarantees about side channels

Can implement arbitrary insecure optimizations @/

as long as ISA semantics are obeyed
SPECTRE

11

Inadequacy of the ISA + current pArchitectures:
Side-channel security

Impossible to program securely on top of ISA
cryptographic algorithms?
sandboxing untrusted code?

Instruction set architecture (ISA) | No guarantees about side channels

Can implement arbitrary insecure optimizations Oﬁg/

as long as ISA semantics are obeyed
SPECTRE

11

A Way Forward: HW/SW Security Contracts

Succinctly captures
Hardware-Software Contract = ISA + X . y P .
possible information leakage

12

A Way Forward: HW/SW Security Contracts

Succinctly captures
Hardware-Software Contract = ISA + X . y P .
possible information leakage

Can implement arbitrary inseeure optimizations
as long as contract is obeyed

12

A Way Forward: HW/SW Security Contracts

Can program securely on top contract
independently of microarchitecture

Succinctly captures
Hardware-Software Contract = ISA + X . y P .
possible information leakage

Can implement arbitrary inseeure optimizations
as long as contract is obeyed

12

A Concrete Challenge: Spectre

Exploits speculative
execution

4y

SPECTRE

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, Y. Yarom —
Spectre Attacks: Exploiting Speculative Execution — S&P 2019 14

Almost al/l modern CPUs
are affected

Example: Spectre vl Gadget

Example: Spectre vl Gadget

1. x is out of bounds

l

1f (x < A size)
y = AlX]
z = Bly*>1l2]
end

Example: Spectre vl Gadget

1. x is out of bounds

2. Executed speculatively

Example: Spectre vl Gadget

1. x is out of bounds

l 2. Executed speculatively

3. Leaks A|x]| via data cache

Hardware Countermeasures

Hardware Countermeasures

InvisiSpec: Making Speculative Execution
Invisible 1n the Cache Hierarchy

Mengjia Yan', Jiho Choi', Dimitrios Skarlatos, Adam Morrison*, Christopher W. Fletcher, and Josep Torrellas
University of Illinois at Urbana-Champaign *Tel Aviv University
{myan8, jchoi42, skarlat2} @illinois.edu, mad@cs.tau.ac.il, {cwfletch, torrella} @illinois.edu

16

Hardware Countermeasures

InvisiSpec: Making Speculative Execution
Invisible 1n the Cache Hierarchy

Mengjia Yan', Jiho Choi', Dimitrios Skarlatos, Adam Morrison*, Christopher W. Fletcher, and Josep Torrellas
University of Illinois at Urbana-Champaign *Tel Aviv University
{myan8, jchoi42, skarlat2} @illinois.edu, mad@cs.tau.ac.il, {cwfletch, torrella} @illinois.edu

C: '4
Gy h
o, S Saife, Ung,,»
Orgja In JS@ga[War ppr
Sty p Ch.eq, OaC h
Chry to S
O]Ogy Af Q p
MOI eCuI
Nuqy; Q)

i On

GeOr Mo @ QU

I[u[e of -Cdy

Tenk

Hardware Countermeasures

n
InvisiSpec: Making Speculative Execution &\\(o\‘%

Invisible in the Cache Hierarchy C\){\O“ o™ -
) R | | or© SV e oS
Mengjia Yan', Jiho Choif, Dimitrios Skarlatos, Adam Morrison*, Christopher W. Fletcher, and Josep Torrellas e (€ (e P X © PN
University of Illinois at Urbana-Champaign *Tel Aviv University ‘\Q '\Qeﬂs %»%Q |
o . . e \'A \)e Nt C N

{myan8, jchoi42, skarlat2} @illinois.edu, mad@cs.tau.ac.il, {cwfletch, torrella} @illinois.edu C\) q a\ N\\\@ xe

| Cc 5O°
W SS‘A‘I R 3 >
[J (& .
\s o e 005‘ \\I 6‘6\’0} . 66‘& cC >
&\(\ N © AR) S YOS) ACRNC
e v O o g o) o A
C OV . \e O @ O &
I S 2 A € N
& 6\ se VO o N\ o> 2 \ﬂ‘&\l o
an u p S ?f “g‘b') \L’b' \‘bfo\} r‘@ao 0:0 ﬁoﬂ@o\ﬂ\\)x\
p eC : XK@ @43 X\e} ’ ot
hy N WO 900 a0
> 0¥ . \2
Sy a An “Uh dan’ X0 %‘&:&\v} e «;o\‘s >
G Sy, Saije 0~ (;X\i‘s O 8¢ \'x(ﬂ‘\o Y o
Corgj, , JS@ Sh Wa p B GHE o0 A8) es®
alnsﬁ%&g Cheg Pro ach \39& IO ,&@0“;«&6“.\& o
o \
Cbl) 0)]O gy tO S a fe “ 6&05 s° P» O%Q; Qg’b’\‘a\’o 6(&0@
. P €c 5 aseY
Moy, udy Ulq b n \e

Hardware Countermeasures P

2 T
S NCReT
. . . . P&‘ac}\‘ \@q,&zfow\\g\\\% 0%\‘
InvisiSpec: Making Speculative ¥ Joo® e RRL
. : - C \\
P *© - \O
Invisible in the Cacb a{\\'ee e ’&C\,x\ -\c’{‘O“ RIS
.\ y \C
Mengjia Yan', Jiho Choil, Dimitrios Skarlatos, Ad- SQGC\)\ \@‘\ﬂ O’_&N\\c\\ %‘5‘\;\\3 O&N% o (%) ?’ (eé P’\\O:;x’&‘] O&SQ(&
University of Illinois »* ~ g &t \ W© 5
{myan8, jchoi42, skayrlatZ} G “(\(\% 0(\\“ ¢ 0&\] C\)\a‘ q a\\)e 00\ N\\ﬁé{b’\’&?ﬁ '06
c Cc oS
. ? (eq - «66‘§020 . b\e SQ “ . ‘(&S ‘bS
ﬁo P ﬁ\(ﬁi 6\;\'@“ s (&\’zﬁ?' &W&% o e\a\l s\w&w\“ aet o0
O WY ot ““\0. &é\ﬂ ° \(\ e . 1C o &(&»{\0 \30‘\]6 e O A& ¢
o o e AW S AT que (o ((OP S

Cy ﬁ(\c‘e e\e‘c o oo NN we‘“’ﬁo%‘l S
an,, e 5 S e o o

P SPeC < e e Ve @

ur Urq S Un d 9 S IS\ <@ ANO
Sury;... . ail O
Geop . 4. Csh
Igiq Inszjtf,t@:é’at cb.e‘;:’f pproa h Speculative Taint Tracking (STT): A Comprehensive Protection
Of hogy, lo Saf. for Speculatively Accessed Data
Y @
Mengjia Y Artem Khyzh
Moiy,, ©€Cllyy; Wi P Cepeua
G Mo, d]]) K ! On Urbana-(.?h.ampaign artkhyzha@mail.tau.ac.il
eofgia In tjfo) Qar ch. ureS [)j myan8@illinois.edu
u

Josep Torrellas Christopher W. Fletcher

Examples

Examples

Examples

Examples

. 1°f
2 Yy
3 Z

Delay loads until

they can be retired
[Sakalis et al., ISCA’19]

(x < A size)~

A

B

X

y*512]

\

17

Delay loads until they cannot
be squashed

[Sakalis et al., ISCA’19]

Examples Delay loads until

they can be retired
[Sakalis et al., ISCA’19]

1f (x < A size)~

y = AlX] —__ Delay loads until they cannot
z = Bly*>o12] be squashed
end [Sakalis et al., ISCA’19]

S

Taint speculatively loaded data

+ delay tainted loads
[STT and NDA, MICRO’19]

17

Examples

Examples

1 Y =
2. 1f

3 Z
4 end

Delay loads until

they can be retired
[Sakalis et al., ISCA'19]

A | x| —

(x < A:sj.ze)\ Delay loads until they cannot
= Bly*olZ] be squashed

[Sakalis et al., ISCA'19]}

18

Examples Delay loads until

they can be retired
[Sakalis et al., ISCA'19]

y = A[X] —
1

f (x < A _size) Delay loads until they cannot
z = Bly*512] be squashed

end 'Sakalis et al., ISCA'19]

N

Taint speculatively loaded data

+ delay tainted loads
[STT and NDA, MICRO’19]

18

What security
properties do HW
countermeasures

enforce?

How can we program
securely?

A Proof of Concept

M. Guarnieri, B. Kopf, J. Reineke, and P. Vila

Hardware-Software Contracts for Secure Speculation
S&P (Oakland) 2021

20

Hardware-Software Contracts

HW/SW Contracts for Secure Speculation

HW/SW Contracts
for Secure Speculation

22

HW/SW Contracts for Secure Speculation

HW/SW Contracts
for Secure Speculation

Hardware No speculation
Load Delay

Countermeasures Taint Tracking

No countermeasures

22

HW/SW Contracts for Secure Speculation

Programming

Constant-time Sandboxing

HW/SW Contracts
for Secure Speculation

Hardware No speculation
Load Delay

Countermeasures Taint Tracking

No countermeasures

22

HW/SW Contracts for Secure Speculation

Programming

Constant-time Sandboxing
HW/SW Contracts . simple mechanism-independent
. Desiderata: .
for Secure Speculation precise
Hardware No speculation
Countermeasures Load Delay Taint Tracking

No countermeasures

22

Ingredients of a Formalization

Ingredients of a Formalization

Instruction Set Architecture
Arch. states: o

Arch. semantics: ¢ ~ ¢’

Ingredients of a Formalization

Instruction Set Architecture
Arch. states: o

Arch. semantics: ¢ ~ ¢’

Microarchitecture
Hardware states: (o, i)

Hardware semantics: (o, 1) = (o', ')

23

Ingredients of a Formalization

Instruction Set Architecture
Arch. states: o

Arch. semantics: ¢ ~ ¢’

Microarchitecture
Hardware states: (o, i)

Hardware semantics: (o, 1) = (o', ')

Adversary model
pArch traces: {| p || (6) = pop; .. .1,

23

Contracts

Contracts

Contract

A deterministic, labelled semantics ~ for the ISA

Contracts Observations expose security-relevant uArch events

Contract

A deterministic, labelled semantlcsfor the ISA

24

Contracts Observations expose security-relevant uArch events

Contract

. . .) '
A deterministic, labelled semantics|— [for the ISA

Contract traces: [pll(o) = 1175...7,

24

Contracts Observations expose security-relevant uArch events

Contract

e . |7
A deterministic, labelled semantics|— [for the ISA

Contract traces: [pll(o) = 1175...7,

Contract satisfaction
Hardware { - |} satisfies contract || - || if for all programs p and

arch. states o, o”: if [[pl|(o) = [[pll(c”) then {p |} (c) = { p || (c')

24

Contracts for Secure Speculation

Contracts for Secure Speculation

Contract =
Execution Mode - Observer Mode

Contracts for Secure Speculation

Contract =
Executi onl\/lode -

Observer Mode

;l

How are programs executed?

Contracts for Secure Speculation

Contract =
Execution Mode - Observer Mode;

What is visible about the

How are programs executed? .
execution?

Contracts for Secure Speculation

Contract =
Execution -

))

|- Observer Mode

Contracts for Secure Speculation

Contract =
Execution Mode|-

))

l

Observer Mode

seq — sequential execution

spec — mispredict branch instructions

Contracts for Secure Speculation

Contract =
Fxecution Mode - Observer

Contracts for Secure Speculation

Contract =
Execution Mode - Observer

J

nc — only program counter

ct — pc + addr. of loads and stores

arch — ct + loaded values

A Lattice of Contracts

seqg-arch

seq-Ct =—>p |
/ T

seq-ct+spec-pc

T
spec-ct
| —— spec-arch /

A Lattice of Contracts

seq-Ct =—>p |
/ T

seq-ct+spec-pc

T
spec-ct
| —— spec-arch /

seqg-arch

Leaks “everything”

A Lattice of Contracts Leaks “nothing

seq-Ct ——p |
/ T

seq-ct+spec-pc

T
spec-ct
|l — spec-arch /

seqg-arch

Leaks “everything”

A Lattice of Contracts Leaks “nothing

seqg-arch

seq-Ct —p |
/ T

seq-ct+spec-pc

Leaks addresses

T of non-spec.
spec-ct loads/stores/
J_ ——- spec-arch / Instruction
fetches

Leaks “everything”

A Lattice of Contracts Leaks “nothing

Leaks all data

seq-Ct —p |
accessed non- / T

speculatively seq-arch

S€Q-Ct+SPeC-pC | 1< addresses

T of non-spec.
spec-ct loads/stores/
J_ ——- spec-arch / Instruction
fetches

Leaks “everything”

A Lattice of Contracts Leaks “nothing

Leaks all data

seq-Ct —p |
accessed non- / T

speculatively seq-arch

S€Q-Ct+SPeC-pC | 1< addresses

T of non-spec.
spec-ct loads/stores/
J_ ——- spec-arch / Instruction
fetches

Leaks addresses of all loads/stores/
Leaks “everything” instruction fetches

Hardware Countermeasures

A Simple Processor

A Simple Processor 3-stage pipeline

(fetch, execute, retire)

30

A Simple Processor 3-stage pipeline

(fetch, execute, retire)

Speculative and out-of-order execution

30

A Simple Processor 3-stage pipeline

(fetch, execute, retire)

Speculative and out-of-order execution

Parametric in branch predictor and
memory hierarchy

30

A Simple Processor 3-stage pipeline

(fetch, execute, retire)

Speculative and out-of-order execution

Parametric in branch predictor and
memory hierarchy

Different schedulers for different
countermeasures

30

Disabling Speculative Execution

Disabling Speculative Execution

! 4
- Instructions are executed sequentially:

(fetch, execute, retire)*®

N\

Disabling Speculative Execution

! 4
- Instructions are executed sequentially:

(fetch, execute, retire)*®

N\

Disabling Speculative Execution

! 4
- Instructions are executed sequentially:

(fetch, execute, retire)*®

N\

No speculative leaks *

Satisfies seq-ct

Eager Load Delay /Sakalis et al., ISCA’19]

Eager Load Delay [Sakalis et al., ISCA’19]

Delaying loads until all sources of
speculation are resolved

Eager Load Delay [Sakalis et al., ISCA’19]

Security guarantees?

Eager Load Delay [Sakalis et al., ISCA’19]

Eager Load Delay [Sakalis et al., ISCA’19]

Eager Load Delay [Sakalis et al., ISCA’19]

ﬁ

(x < A size)
X

Bz

z
Y

A

A[x]and B[z] delayed until

X<A sizeis resolved

Eager Load Delay [Sakalis et al., ISCA’19]

ﬁ

1L

(x < A size)
X

Bz

z
Y

A

A[x]and B[z] delayed until

X<A sizeis resolved

-2
" No speculative leaks ‘75

Eager Load Delay [Sakalis et al., ISCA’19]

B[z] delayed until

X<A sizeis resolved

) A -
“#* No speculative leaks "2+

Eager Load Delay [Sakalis et al., ISCA’19]

Eager Load Delay [Sakalis et al., ISCA’19]

Eager Load Delay [Sakalis et al., ISCA’19]

ﬁ

1f (z==0) is not delayed

Eager Load Delay [Sakalis et al., ISCA’19]

P

1f (z==0) is not delayed

if (z==0) Program speculatively

skip leaks A[x|

Eager Load Delay [Sakalis et al., ISCA’19]

ﬁ

1f (z==0) is not delayed

1 f (x < A size)
if (z==0) Program speculatively

skip leaks A[x|

Observation: Can only leak data
accessed non-speculatively

Eager Load Delay [Sakalis et al., ISCA’19]

ﬁ

1f (z==0) is not delayed

1 f (x < A size)
if (z==0) Program speculatively

skip leaks A[x|

Observation: Can only leak data Satisfies seq-arch
accessed non-speculatively *

Satisfies seq-ct+spec-pc

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

Taint speculatively loaded data

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

Taint speculatively loaded data

Propagate taint through computation

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

Taint speculatively loaded data

Propagate taint through computation

Delay tainted operations

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

- e - Taint speculatively loaded data

Security guarantees?

Delay tainted operations

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

P

(x < A size)
X

Blz

z
Y

A

A [x] tainted as unsafe
B[z] delayed until

A[x] is safe

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

A [x] tainted as unsafe
B[z] delayed until
if (x < A size) A [x] is safe

No speculative leaks *

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

A [x]tagged as safe

z = A[X] B[z] notdelayed
1

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

A [x]tagged as safe

z = A[X] B[z] notdelayed
1

Program speculatively

leaks A|x| o

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

A [x]tagged as safe

z = Alx] B[z] not delayed
1

Program speculatively

» Also satisfies seq-arch leaks A|x| &

No Countermeasures [The World until 2018]

No Countermeasures [The World until 2018]

ﬁ

1L

(x < A size)
X

Bz

z
Y

A

Leaks addressed of speculative
and non-speculative accesses

No Countermeasures [The World until 2018]

Leaks addressed of speculative
and non-speculative accesses

ﬁ

1f (x < A size)
Zz = A|lx
y = Blz

» Satisfies spec-ct

Security Guarantees

seq-ct
/ T
seq-ct+spec-pc

T
spec-ct
spec-arch /

seqg-arch

Security Guarantees 0

T Specu| Ation

/ seq-ct v
T

seq-ct+spec-pc

T
spec-ct
spec-arch /

SEq_arCh

Security Guarantees 0

~ speculation

/ Seq Ct

seq-ct+spec-pc “ __ Delay

seq- arch

spec-ct
spec-arch /

40

Security Guarantees 0

~ speculation

/ Seq-Ct

- Load
- Delay

seq-arch
seq-ct+spec-pc

Taint
. Tracking

spec-ct

spec-arch

40

Security Guarantees 0

~—" speculation

/ Seq-Ct

- Load
- Delay

seq-arch
seq-ct+spec-pc

Taint
e Trackin g

spec-ct

spec-arch

e n o
countermeasure

40

Secure Programming

Secure Programming: Foundations

Secure Programming: Foundations

Program p is non-interferent wrt contract || - || and policy
ffor all arch. states o, 6”: if 6 =, 6’ then [[pll(c) = [[pll(c’)

Secure Programming: Foundations
Specify secret data

Program p is non-interferent wrt contract ||+ || and policy &

ffor all arch. states 6, 6" f 6 =, 6’ then [[pll(0) = Ipll(c”)

Secure Programming: Foundations
Specify secret data

Program p is non-interferent wrt contract || - || and policy

f for all arch. states o, 6" if 6 =, ¢'then [[pll(c) = [[pll(c”)

|
e =

Secure Programming: Foundations
Specify secret data

Program p is non-interferent wrt contract || - || and policy
ffor all arch. states o, 6”: if 6 =, 6’ then [[pll(c) = [[pll(c’)

Secure Programming: Foundations
Specify secret data

Program p is non-interferent wrt contract || - || and policy
ffor all arch. states o, 6”: if 6 =, 6’ then [[pll(c) = [[pll(c’)

Theorem

f p is non-interferent wrt contract || - || and policy
and hardware { - |} satisfies || -], then
p is non-interferent wrt hardware { - |} and policy 7

Two Flavors of Secure Programming

Constant-time Sandboxing

Two Flavors of Secure Programming

|
\
{

- Constant-time

Sandboxing

Two Flavors of Secure Programming

|

Constant-time

Sandboxing

Constant-time Programming

Constant-time Programming

Traditional CT wrt policy & = non-interference wrt seq-ct and

Constant-time Programming

~ Control-flow and memory accesses
do not depend on secrets

Tradltlonal CT Wit pohcy JZ'E non-interterence wrt seq-ct and x

Constant-time Programming

~ Control-flow and memory accesses
do not depend on secrets

Tradltlonal CT Wit pohcy JZ'E non-interterence wrt seq-ct and x

General CT wrt wand [| - || = non-interference wrt || - || and &

Sandboxing

Sandboxing

Traditional SB wrt policy & = non-interference wrt seq-arch and z

Sandboxing

_ Programs never access high memory
locations (out-of-sandbox)

Traditional SB wrt policy

7Z'E non-interference wrt seq-arch and

45

Sandboxing

_ Programs never access high memory
locations (out-of-sandbox)

Traditional SB wrt policy JZ'E non-interference wrt seq-arch and 7

General SBwrtrand ||| =
Traditional SB wrt & + non-interference wrt - and || - ||

45

Checking Secure Programming

Constant-time

lraditional constant-time

seq-ct ,
A (= non-interference wrt seq-ct)
seqg-arch Non-interference wrt seq-arch
spec-ct .. + Spec. non-interference

[Spectector, S&P 20

Checking Secure Programming

Constant-time

lraditional constant-time

seq-ct ,
A (= non-interference wrt seq-ct)
seqg-arch Non-interference wrt seq-arch ﬁ
spec-ct .. + Spec. non-interference

[Spectector, S&P 20

Checking Secure Programming

Sandboxing

[raditional sandoboxing

seq-ct |
“ (= non-interference wrt seq-arch)

seqg-arch Traditional sandboxing

spec-ct .. + weak SN

Checking Secure Programming

Sandboxing

[raditional sandoboxing
(= non-interference wrt seq-arch)

seq-ct

spec-ct .. + weak SN

Conclusions

Need to rethink hardware-software contracts
with security and safety in mind!

Need to rethink hardware-software contracts
with security and safety in mind!
Should strive for simple and
mechanism-independent contracts.

Need to rethink hardware-software contracts
with security and safety in mind!
Should strive for simple and
mechanism-independent contracts.

Find out more in our paper:

M. Guarnieri, B. Kopf, J. Reineke, and P. Vila

Hardware-Software Contracts for Secure Speculation
S&P (Oakland) 2021

