
Hardware-Software Contracts for
Safe and Secure Systems

Jan Reineke @

Joint work with

Marco Guarnieri, Pepe Vila @ IMDEA Software, Madrid

Boris Köpf @ Microsoft Research, Cambridge, UK

Andreas Abel, Sebastian Hahn, Valentin Touzeau @ Saarland University

Supported by the European Research Council and an  
Intel Strategic Research Alliance (ISRA)

The Need for HW/SW Contracts

2

"Stone-age" Computing

3

Applications implemented data transformations:

 e.g. payroll processing

"Stone-age" Computing

3

Applications implemented data transformations:

 e.g. payroll processing

Hardware:

• isolated, on-site

• limited interaction with environment

Author: ArnoldReinhold License: CC BY-SA 3.0

IBM System 360/30

https://commons.wikimedia.org/wiki/User:ArnoldReinhold
https://creativecommons.org/licenses/by-sa/3.0

"Stone-age" Computing

3

Applications implemented data transformations:

 e.g. payroll processing

Hardware:

• isolated, on-site

• limited interaction with environment

Author: ArnoldReinhold License: CC BY-SA 3.0

IBM System 360/30

HW/SW Contract: Instruction Set Architecture

https://commons.wikimedia.org/wiki/User:ArnoldReinhold
https://creativecommons.org/licenses/by-sa/3.0

ISA Abstraction

4

Instruction set architecture (ISA)

High-level languages

Microarchitecture

Compiler

Implementation

ISA Abstraction: Benefits

5

Instruction set architecture (ISA)

Can program independently of  
microarchitecture

Can implement arbitrary optimizations  
as long as ISA semantics are obeyed

"Modern" (?) Computing

6

Applications are:

• Data-driven: e.g. deep neural networks

• Distributed: e.g. locally + in the cloud

• Open: e.g. untrusted code in the browser

• Real-time: interacting with the physical environment

"Modern" (?) Computing

6

Applications are:

• Data-driven: e.g. deep neural networks

• Distributed: e.g. locally + in the cloud

• Open: e.g. untrusted code in the browser

• Real-time: interacting with the physical environment

What are the implications for HW/SW contracts?

Inadequacy of the ISA + current µArchitectures: 
Real-time Systems

7

Instruction set architecture (ISA) Abstracts from time

Inadequacy of the ISA + current µArchitectures: 
Real-time Systems

7

Instruction set architecture (ISA)

Can implement arbitrary unpredictable optimizations  
as long as ISA semantics are obeyed

Abstracts from time

Inadequacy of the ISA + current µArchitectures: 
Real-time Systems

7

Instruction set architecture (ISA)

Programs do not have a timed semantics

Programs have no control over timing

Can implement arbitrary unpredictable optimizations  
as long as ISA semantics are obeyed

Abstracts from time

State-of-the-art:

Handcrafted Microarchitectural Timing Models

8

Instruction set architecture (ISA)

Microarchitecture

Manual Modeling

Microarchitectural timing model

Refinement

models timing behavior  
+ still no control over timing

unpredictable

State-of-the-art:

Handcrafted Microarchitectural Timing Models

8

Instruction set architecture (ISA)

Microarchitecture

Manual Modeling

Microarchitectural timing model

Refinement

models timing behavior  
+ still no control over timing

Models are �
 limited to particular microarchitectures �
+ probably incorrect �
+ yield expensive or imprecise analysis

unpredictable

Wanted: Timed HW/SW Contracts

9

Timed Instruction Set Architecture

Wanted: Timed HW/SW Contracts

9

Timed Instruction Set Architecture

Admit wide range of high-performance  
microarchitectural implementations

Wanted: Timed HW/SW Contracts

9

Timed Instruction Set Architecture

Programs have a timed semantics that is efficiently predictable

Programs have control over timing

Admit wide range of high-performance  
microarchitectural implementations

Wanted: Timed HW/SW Contracts

10

S. Hahn and J. Reineke:

Design and Analysis of SIC:  
A Provably Timing-Predictable Pipelined Processor Core
RTSS 2018

Some answers:
D. Bui, E. Lee, I. Liu, H. Patel, and J. Reineke:

Temporal Isolation on Multiprocessing Architectures
DAC 2011

Inadequacy of the ISA + current µArchitectures: 
Side-channel security

11

Instruction set architecture (ISA) No guarantees about side channels

Inadequacy of the ISA + current µArchitectures: 
Side-channel security

11

Instruction set architecture (ISA)

Can implement arbitrary insecure optimizations  
as long as ISA semantics are obeyed

No guarantees about side channels

Inadequacy of the ISA + current µArchitectures: 
Side-channel security

11

Instruction set architecture (ISA)

Impossible to program securely on top of ISA 
 cryptographic algorithms?

 sandboxing untrusted code?

Can implement arbitrary insecure optimizations  
as long as ISA semantics are obeyed

No guarantees about side channels

A Way Forward: HW/SW Security Contracts

12

Hardware-Software Contract = ISA + X Succinctly captures

possible information leakage

A Way Forward: HW/SW Security Contracts

12

Hardware-Software Contract = ISA + X

Can implement arbitrary insecure optimizations  
as long as contract is obeyed

Succinctly captures

possible information leakage

A Way Forward: HW/SW Security Contracts

12

Hardware-Software Contract = ISA + X

Can program securely on top contract 
independently of microarchitecture

Can implement arbitrary insecure optimizations  
as long as contract is obeyed

Succinctly captures

possible information leakage

A Concrete Challenge: Spectre

13

Exploits speculative
execution

Almost all modern CPUs

 are affected

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, Y. Yarom — | 
Spectre Attacks: Exploiting Speculative Execution — S&P 2019 14

Example: Spectre v1 Gadget

15

1. if (x < A_size)

2. y = A[x]

3. z = B[y*512]

4. end

1. x is out of bounds

Example: Spectre v1 Gadget

15

1. if (x < A_size)

2. y = A[x]

3. z = B[y*512]

4. end

2. Executed speculatively
1. x is out of bounds

Example: Spectre v1 Gadget

15

1. if (x < A_size)

2. y = A[x]

3. z = B[y*512]

4. end

2. Executed speculatively
1. x is out of bounds

Example: Spectre v1 Gadget

15

1. if (x < A_size)

2. y = A[x]

3. z = B[y*512]

4. end

3. Leaks A[x] via data cache

Hardware Countermeasures

16

Hardware Countermeasures

16

Hardware Countermeasures

16

Hardware Countermeasures

16

Hardware Countermeasures

16

Hardware Countermeasures

16

Examples

17

1. if (x < A_size)

2. y = A[x]

3. z = B[y*512]

4. end

Examples

17

1. if (x < A_size)

2. y = A[x]

3. z = B[y*512]

4. end

Examples

17

1. if (x < A_size)

2. y = A[x]

3. z = B[y*512]

4. end

Examples

17

1. if (x < A_size)

2. y = A[x]

3. z = B[y*512]

4. end

Delay loads until 
they can be retired  

[Sakalis et al., ISCA’19]

Delay loads until they cannot
be squashed 

[Sakalis et al., ISCA’19]

Examples

17

1. if (x < A_size)

2. y = A[x]

3. z = B[y*512]

4. end

Delay loads until 
they can be retired  

[Sakalis et al., ISCA’19]

Delay loads until they cannot
be squashed 

[Sakalis et al., ISCA’19]

Taint speculatively loaded data
+ delay tainted loads 

[STT and NDA, MICRO’19]

Examples

18

1. y = A[x]

2. if (x < A_size)

3. z = B[y*512]

4. end

Examples

18

1. y = A[x]

2. if (x < A_size)

3. z = B[y*512]

4. end

Delay loads until 
they can be retired  

[Sakalis et al., ISCA'19]

Delay loads until they cannot
be squashed 

[Sakalis et al., ISCA'19]

Examples

18

1. y = A[x]

2. if (x < A_size)

3. z = B[y*512]

4. end

Delay loads until 
they can be retired  

[Sakalis et al., ISCA'19]

Delay loads until they cannot
be squashed 

[Sakalis et al., ISCA'19]

Taint speculatively loaded data
+ delay tainted loads 

[STT and NDA, MICRO’19]

19

What security
properties do HW
countermeasures

enforce?

How can we program
securely?

A Proof of Concept

20

M. Guarnieri, B. Köpf, J. Reineke, and P. Vila

Hardware-Software Contracts for Secure Speculation

S&P (Oakland) 2021

Hardware-Software Contracts

21

HW/SW Contracts for Secure Speculation

22

HW/SW Contracts  
for Secure Speculation

HW/SW Contracts for Secure Speculation

22

HW/SW Contracts  
for Secure Speculation

No countermeasures

Load Delay
Taint Tracking

No speculationHardware
Countermeasures

HW/SW Contracts for Secure Speculation

22

HW/SW Contracts  
for Secure Speculation

SandboxingConstant-time

Secure
Programming

No countermeasures

Load Delay
Taint Tracking

No speculationHardware
Countermeasures

HW/SW Contracts for Secure Speculation

22

HW/SW Contracts  
for Secure Speculation

SandboxingConstant-time

Secure
Programming

No countermeasures

Load Delay
Taint Tracking

No speculationHardware
Countermeasures

simple mechanism-independent
preciseDesiderata:

Ingredients of a Formalization

23

Ingredients of a Formalization

23

Instruction Set Architecture 
Arch. states:  
Arch. semantics:

σ
σ ⇝ σ′￼

Ingredients of a Formalization

23

Instruction Set Architecture 
Arch. states:  
Arch. semantics:

σ
σ ⇝ σ′￼

Microarchitecture 
Hardware states:  
Hardware semantics:

⟨σ, μ⟩
⟨σ, μ⟩ ⇒ ⟨σ′￼, μ′￼⟩

Ingredients of a Formalization

23

Instruction Set Architecture 
Arch. states:  
Arch. semantics:

σ
σ ⇝ σ′￼

Microarchitecture 
Hardware states:  
Hardware semantics:

⟨σ, μ⟩
⟨σ, μ⟩ ⇒ ⟨σ′￼, μ′￼⟩

Adversary model 
μArch traces: {|p |}(σ) = μ0μ1…μn

Contracts

24

Contracts

24

 Contract 
 A deterministic, labelled semantics for the ISAτ

Contracts

24

 Contract 
 A deterministic, labelled semantics for the ISAτ

Observations expose security-relevant μArch events

Contracts

24

 Contract 
 A deterministic, labelled semantics for the ISAτ

Observations expose security-relevant μArch events

 Contract traces: [[p]](σ) = τ1τ2…τn

Contracts

24

 Contract 
 A deterministic, labelled semantics for the ISAτ

Observations expose security-relevant μArch events

 Contract traces: [[p]](σ) = τ1τ2…τn

 Contract satisfaction

 Hardware satisfies contract if for all programs and  
 arch. states , : if then

{| ⋅ |} [[⋅]] p
σ σ′￼ [[p]](σ) = [[p]](σ′￼) {|p |}(σ) = {|p |}(σ′￼)

Contracts for Secure Speculation

25

Contracts for Secure Speculation

25

Contract =  
 Execution Mode · Observer Mode

Contracts for Secure Speculation

25

Contract =  
 Execution Mode · Observer Mode

How are programs executed?

Contracts for Secure Speculation

25

Contract =  
 Execution Mode · Observer Mode

How are programs executed? What is visible about the
execution?

Contracts for Secure Speculation

26

Contract =  
 Execution Mode · Observer Mode

seq — sequential execution

spec — mispredict branch instructions

Contracts for Secure Speculation

26

Contract =  
 Execution Mode · Observer Mode

Contract =  
 Execution Mode · Observer Mode

Contracts for Secure Speculation

27

Contract =  
 Execution Mode · Observer Mode

pc — only program counter

ct — pc + addr. of loads and stores

arch — ct + loaded values  

Contracts for Secure Speculation

27

A Lattice of Contracts

28

spec-ct

seq-ct
seq-arch

spec-arch

seq-ct+spec-pc

⟙

⟘

A Lattice of Contracts

28
Leaks “everything”

spec-ct

seq-ct
seq-arch

spec-arch

seq-ct+spec-pc

⟙

⟘

A Lattice of Contracts

28
Leaks “everything”

Leaks “nothing”

spec-ct

seq-ct
seq-arch

spec-arch

seq-ct+spec-pc

⟙

⟘

A Lattice of Contracts

28
Leaks “everything”

Leaks “nothing”

Leaks addresses
of non-spec.
loads/stores/

instruction
fetches

spec-ct

seq-ct
seq-arch

spec-arch

seq-ct+spec-pc

⟙

⟘

A Lattice of Contracts

28
Leaks “everything”

Leaks “nothing”

Leaks addresses
of non-spec.
loads/stores/

instruction
fetches

Leaks all data  
accessed non-
speculatively

spec-ct

seq-ct
seq-arch

spec-arch

seq-ct+spec-pc

⟙

⟘

A Lattice of Contracts

28
Leaks “everything”

Leaks “nothing”

Leaks addresses
of non-spec.
loads/stores/

instruction
fetches

Leaks all data  
accessed non-
speculatively

Leaks addresses of all loads/stores/
instruction fetches

spec-ct

seq-ct
seq-arch

spec-arch

seq-ct+spec-pc

⟙

⟘

Hardware Countermeasures

29

A Simple Processor

30

A Simple Processor 3-stage pipeline  
(fetch, execute, retire)

30

A Simple Processor 3-stage pipeline  
(fetch, execute, retire)

Speculative and out-of-order execution

30

A Simple Processor

Parametric in branch predictor and
memory hierarchy

3-stage pipeline  
(fetch, execute, retire)

Speculative and out-of-order execution

30

A Simple Processor

Parametric in branch predictor and
memory hierarchy

3-stage pipeline  
(fetch, execute, retire)

Speculative and out-of-order execution

30

Different schedulers for different
countermeasures

Disabling Speculative Execution

31

Disabling Speculative Execution

31

Instructions are executed sequentially: 
(fetch, execute, retire)*

Disabling Speculative Execution

31

Instructions are executed sequentially: 
(fetch, execute, retire)*

🥳 No speculative leaks 🥳

Disabling Speculative Execution

31

Instructions are executed sequentially: 
(fetch, execute, retire)*

🥳 No speculative leaks 🥳

Satisfies seq-ct

Eager Load Delay [Sakalis et al., ISCA’19]

32

Eager Load Delay [Sakalis et al., ISCA’19]

32

Delaying loads until all sources of
speculation are resolved

Eager Load Delay [Sakalis et al., ISCA’19]

32

Delaying loads until all sources of
speculation are resolvedSecurity guarantees?

Eager Load Delay [Sakalis et al., ISCA’19]

33

if (x < A_size) 
	 z = A[x] 
	 y = B[z]

Eager Load Delay [Sakalis et al., ISCA’19]

33

if (x < A_size) 
	 z = A[x] 
	 y = B[z]

Eager Load Delay [Sakalis et al., ISCA’19]

33

if (x < A_size) 
	 z = A[x] 
	 y = B[z]

A[x]and B[z] delayed until  
x < A_size is resolved

Eager Load Delay [Sakalis et al., ISCA’19]

33

if (x < A_size) 
	 z = A[x] 
	 y = B[z]

A[x]and B[z] delayed until  
x < A_size is resolved

🥳 No speculative leaks 🥳

Eager Load Delay [Sakalis et al., ISCA’19]

34

B[z] delayed until  
x < A_size is resolved

🥳 No speculative leaks 🥳

z = A[x]  
if (x < A_size) 
	 y = B[z]

Eager Load Delay [Sakalis et al., ISCA’19]

35

z = A[x]

if (x < A_size) 
	 if (z==0) 
	 	 skip

Eager Load Delay [Sakalis et al., ISCA’19]

35

z = A[x]

if (x < A_size) 
	 if (z==0) 
	 	 skip

Eager Load Delay [Sakalis et al., ISCA’19]

35

z = A[x]

if (x < A_size) 
	 if (z==0) 
	 	 skip

if (z==0) is not delayed

Eager Load Delay [Sakalis et al., ISCA’19]

35

z = A[x]

if (x < A_size) 
	 if (z==0) 
	 	 skip

if (z==0) is not delayed

Program speculatively  

leaks A[x] 😞

Eager Load Delay [Sakalis et al., ISCA’19]

35

z = A[x]

if (x < A_size) 
	 if (z==0) 
	 	 skip

if (z==0) is not delayed

Program speculatively  

leaks A[x] 😞

Observation: Can only leak data
accessed non-speculatively

Eager Load Delay [Sakalis et al., ISCA’19]

35

z = A[x]

if (x < A_size) 
	 if (z==0) 
	 	 skip

if (z==0) is not delayed

Program speculatively  

leaks A[x] 😞

Observation: Can only leak data
accessed non-speculatively

Satisfies seq-arch

Satisfies seq-ct+spec-pc

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

36

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

36

Taint speculatively loaded data

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

36

Propagate taint through computation

Taint speculatively loaded data

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

36

Propagate taint through computation

Delay tainted operations

Taint speculatively loaded data

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

36

Propagate taint through computation

Delay tainted operations

Taint speculatively loaded data

Security guarantees?

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

37

if (x < A_size) 
	 z = A[x] 
	 y = B[z]

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

37

if (x < A_size) 
	 z = A[x] 
	 y = B[z]

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

37

if (x < A_size) 
	 z = A[x] 
	 y = B[z]

A[x]tainted as unsafe 
B[z] delayed until  

A[x] is safe

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

37

if (x < A_size) 
	 z = A[x] 
	 y = B[z]

A[x]tainted as unsafe 
B[z] delayed until  

A[x] is safe

🥳 No speculative leaks 🥳

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

38

z = A[x]  
if (x < A_size) 
	 y = B[z]

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

38

z = A[x]  
if (x < A_size) 
	 y = B[z]

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

38

z = A[x]  
if (x < A_size) 
	 y = B[z]

A[x]tagged as safe 
 

B[z] not delayed

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

38

z = A[x]  
if (x < A_size) 
	 y = B[z]

A[x]tagged as safe 
 

B[z] not delayed

Program speculatively  

leaks A[x] 😞

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

38

z = A[x]  
if (x < A_size) 
	 y = B[z]

A[x]tagged as safe 
 

B[z] not delayed

Program speculatively  

leaks A[x] 😞Also satisfies seq-arch

No Countermeasures [The World until 2018]

39

if (x < A_size) 
	 z = A[x] 
	 y = B[z]

No Countermeasures [The World until 2018]

39

Leaks addressed of speculative
and non-speculative accessesif (x < A_size) 

	 z = A[x] 
	 y = B[z]

No Countermeasures [The World until 2018]

39

Leaks addressed of speculative
and non-speculative accessesif (x < A_size) 

	 z = A[x] 
	 y = B[z]

Satisfies spec-ct

Security Guarantees

40

spec-ct

seq-ct
seq-arch

spec-arch

seq-ct+spec-pc

Security Guarantees

40

spec-ct

seq-ct
seq-arch

spec-arch

seq-ct+spec-pc

no
speculation

Security Guarantees

40

spec-ct

seq-ct
seq-arch

spec-arch

seq-ct+spec-pc

no
speculation

Load
Delay

Security Guarantees

40

spec-ct

seq-ct
seq-arch

spec-arch

seq-ct+spec-pc

no
speculation

Load
Delay

Taint
Tracking

Security Guarantees

40

spec-ct

seq-ct
seq-arch

spec-arch

seq-ct+spec-pc

no
speculation

Load
Delay

Taint
Tracking

no
countermeasure

Secure Programming

41

Secure Programming: Foundations

42

Secure Programming: Foundations

42

Program is non-interferent wrt contract and policy  
if for all arch. states , : if then

p [[⋅]] π
σ σ′￼ σ ≈π σ′￼ [[p]](σ) = [[p]](σ′￼)

Secure Programming: Foundations

42

Program is non-interferent wrt contract and policy  
if for all arch. states , : if then

p [[⋅]] π
σ σ′￼ σ ≈π σ′￼ [[p]](σ) = [[p]](σ′￼)

Specify secret data

Secure Programming: Foundations

42

Program is non-interferent wrt contract and policy  
if for all arch. states , : if then

p [[⋅]] π
σ σ′￼ σ ≈π σ′￼ [[p]](σ) = [[p]](σ′￼)

Specify secret data

Secure Programming: Foundations

42

Program is non-interferent wrt contract and policy  
if for all arch. states , : if then

p [[⋅]] π
σ σ′￼ σ ≈π σ′￼ [[p]](σ) = [[p]](σ′￼)

Specify secret data

Secure Programming: Foundations

42

Program is non-interferent wrt contract and policy  
if for all arch. states , : if then

p [[⋅]] π
σ σ′￼ σ ≈π σ′￼ [[p]](σ) = [[p]](σ′￼)

Specify secret data

If is non-interferent wrt contract and policy ,  
and hardware satisfies , then  

 is non-interferent wrt hardware and policy

p [[⋅]] π
{| ⋅ |} [[⋅]]

p {| ⋅ |} π

 Theorem

Two Flavors of Secure Programming

43

SandboxingConstant-time

Two Flavors of Secure Programming

43

SandboxingConstant-time

Two Flavors of Secure Programming

43

SandboxingConstant-time

Constant-time Programming

44

Constant-time Programming

44

Traditional CT wrt policy non-interference wrt seq-ct and π ≡ π

Constant-time Programming

44

Traditional CT wrt policy non-interference wrt seq-ct and π ≡ π

Control-flow and memory accesses  
do not depend on secrets

Constant-time Programming

44

Traditional CT wrt policy non-interference wrt seq-ct and π ≡ π

 General CT wrt and non-interference wrt and π [[⋅]] ≡ [[⋅]] π

Control-flow and memory accesses  
do not depend on secrets

Sandboxing

45

Sandboxing

45

Traditional SB wrt policy non-interference wrt seq-arch and π ≡ π

Sandboxing

45

Traditional SB wrt policy non-interference wrt seq-arch and π ≡ π

Programs never access high memory
locations (out-of-sandbox)

Sandboxing

45

Traditional SB wrt policy non-interference wrt seq-arch and π ≡ π

 General SB wrt and  
 Traditional SB wrt + non-interference wrt and

π [[⋅]] ≡
π π [[⋅]]

Programs never access high memory
locations (out-of-sandbox)

Constant-time

Checking Secure Programming

46

Traditional constant-time 
(= non-interference wrt seq-ct)

Non-interference wrt seq-arch

… + Spec. non-interference  
[Spectector, S&P’20]

seq-arch

seq-ct

spec-ct

Constant-time

Checking Secure Programming

46

Traditional constant-time 
(= non-interference wrt seq-ct)

Non-interference wrt seq-arch

… + Spec. non-interference  
[Spectector, S&P’20]

seq-arch

seq-ct

spec-ct

Sandboxing

Checking Secure Programming

47

Traditional sandboxing 
(= non-interference wrt seq-arch)

Traditional sandboxing

... + weak SNI

seq-arch

seq-ct

spec-ct

Sandboxing

Checking Secure Programming

47

Traditional sandboxing 
(= non-interference wrt seq-arch)

Traditional sandboxing

... + weak SNI

seq-arch

seq-ct

spec-ct

Conclusions

48

Need to rethink hardware-software contracts

with security and safety in mind!

Need to rethink hardware-software contracts

with security and safety in mind!

Should strive for simple and  
mechanism-independent contracts.

Find out more in our paper:
M. Guarnieri, B. Köpf, J. Reineke, and P. Vila

Hardware-Software Contracts for Secure Speculation

S&P (Oakland) 2021

Need to rethink hardware-software contracts

with security and safety in mind!

Should strive for simple and  
mechanism-independent contracts.

