
Hardware-So*ware Contracts for
Safe and Secure Systems

Jan Reineke @

Joint work with
Marco Guarnieri, Pepe Vila @ IMDEA Software, Madrid
Boris Köpf @ Microsoft Research, Cambridge, UK
Andreas Abel, Sebastian Hahn, Valentin Touzeau @ Saarland University

Supported by the European Research Council and an
Intel Strategic Research Alliance (ISRA)

The Need for HW/SW Contracts

2

"Stone-age" Compu=ng

3

Applica=ons implemented data transforma=ons:
 e.g. payroll processing

"Stone-age" Compu=ng

3

Applica=ons implemented data transforma=ons:
 e.g. payroll processing

Hardware:
• isolated, on-site
• limited interac=on with environment

Author: ArnoldReinhold License: CC BY-SA 3.0

IBM System 360/30

https://commons.wikimedia.org/wiki/User:ArnoldReinhold
https://creativecommons.org/licenses/by-sa/3.0

"Stone-age" Compu=ng

3

Applica=ons implemented data transforma=ons:
 e.g. payroll processing

Hardware:
• isolated, on-site
• limited interac=on with environment

Author: ArnoldReinhold License: CC BY-SA 3.0

IBM System 360/30

HW/SW Contract: Instruc=on Set Architecture

https://commons.wikimedia.org/wiki/User:ArnoldReinhold
https://creativecommons.org/licenses/by-sa/3.0

ISA Abstrac=on

4

Instruc=on set architecture (ISA)

High-level languages

Microarchitecture

Compiler

Implementa=on

ISA Abstrac=on: Benefits

5

Instruc=on set architecture (ISA)

Can program independently of
microarchitecture

Can implement arbitrary op.miza.ons
as long as ISA seman=cs are obeyed

"Modern" (?) Compu=ng

6

Applica=ons are:
• Data-driven: e.g. deep neural networks
• Distributed: e.g. locally + in the cloud
• Open: e.g. untrusted code in the browser
• Real-2me: interac=ng with the physical environment

"Modern" (?) Compu=ng

6

Applica=ons are:
• Data-driven: e.g. deep neural networks
• Distributed: e.g. locally + in the cloud
• Open: e.g. untrusted code in the browser
• Real-2me: interac=ng with the physical environment

What are the implica=ons for HW/SW contracts?

Inadequacy of the ISA + current µArchitectures:
Real-=me Systems

7

Instruc=on set architecture (ISA) Abstracts from .me

Inadequacy of the ISA + current µArchitectures:
Real-=me Systems

7

Instruc=on set architecture (ISA)

Can implement arbitrary unpredictable op=miza=ons
as long as ISA seman=cs are obeyed

Abstracts from .me

Inadequacy of the ISA + current µArchitectures:
Real-=me Systems

7

Instruc=on set architecture (ISA)

Programs do not have a .med seman.cs
Programs have no control over =ming

Can implement arbitrary unpredictable op=miza=ons
as long as ISA seman=cs are obeyed

Abstracts from .me

State-of-the-art:
Handcra*ed Microarchitectural Timing Models

8

Instruc=on set architecture (ISA)

Microarchitecture

Manual Modeling

Microarchitectural =ming model

Refinement

models =ming behavior
+ s=ll no control over =ming

unpredictable

State-of-the-art:
Handcra*ed Microarchitectural Timing Models

8

Instruc=on set architecture (ISA)

Microarchitecture

Manual Modeling

Microarchitectural =ming model

Refinement

models =ming behavior
+ s=ll no control over =ming

Models are
 limited to par=cular microarchitectures
+ probably incorrect
+ yield expensive or imprecise analysis

unpredictable

Wanted: Timed HW/SW Contracts

9

Timed Instruc=on Set Architecture

Wanted: Timed HW/SW Contracts

9

Timed Instruc=on Set Architecture

Admit wide range of high-performance
microarchitectural implementa=ons

Wanted: Timed HW/SW Contracts

9

Timed Instruc=on Set Architecture

Programs have a .med seman.cs that is efficiently predictable
Programs have control over =ming

Admit wide range of high-performance
microarchitectural implementa=ons

Wanted: Timed HW/SW Contracts

10

S. Hahn and J. Reineke:
Design and Analysis of SIC:  
A Provably Timing-Predictable Pipelined Processor Core
RTSS 2018

Some answers:
D. Bui, E. Lee, I. Liu, H. Patel, and J. Reineke:
Temporal Isolation on Multiprocessing Architectures
DAC 2011

Inadequacy of the ISA + current µArchitectures:
Side-channel security

11

Instruc=on set architecture (ISA) No guarantees about side channels

Inadequacy of the ISA + current µArchitectures:
Side-channel security

11

Instruc=on set architecture (ISA)

Can implement arbitrary insecure op=miza=ons
as long as ISA seman=cs are obeyed

No guarantees about side channels

Inadequacy of the ISA + current µArchitectures:
Side-channel security

11

Instruc=on set architecture (ISA)

Impossible to program securely on top of ISA
 cryptographic algorithms?
 sandboxing untrusted code?

Can implement arbitrary insecure op=miza=ons
as long as ISA seman=cs are obeyed

No guarantees about side channels

A Way Forward: HW/SW Security Contracts

12

Hardware-So*ware Contract = ISA + X Succinctly captures
possible informa=on leakage

A Way Forward: HW/SW Security Contracts

12

Hardware-So*ware Contract = ISA + X

Can implement arbitrary insecure op.miza.ons
as long as contract is obeyed

Succinctly captures
possible informa=on leakage

A Way Forward: HW/SW Security Contracts

12

Hardware-So*ware Contract = ISA + X

Can program securely on top contract
independently of microarchitecture

Can implement arbitrary insecure op.miza.ons
as long as contract is obeyed

Succinctly captures
possible informa=on leakage

A Concrete Challenge: Spectre

13

Exploits specula2ve
execu2on

Almost all modern CPUs
 are affected

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, Y. Yarom — |
Spectre Aeacks: Exploi=ng Specula=ve Execu=on — S&P 2019 14

Example: Spectre v1 Gadget

15

1. if (x < A_size)
2. y = A[x]
3. z = B[y*512]
4. end

1. x is out of bounds

Example: Spectre v1 Gadget

15

1. if (x < A_size)
2. y = A[x]
3. z = B[y*512]
4. end

2. Executed specula=vely
1. x is out of bounds

Example: Spectre v1 Gadget

15

1. if (x < A_size)
2. y = A[x]
3. z = B[y*512]
4. end

2. Executed specula=vely
1. x is out of bounds

Example: Spectre v1 Gadget

15

1. if (x < A_size)
2. y = A[x]
3. z = B[y*512]
4. end

3. Leaks A[x] via data cache

Hardware Countermeasures

16

Hardware Countermeasures

16

Hardware Countermeasures

16

Hardware Countermeasures

16

Hardware Countermeasures

16

Hardware Countermeasures

16

Examples

17

1. if (x < A_size)
2. y = A[x]
3. z = B[y*512]
4. end

Examples

17

1. if (x < A_size)
2. y = A[x]
3. z = B[y*512]
4. end

Examples

17

1. if (x < A_size)
2. y = A[x]
3. z = B[y*512]
4. end

Examples

17

1. if (x < A_size)
2. y = A[x]
3. z = B[y*512]
4. end

Delay loads un=l
they can be re=red

[Sakalis et al., ISCA’19]

Delay loads un=l they cannot
be squashed

[Sakalis et al., ISCA’19]

Examples

17

1. if (x < A_size)
2. y = A[x]
3. z = B[y*512]
4. end

Delay loads un=l
they can be re=red

[Sakalis et al., ISCA’19]

Delay loads un=l they cannot
be squashed

[Sakalis et al., ISCA’19]

Taint specula=vely loaded data
+ delay tainted loads

[STT and NDA, MICRO’19]

Examples

18

1. y = A[x]
2. if (x < A_size)
3. z = B[y*512]
4. end

Examples

18

1. y = A[x]
2. if (x < A_size)
3. z = B[y*512]
4. end

Delay loads un=l
they can be re=red

[Sakalis et al., ISCA'19]

Delay loads un=l they cannot
be squashed

[Sakalis et al., ISCA'19]

Examples

18

1. y = A[x]
2. if (x < A_size)
3. z = B[y*512]
4. end

Delay loads un=l
they can be re=red

[Sakalis et al., ISCA'19]

Delay loads un=l they cannot
be squashed

[Sakalis et al., ISCA'19]

Taint specula=vely loaded data
+ delay tainted loads

[STT and NDA, MICRO’19]

19

What security
proper=es do HW
countermeasures

enforce?

How can we program
securely?

A Proof of Concept

20

M. Guarnieri, B. Köpf, J. Reineke, and P. Vila
Hardware-Software Contracts for Secure Speculation
S&P (Oakland) 2021

Hardware-So*ware Contracts

21

HW/SW Contracts for Secure Specula=on

22

HW/SW Contracts
for Secure Specula=on

HW/SW Contracts for Secure Specula=on

22

HW/SW Contracts
for Secure Specula=on

No countermeasures

Load Delay
Taint Tracking

No specula=onHardware
Countermeasures

HW/SW Contracts for Secure Specula=on

22

HW/SW Contracts
for Secure Specula=on

SandboxingConstant-=me

Secure
Programming

No countermeasures

Load Delay
Taint Tracking

No specula=onHardware
Countermeasures

HW/SW Contracts for Secure Specula=on

22

HW/SW Contracts
for Secure Specula=on

SandboxingConstant-=me

Secure
Programming

No countermeasures

Load Delay
Taint Tracking

No specula=onHardware
Countermeasures

simple mechanism-independent
preciseDesiderata:

Ingredients of a Formalization

23

Ingredients of a Formalization

23

Instruc=on Set Architecture
Arch. states:
Arch. seman=cs:

σ
σ ⇝ σ′

Ingredients of a Formalization

23

Instruc=on Set Architecture
Arch. states:
Arch. seman=cs:

σ
σ ⇝ σ′

Microarchitecture
Hardware states:
Hardware seman=cs:

⟨σ, μ⟩
⟨σ, μ⟩ ⇒ ⟨σ′ , μ′ ⟩

Ingredients of a Formalization

23

Instruc=on Set Architecture
Arch. states:
Arch. seman=cs:

σ
σ ⇝ σ′

Microarchitecture
Hardware states:
Hardware seman=cs:

⟨σ, μ⟩
⟨σ, μ⟩ ⇒ ⟨σ′ , μ′ ⟩

Adversary model
μArch traces: {|p |}(σ) = μ0μ1…μn

Contracts

24

Contracts

24

 Contract
 A determinis=c, labelled seman=cs for the ISAτ

Contracts

24

 Contract
 A determinis=c, labelled seman=cs for the ISAτ

Observa2ons expose security-relevant μArch events

Contracts

24

 Contract
 A determinis=c, labelled seman=cs for the ISAτ

Observa2ons expose security-relevant μArch events

 Contract traces: [[p]](σ) = τ1τ2…τn

Contracts

24

 Contract
 A determinis=c, labelled seman=cs for the ISAτ

Observa2ons expose security-relevant μArch events

 Contract traces: [[p]](σ) = τ1τ2…τn

 Contract sa.sfac.on
 Hardware sa=sfies contract if for all programs and
 arch. states , : if then

{| ⋅ |} [[⋅]] p
σ σ′ [[p]](σ) = [[p]](σ′) {|p |}(σ) = {|p |}(σ′)

Contracts for Secure Speculation

25

Contracts for Secure Speculation

25

Contract =
 Execu=on Mode · Observer Mode

Contracts for Secure Speculation

25

Contract =
 Execu=on Mode · Observer Mode

How are programs executed?

Contracts for Secure Speculation

25

Contract =
 Execu=on Mode · Observer Mode

How are programs executed? What is visible about the
execu=on?

Contracts for Secure Speculation

26

Contract =
 Execu=on Mode · Observer Mode

seq — sequen=al execu=on
spec — mispredict branch instruc=ons

Contracts for Secure Speculation

26

Contract =
 Execu=on Mode · Observer Mode

Contract =
 Execu=on Mode · Observer Mode

Contracts for Secure Speculation

27

Contract =
 Execu=on Mode · Observer Mode

pc — only program counter
ct — pc + addr. of loads and stores
arch — ct + loaded values

Contracts for Secure Speculation

27

A Lattice of Contracts

28

spec-ct

seq-ct
seq-arch

spec-arch

seq-ct+spec-pc

⟙

⟘

A Lattice of Contracts

28
Leaks “everything”

spec-ct

seq-ct
seq-arch

spec-arch

seq-ct+spec-pc

⟙

⟘

A Lattice of Contracts

28
Leaks “everything”

Leaks “nothing”

spec-ct

seq-ct
seq-arch

spec-arch

seq-ct+spec-pc

⟙

⟘

A Lattice of Contracts

28
Leaks “everything”

Leaks “nothing”

Leaks addresses
of non-spec.
loads/stores/

instruc=on
fetches

spec-ct

seq-ct
seq-arch

spec-arch

seq-ct+spec-pc

⟙

⟘

A Lattice of Contracts

28
Leaks “everything”

Leaks “nothing”

Leaks addresses
of non-spec.
loads/stores/

instruc=on
fetches

Leaks all data
accessed non-
specula=vely

spec-ct

seq-ct
seq-arch

spec-arch

seq-ct+spec-pc

⟙

⟘

A Lattice of Contracts

28
Leaks “everything”

Leaks “nothing”

Leaks addresses
of non-spec.
loads/stores/

instruc=on
fetches

Leaks all data
accessed non-
specula=vely

Leaks addresses of all loads/stores/
instruc=on fetches

spec-ct

seq-ct
seq-arch

spec-arch

seq-ct+spec-pc

⟙

⟘

Hardware Countermeasures

29

A Simple Processor

30

A Simple Processor 3-stage pipeline
(fetch, execute, re=re)

30

A Simple Processor 3-stage pipeline
(fetch, execute, re=re)

Specula2ve and out-of-order execu=on

30

A Simple Processor

Parametric in branch predictor and
memory hierarchy

3-stage pipeline
(fetch, execute, re=re)

Specula2ve and out-of-order execu=on

30

A Simple Processor

Parametric in branch predictor and
memory hierarchy

3-stage pipeline
(fetch, execute, re=re)

Specula2ve and out-of-order execu=on

30

Different schedulers for different
countermeasures

Disabling Speculative Execution

31

Disabling Speculative Execution

31

Instruc2ons are executed sequen2ally:
(fetch, execute, re=re)*

Disabling Speculative Execution

31

Instruc2ons are executed sequen2ally:
(fetch, execute, re=re)*

🥳 No specula=ve leaks 🥳

Disabling Speculative Execution

31

Instruc2ons are executed sequen2ally:
(fetch, execute, re=re)*

🥳 No specula=ve leaks 🥳

Sa=sfies seq-ct

Eager Load Delay [Sakalis et al., ISCA’19]

32

Eager Load Delay [Sakalis et al., ISCA’19]

32

Delaying loads un=l all sources of
specula2on are resolved

Eager Load Delay [Sakalis et al., ISCA’19]

32

Delaying loads un=l all sources of
specula2on are resolvedSecurity guarantees?

Eager Load Delay [Sakalis et al., ISCA’19]

33

if (x < A_size)
 z = A[x]
 y = B[z]

Eager Load Delay [Sakalis et al., ISCA’19]

33

if (x < A_size)
 z = A[x]
 y = B[z]

Eager Load Delay [Sakalis et al., ISCA’19]

33

if (x < A_size)
 z = A[x]
 y = B[z]

A[x]and B[z] delayed un=l
x < A_size is resolved

Eager Load Delay [Sakalis et al., ISCA’19]

33

if (x < A_size)
 z = A[x]
 y = B[z]

A[x]and B[z] delayed un=l
x < A_size is resolved

🥳 No specula=ve leaks 🥳

Eager Load Delay [Sakalis et al., ISCA’19]

34

B[z] delayed un=l
x < A_size is resolved

🥳 No specula=ve leaks 🥳

z = A[x]
if (x < A_size)
 y = B[z]

Eager Load Delay [Sakalis et al., ISCA’19]

35

z = A[x]
if (x < A_size)
 if (z==0)
 skip

Eager Load Delay [Sakalis et al., ISCA’19]

35

z = A[x]
if (x < A_size)
 if (z==0)
 skip

Eager Load Delay [Sakalis et al., ISCA’19]

35

z = A[x]
if (x < A_size)
 if (z==0)
 skip

if (z==0) is not delayed

Eager Load Delay [Sakalis et al., ISCA’19]

35

z = A[x]
if (x < A_size)
 if (z==0)
 skip

if (z==0) is not delayed

Program specula=vely

leaks A[x] 😞

Eager Load Delay [Sakalis et al., ISCA’19]

35

z = A[x]
if (x < A_size)
 if (z==0)
 skip

if (z==0) is not delayed

Program specula=vely

leaks A[x] 😞

Observa2on: Can only leak data
accessed non-specula.vely

Eager Load Delay [Sakalis et al., ISCA’19]

35

z = A[x]
if (x < A_size)
 if (z==0)
 skip

if (z==0) is not delayed

Program specula=vely

leaks A[x] 😞

Observa2on: Can only leak data
accessed non-specula.vely

Sa=sfies seq-arch

Sa=sfies seq-ct+spec-pc

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

36

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

36

Taint specula=vely loaded data

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

36

Propagate taint through computa=on

Taint specula=vely loaded data

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

36

Propagate taint through computa=on

Delay tainted opera=ons

Taint specula=vely loaded data

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

36

Propagate taint through computa=on

Delay tainted opera=ons

Taint specula=vely loaded data

Security guarantees?

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

37

if (x < A_size)
 z = A[x]
 y = B[z]

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

37

if (x < A_size)
 z = A[x]
 y = B[z]

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

37

if (x < A_size)
 z = A[x]
 y = B[z]

A[x]tainted as unsafe
B[z] delayed un=l

A[x] is safe

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

37

if (x < A_size)
 z = A[x]
 y = B[z]

A[x]tainted as unsafe
B[z] delayed un=l

A[x] is safe

🥳 No specula=ve leaks 🥳

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

38

z = A[x]
if (x < A_size)
 y = B[z]

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

38

z = A[x]
if (x < A_size)
 y = B[z]

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

38

z = A[x]
if (x < A_size)
 y = B[z]

A[x]tagged as safe

B[z] not delayed

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

38

z = A[x]
if (x < A_size)
 y = B[z]

A[x]tagged as safe

B[z] not delayed

Program specula=vely

leaks A[x] 😞

Taint Tracking [Yu et al. 2019, Weisse et al. 2019]

38

z = A[x]
if (x < A_size)
 y = B[z]

A[x]tagged as safe

B[z] not delayed

Program specula=vely

leaks A[x] 😞Also sa=sfies seq-arch

No Countermeasures [The World until 2018]

39

if (x < A_size)
 z = A[x]
 y = B[z]

No Countermeasures [The World until 2018]

39

Leaks addressed of specula=ve
and non-specula=ve accessesif (x < A_size)

 z = A[x]
 y = B[z]

No Countermeasures [The World until 2018]

39

Leaks addressed of specula=ve
and non-specula=ve accessesif (x < A_size)

 z = A[x]
 y = B[z]

Sa=sfies spec-ct

Security Guarantees

40

spec-ct

seq-ct
seq-arch

spec-arch

seq-ct+spec-pc

Security Guarantees

40

spec-ct

seq-ct
seq-arch

spec-arch

seq-ct+spec-pc

no
specula.on

Security Guarantees

40

spec-ct

seq-ct
seq-arch

spec-arch

seq-ct+spec-pc

no
specula.on

Load
Delay

Security Guarantees

40

spec-ct

seq-ct
seq-arch

spec-arch

seq-ct+spec-pc

no
specula.on

Load
Delay

Taint
Tracking

Security Guarantees

40

spec-ct

seq-ct
seq-arch

spec-arch

seq-ct+spec-pc

no
specula.on

Load
Delay

Taint
Tracking

no
countermeasure

Secure Programming

41

Secure Programming: Foundations

42

Secure Programming: Foundations

42

Program is non-interferent wrt contract and policy
if for all arch. states , : if then

p [[⋅]] π
σ σ′ σ ≈π σ′ [[p]](σ) = [[p]](σ′)

Secure Programming: Foundations

42

Program is non-interferent wrt contract and policy
if for all arch. states , : if then

p [[⋅]] π
σ σ′ σ ≈π σ′ [[p]](σ) = [[p]](σ′)

Specify secret data

Secure Programming: Foundations

42

Program is non-interferent wrt contract and policy
if for all arch. states , : if then

p [[⋅]] π
σ σ′ σ ≈π σ′ [[p]](σ) = [[p]](σ′)

Specify secret data

Secure Programming: Foundations

42

Program is non-interferent wrt contract and policy
if for all arch. states , : if then

p [[⋅]] π
σ σ′ σ ≈π σ′ [[p]](σ) = [[p]](σ′)

Specify secret data

Secure Programming: Foundations

42

Program is non-interferent wrt contract and policy
if for all arch. states , : if then

p [[⋅]] π
σ σ′ σ ≈π σ′ [[p]](σ) = [[p]](σ′)

Specify secret data

If is non-interferent wrt contract and policy ,
and hardware satisfies , then

 is non-interferent wrt hardware and policy

p [[⋅]] π
{| ⋅ |} [[⋅]]

p {| ⋅ |} π

 Theorem

Two Flavors of Secure Programming

43

SandboxingConstant-=me

Two Flavors of Secure Programming

43

SandboxingConstant-=me

Two Flavors of Secure Programming

43

SandboxingConstant-=me

Constant-time Programming

44

Constant-time Programming

44

Traditional CT wrt policy non-interference wrt seq-ct and π ≡ π

Constant-time Programming

44

Traditional CT wrt policy non-interference wrt seq-ct and π ≡ π

Control-flow and memory accesses
do not depend on secrets

Constant-time Programming

44

Traditional CT wrt policy non-interference wrt seq-ct and π ≡ π

 General CT wrt and non-interference wrt and π [[⋅]] ≡ [[⋅]] π

Control-flow and memory accesses
do not depend on secrets

Sandboxing

45

Sandboxing

45

Traditional SB wrt policy non-interference wrt seq-arch and π ≡ π

Sandboxing

45

Traditional SB wrt policy non-interference wrt seq-arch and π ≡ π

Programs never access high memory
loca=ons (out-of-sandbox)

Sandboxing

45

Traditional SB wrt policy non-interference wrt seq-arch and π ≡ π

 General SB wrt and
 Traditional SB wrt + non-interference wrt and

π [[⋅]] ≡
π π [[⋅]]

Programs never access high memory
loca=ons (out-of-sandbox)

Constant-2me

Checking Secure Programming

46

Traditional constant-time
(= non-interference wrt seq-ct)

Non-interference wrt seq-arch

… + Spec. non-interference
[Spectector, S&P’20]

seq-arch

seq-ct

spec-ct

Constant-2me

Checking Secure Programming

46

Traditional constant-time
(= non-interference wrt seq-ct)

Non-interference wrt seq-arch

… + Spec. non-interference
[Spectector, S&P’20]

seq-arch

seq-ct

spec-ct

Sandboxing

Checking Secure Programming

47

Traditional sandboxing
(= non-interference wrt seq-arch)

Traditional sandboxing

... + weak SNI

seq-arch

seq-ct

spec-ct

Sandboxing

Checking Secure Programming

47

Traditional sandboxing
(= non-interference wrt seq-arch)

Traditional sandboxing

... + weak SNI

seq-arch

seq-ct

spec-ct

Conclusions

48

Need to rethink hardware-soOware contracts
with security and safety in mind!

Need to rethink hardware-soOware contracts
with security and safety in mind!

Should strive for simple and
mechanism-independent contracts.

Find out more in our paper:
M. Guarnieri, B. Köpf, J. Reineke, and P. Vila
Hardware-Software Contracts for Secure Speculation
S&P (Oakland) 2021

Need to rethink hardware-soOware contracts
with security and safety in mind!

Should strive for simple and
mechanism-independent contracts.

