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Instruc=on set architecture (ISA)

Can program independently of  
microarchitecture

Can implement arbitrary op.miza.ons  
as long as ISA seman=cs are obeyed
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• Data-driven: e.g. deep neural networks 
• Distributed: e.g. locally + in the cloud 
• Open: e.g. untrusted code in the browser 
• Real-2me: interac=ng with the physical environment

What are the implica=ons for HW/SW contracts?
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Instruc=on set architecture (ISA)

Programs do not have a .med seman.cs 
Programs have no control over =ming

Can implement arbitrary unpredictable op=miza=ons  
as long as ISA seman=cs are obeyed

Abstracts from .me
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Instruc=on set architecture (ISA)

Microarchitecture

Manual Modeling

Microarchitectural =ming model

Refinement 

models =ming behavior  
+ s=ll no control over =ming

Models are  
   limited to par=cular microarchitectures  
+ probably incorrect  
+ yield expensive or imprecise analysis

unpredictable
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Timed Instruc=on Set Architecture

Programs have a .med seman.cs that is efficiently predictable 
Programs have control over =ming

Admit wide range of high-performance  
microarchitectural implementa=ons
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S. Hahn and J. Reineke: 
Design and Analysis of SIC:  
A Provably Timing-Predictable Pipelined Processor Core  
RTSS 2018

Some answers:
D. Bui, E. Lee, I. Liu, H. Patel, and J. Reineke: 
Temporal Isolation on Multiprocessing Architectures  
DAC 2011
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Side-channel security
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Instruc=on set architecture (ISA)

Impossible to program securely on top of ISA 
  cryptographic algorithms? 
  sandboxing untrusted code?

Can implement arbitrary insecure op=miza=ons  
as long as ISA seman=cs are obeyed

No guarantees about side channels



A Way Forward: HW/SW Security Contracts

12

Hardware-So*ware Contract = ISA + X Succinctly captures  
possible informa=on leakage 



A Way Forward: HW/SW Security Contracts

12

Hardware-So*ware Contract = ISA + X

Can implement arbitrary insecure op.miza.ons  
as long as contract is obeyed

Succinctly captures  
possible informa=on leakage 



A Way Forward: HW/SW Security Contracts

12

Hardware-So*ware Contract = ISA + X

Can program securely on top contract 
independently of microarchitecture

Can implement arbitrary insecure op.miza.ons  
as long as contract is obeyed

Succinctly captures  
possible informa=on leakage 
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Exploits specula2ve 
execu2on

Almost all modern CPUs 
 are affected

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, Y. Yarom — | 
Spectre Aeacks: Exploi=ng Specula=ve Execu=on — S&P 2019 14
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2. Executed specula=vely
1. x is out of bounds

Example: Spectre v1 Gadget

15

1. if (x < A_size) 
2.   y = A[x] 
3.   z = B[y*512] 
4. end

3. Leaks A[x] via data cache
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What security 
proper=es do HW 
countermeasures 

enforce? 

How can we program 
securely?
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M. Guarnieri, B. Köpf, J. Reineke, and P. Vila
Hardware-Software Contracts for Secure Speculation
S&P (Oakland) 2021



Hardware-So*ware Contracts

21



HW/SW Contracts for Secure Specula=on

22

HW/SW Contracts  
for Secure Specula=on



HW/SW Contracts for Secure Specula=on

22

HW/SW Contracts  
for Secure Specula=on

No countermeasures

Load Delay
Taint Tracking

No specula=onHardware 
Countermeasures



HW/SW Contracts for Secure Specula=on

22

HW/SW Contracts  
for Secure Specula=on

SandboxingConstant-=me

Secure 
Programming

No countermeasures

Load Delay
Taint Tracking

No specula=onHardware 
Countermeasures



HW/SW Contracts for Secure Specula=on

22

HW/SW Contracts  
for Secure Specula=on

SandboxingConstant-=me

Secure 
Programming

No countermeasures

Load Delay
Taint Tracking

No specula=onHardware 
Countermeasures

simple mechanism-independent
preciseDesiderata:
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Instruc=on Set Architecture 
Arch. states:  
Arch. seman=cs:    

σ
σ ⇝ σ′ 

Microarchitecture 
Hardware states:  
Hardware seman=cs:    

⟨σ, μ⟩
⟨σ, μ⟩ ⇒ ⟨σ′ , μ′ ⟩

Adversary model 
μArch traces: {|p |}(σ) = μ0μ1…μn
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 Contract 
  A determinis=c, labelled seman=cs  for the ISAτ

Observa2ons expose security-relevant μArch events

  Contract traces: [[p]](σ) = τ1τ2…τn

 Contract sa.sfac.on 
  Hardware  sa=sfies contract  if for all programs  and  
    arch. states , : if    then   

{| ⋅ |} [[⋅]] p
σ σ′ [[p]](σ) = [[p]](σ′ ) {|p |}(σ) = {|p |}(σ′ )
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Contract =  
 Execu=on Mode · Observer Mode

How are programs executed? What is visible about the 
execu=on?
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Contract =  
 Execu=on Mode · Observer Mode

pc — only program counter 
ct — pc + addr. of loads and stores 
arch — ct + loaded values  

Contracts for Secure Speculation

27
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Leaks “everything”

Leaks “nothing”

Leaks addresses 
of non-spec. 
loads/stores/

instruc=on 
fetches

Leaks all data  
accessed non-
specula=vely

Leaks addresses of all loads/stores/
instruc=on fetches

spec-ct

seq-ct
seq-arch

spec-arch

seq-ct+spec-pc

⟙

⟘
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A Simple Processor

Parametric in branch predictor and 
memory hierarchy 

3-stage pipeline  
(fetch, execute, re=re)

Specula2ve and out-of-order execu=on

30

Different schedulers for different 
countermeasures
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Instruc2ons are executed sequen2ally: 
(fetch, execute, re=re)*

🥳 No specula=ve leaks 🥳

Sa=sfies seq-ct
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Delaying loads un=l all sources of 
specula2on are resolvedSecurity guarantees?
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B[z] delayed un=l  
x < A_size is resolved

🥳 No specula=ve leaks 🥳

z = A[x]  
if (x < A_size) 
  y = B[z]
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35

z = A[x] 
if (x < A_size) 
 if (z==0) 
  skip

if (z==0) is not delayed

Program specula=vely  

leaks A[x] 😞

Observa2on: Can only leak data 
accessed non-specula.vely

Sa=sfies seq-arch

Sa=sfies seq-ct+spec-pc
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Propagate taint through computa=on

Delay tainted opera=ons

Taint specula=vely loaded data

Security guarantees?
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38

z = A[x]  
if (x < A_size) 
  y = B[z]

A[x]tagged as safe 
 

B[z] not delayed

Program specula=vely  

leaks A[x] 😞Also sa=sfies seq-arch
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Leaks addressed of specula=ve 
and non-specula=ve accessesif (x < A_size) 

  z = A[x] 
  y = B[z]

Sa=sfies spec-ct
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spec-ct

seq-ct
seq-arch

spec-arch

seq-ct+spec-pc

no 
specula.on

Load 
Delay

Taint 
Tracking

no 
countermeasure
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Secure Programming: Foundations

42

Program  is non-interferent wrt contract  and policy   
if for all arch. states , : if  then   

p [[⋅]] π
σ σ′ σ ≈π σ′ [[p]](σ) = [[p]](σ′ )

Specify secret data

If  is non-interferent wrt contract  and policy ,  
and hardware  satisfies , then  

 is non-interferent wrt hardware  and policy 

p [[⋅]] π
{| ⋅ |} [[⋅]]

p {| ⋅ |} π

  Theorem  
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Traditional SB wrt policy   non-interference wrt seq-arch and   π ≡ π

  General SB wrt  and    
    Traditional SB wrt  + non-interference wrt  and 

π [[⋅]] ≡
π π [[⋅]]

Programs never access high memory 
loca=ons (out-of-sandbox)
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Traditional constant-time 
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spec-ct



Constant-2me

Checking Secure Programming

46

Traditional constant-time 
(= non-interference wrt seq-ct)

Non-interference wrt seq-arch

… + Spec. non-interference  
[Spectector, S&P’20]

seq-arch

seq-ct

spec-ct



Sandboxing

Checking Secure Programming

47

Traditional sandboxing 
(= non-interference wrt seq-arch)

Traditional sandboxing

... + weak SNI 

seq-arch

seq-ct

spec-ct



Sandboxing

Checking Secure Programming

47

Traditional sandboxing 
(= non-interference wrt seq-arch)

Traditional sandboxing

... + weak SNI 

seq-arch

seq-ct

spec-ct



Conclusions

48



Need to rethink hardware-soOware contracts 
with security and safety in mind!
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