
Timing Anomalies and
Timing Compositionality

Jan Reineke @

TACLe: Timing Analysis on Code Level
Prague, January 20, 2016

computer science

saarland
university

Jan Reineke, Saarland 2

Outline

1.  Challenges
1.  Single-core analysis: Timing Anomalies
2.  Multi-core analysis: Timing Compositionality

2.  Bad News
3.  Good News
4.  Conclusions and Future Work

Jan Reineke, Saarland 3

The Timing Analysis Problem

Embedded Software

Timing Requirements
?	

Microarchitecture

+	
Our Vision: PRET Machines

PREcision-Timed processors: Performance & Predicability

+ = PRET

(Image: John Harrison’s H4, first clock to solve longitude problem)

Precision-Timed (PRET) Machines – p. 11/19

Jan Reineke, Saarland 4

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Simple
CPU

Memory

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

What does the execution time depend on?

¢  The input, determining which path is taken
through the program.

¢  The state of the hardware platform:
l  Due to caches, pipelining, speculation, etc.

¢  Interference from the environment:
l  External interference as seen from the analyzed

task on shared busses, caches, memory.

Jan Reineke, Saarland 5

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Simple
CPU

Memory

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Complex CPU
(out-of-order
execution,

branch
prediction, etc.)

Main
Memory

L1
Cache

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

What does the execution time depend on?

¢  The input, determining which path is taken
through the program.

¢  The state of the hardware platform:
l  Due to caches, pipelining, speculation, etc.

¢  Interference from the environment:
l  External interference as seen from the analyzed

task on shared busses, caches, memory.

Jan Reineke, Saarland 6

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Simple
CPU

Memory

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Complex CPU
(out-of-order
execution,

branch
prediction, etc.)

Main
Memory

L1
Cache

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Complex
CPU

L1
Cache

Complex
CPU

L1
Cache

...
L2

Cache
Main

Memory

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

What does the execution time depend on?

¢  The input, determining which path is taken
through the program.

¢  The state of the hardware platform:
l  Due to caches, pipelining, speculation, etc.

¢  Interference from the environment:
l  External interference as seen from the analyzed

task on shared busses, caches, memory.

Jan Reineke, Saarland 7

Timing Anomalies

computer science

saarland
universityState-of-the-art: Integrated WCET Analysis

Drawback Efficiency

Timing Anomalies hinder state space reduction

Sebastian Hahn Timing Compositionality 19 June 2013 6 / 19

Cache Miss
= Local Worst Case Cache Hit

Global Worst Case

leads to

Nondeterminism due
to uncertainty about
hardware state

Timing Anomalies in Dynamically Scheduled Microprocessors
T. Lundqvist, P. Stenström – RTSS 1999

Jan Reineke, Saarland 8

Timing Anomalies: Example

Scheduling Anomaly

A

A

Resource 1

Resource 2

Resource 1

Resource 2

C

B C

B

D E

D E

C ready

Bounds on multiprocessing timing anomalies
RL Graham - SIAM Journal on Applied Mathematics, 1969 – SIAM
(http://epubs.siam.org/doi/abs/10.1137/0117039)

Jan Reineke, Saarland 9

Timing Compositionality: By Example computer science

saarland
universityMulti-Core Processors [Schranzhofer et al.]

Response Time of Task on Core 1

Core 1exec

max

1 Core 2 Core 3 Core 4

Shared Memoryµmax

1 · a

Shared BusB

1 Worst-case execution time without bus accesses: exec

max

1

2 Number of bus accesses in the worst case: µmax

1

3 Worst-case bus blocking time: B (depends on exec

max

i

and µmax

i

)

) R1 exec

max

1 + µmax

1 · a + B

Jan Reineke Timing Compositionality AVACS meets InvasIC 10 / 20

Timing Compositionality =
Ability to simply sum up timing contributions by different components

Implicitly or explicitly assumed by (almost) all approaches to timing
analysis for multi cores and cache-related preemption delays (CRPD).

Jan Reineke, Saarland 10

Conventional Wisdom

Simple in-order pipeline + LRU caches
 à no timing anomalies
à timing-compositional

False!

Jan Reineke, Saarland 11

Bad News: In-order Pipelines

We show such a pipeline has timing anomalies:

Toward Compact Abstractions for Processor Pipelines
S. Hahn, J. Reineke, and R. Wilhelm. In Correct System Design, 2015.

computer science

saarland
universityMicroarchitecture

An Example

Pipeline processes instructions in program order

Caches buffer recently accessed memory blocks

Fetch (IF)
Decode (ID)
Execute (EX)

Memory (MEM)
Write-back (WB)

I-cache

D-cache

Memory

Reinhard Wilhelm Abstractable Pipelines August 13, 2015 5 / 22

Jan Reineke, Saarland 12

A Timing Anomaly
computer science

saarland
universityTiming Anomaly

load ...

nop

load r1, ...

div ..., r1

ret

(load r1, 0)

(load, 0)

load H IF ret load r1 M EX div

load M load r1 M IF ret

EX div

Hit case

Instruction fetch starts before second load becomes ready

Second load is prioritized over instruction fetch

Loading before fetching suits subsequent execution

) Progress in the pipeline influences the arbitration of code fetch and
data access

Reinhard Wilhelm Abstractable Pipelines August 13, 2015 10 / 22

computer science

saarland
universityTiming Anomaly

load ...

nop

load r1, ...

div ..., r1

ret

(load r1, 0)

(load, 0)

load H IF ret load r1 M EX div

load M load r1 M IF ret

EX div

Hit case

Instruction fetch starts before second load becomes ready

Second load is prioritized over instruction fetch

Loading before fetching suits subsequent execution

) Progress in the pipeline influences the arbitration of code fetch and
data access

Reinhard Wilhelm Abstractable Pipelines August 13, 2015 10 / 22

computer science

saarland
universityTiming Anomaly

load ...

nop

load r1, ...

div ..., r1

ret

(load r1, 0)

(load, 0)

load H IF ret load r1 M EX div

load M load r1 M IF ret

EX div

Miss case

Second load can catch up during first load missing the cache

Second load is prioritized over instruction fetch

Loading before fetching suits subsequent execution

) Progress in the pipeline influences the arbitration of code fetch and
data access

Reinhard Wilhelm Abstractable Pipelines August 13, 2015 10 / 22

Hit case:
•  Instruction fetch starts before second load becomes ready
•  Stalls second load, which misses the cache

Miss case:
•  Second load can catch up during first load missing the cache
•  Second load is prioritized over instruction fetch
•  Loading before fetching suits subsequent execution

Intuitive Reason:
Progress in the pipeline influences order of
instruction fetch and data access

Jan Reineke, Saarland 13

Timing Compositionality of In-order Pipeline

Maximal cost of an additional cache miss?

Intuitively: cache miss penalty

Unfortunately: ~ 2 times cache miss penalty
 - ongoing instruction fetch may block load
 - ongoing load may block instruction fetch

Jan Reineke, Saarland 14

Good News

Two approaches to solve problem:
1.  Stall entire processor upon „timing accidents“
2.  Strictly in-order pipeline

Jan Reineke, Saarland 15

Strictly In-Order Pipelines: Definition

Definition (Strictly In-Order):
We call a pipeline strictly in-order if each resource
processes the instructions in program order.

•  Enforce memory operations (instructions and
data) in-order (common memory as resource)

•  Block instruction fetch until no potential data
accesses in the pipeline

Jan Reineke, Saarland 16

Strictly In-Order Pipelines: Properties

Theorem 1 (Monotonicity):
In the strictly in-order pipeline progress of an
instruction is monotone in the progress of other
instructions.

≤

In the blue state,
each instruction has
the same or more
progress than in the
red state.

∃

≤

∀

Jan Reineke, Saarland 17

Strictly In-Order Pipelines: Properties

Theorem 2 (Timing Anomalies):
The strictly in-order pipeline is free of timing
anomalies.

local
best case

local
worst case

≤

...

≤
≤

by monotonicity

Jan Reineke, Saarland 18

Strictly In-Order Pipelines: Properties

Theorem 3 (Timing Compositionality):
The strictly in-order pipeline admits „compositional
analysis with intuitive penalties.“

≤

local
best case

local
worst case

≤
≥after

„natural“
penalty

Jan Reineke, Saarland 19

Conclusions

Timing compositionality enabler for
¢  CRPD-aware response-time, and
¢  multi-core timing analysis

Not provided even by simple, in-order pipelines.

Strictly in-order pipeline is free of timing
anomalies and provides timing compositionality.

Jan Reineke, Saarland 20

Future Work

Evaluate impact on analysis efficiency, average-
case performance, and predictable performance.

Extensions:
¢  Can we extend the approach to more complex,

e.g. even out-of-order pipelines?

Thank you for your attention!

Jan Reineke, Saarland 21

References

Towards Compositionality in Execution Time Analysis - Definition
and Challenges
S. Hahn, J. Reineke, and R. Wilhelm. In CRTS, 2013.

Toward Compact Abstractions for Processor Pipelines
S. Hahn, J. Reineke, and R. Wilhelm. In Correct System Design, 2015.

