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The Timing Analysis Problem 

Embedded Software 

Timing Requirements 
?	

Microarchitecture 

+	
Our Vision: PRET Machines

PREcision-Timed processors: Performance & Predicability

+ = PRET

(Image: John Harrison’s H4, first clock to solve longitude problem)

Precision-Timed (PRET) Machines – p. 11/19
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universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Simple 
CPU

Memory
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Timing Anomalies 
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universityState-of-the-art: Integrated WCET Analysis

Drawback Efficiency

Timing Anomalies hinder state space reduction

Sebastian Hahn Timing Compositionality 19 June 2013 6 / 19

Cache Miss  
= Local Worst Case Cache Hit 

Global Worst Case 

leads to 

Nondeterminism due 
to uncertainty about 
hardware state 

Timing Anomalies in Dynamically Scheduled Microprocessors 
T. Lundqvist, P. Stenström – RTSS 1999 
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Timing Anomalies: Example 
 

Scheduling Anomaly 

A

A

Resource 1

Resource 2

Resource 1

Resource 2

C

B C

B

D E

D E

C ready

Bounds on multiprocessing timing anomalies 
RL Graham - SIAM Journal on Applied Mathematics, 1969 – SIAM 
(http://epubs.siam.org/doi/abs/10.1137/0117039) 
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Response Time of Task on Core 1

Core 1exec

max

1 Core 2 Core 3 Core 4

Shared Memoryµmax

1 · a

Shared BusB

1 Worst-case execution time without bus accesses: exec

max

1

2 Number of bus accesses in the worst case: µmax

1

3 Worst-case bus blocking time: B (depends on exec

max

i

and µmax

i

)

) R1  exec

max

1 + µmax

1 · a + B

Jan Reineke Timing Compositionality AVACS meets InvasIC 10 / 20

Timing Compositionality =  
Ability to simply sum up timing contributions by different components 

Implicitly or explicitly assumed by (almost) all approaches to timing 
analysis for multi cores and cache-related preemption delays (CRPD). 
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Conventional Wisdom 

Simple in-order pipeline + LRU caches 
 à no timing anomalies 
à timing-compositional  

False! 
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Bad News: In-order Pipelines 

We show such a pipeline has timing anomalies: 
 

Toward Compact Abstractions for Processor Pipelines 
S. Hahn, J. Reineke, and R. Wilhelm. In Correct System Design, 2015. 
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An Example

Pipeline processes instructions in program order

Caches buffer recently accessed memory blocks

Fetch (IF)
Decode (ID)
Execute (EX)

Memory (MEM)
Write-back (WB)

I-cache

D-cache

Memory

Reinhard Wilhelm Abstractable Pipelines August 13, 2015 5 / 22
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load ...

nop

load r1, ...

div ..., r1

-----------

ret

(load r1, 0)

(load, 0)

load H IF ret load r1 M EX div

load M load r1 M IF ret

EX div

Hit case

Instruction fetch starts before second load becomes ready

Second load is prioritized over instruction fetch

Loading before fetching suits subsequent execution

) Progress in the pipeline influences the arbitration of code fetch and
data access

Reinhard Wilhelm Abstractable Pipelines August 13, 2015 10 / 22
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Hit case: 
•  Instruction fetch starts before second load becomes ready  
•  Stalls second load, which misses the cache 
 
Miss case: 
•  Second load can catch up during first load missing the cache 
•  Second load is prioritized over instruction fetch 
•  Loading before fetching suits subsequent execution 
 

Intuitive Reason: 
Progress in the pipeline influences order of 
instruction fetch and data access 
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Timing Compositionality of In-order Pipeline 

Maximal cost of an additional cache miss? 
 
Intuitively: cache miss penalty 
 
Unfortunately: ~ 2 times cache miss penalty 
  - ongoing instruction fetch may block load 
  - ongoing load may block instruction fetch 
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Good News  

Two approaches to solve problem: 
1.  Stall entire processor upon „timing accidents“ 
2.  Strictly in-order pipeline 
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Strictly In-Order Pipelines: Definition 

Definition (Strictly In-Order): 
We call a pipeline strictly in-order if each resource 
processes the instructions in program order. 

•  Enforce memory operations (instructions and 
data) in-order (common memory as resource) 

•  Block instruction fetch until no potential data 
accesses in the pipeline 
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Strictly In-Order Pipelines: Properties 

Theorem 1 (Monotonicity): 
In the strictly in-order pipeline progress of an 
instruction is monotone in the progress of other 
instructions. 

≤

In the blue state, 
each instruction has 
the same or more 
progress than in the 
red state. 

∃

≤

∀
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Strictly In-Order Pipelines: Properties 

Theorem 2 (Timing Anomalies): 
The strictly in-order pipeline is free of timing 
anomalies. 

local      
best case 

local    
worst case 

≤

... 

≤
≤

by monotonicity 
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Strictly In-Order Pipelines: Properties 

Theorem 3 (Timing Compositionality): 
The strictly in-order pipeline admits „compositional 
analysis with intuitive penalties.“ 

≤

local      
best case 

local    
worst case 

≤
≥after 

„natural“ 
penalty  
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Conclusions 

Timing compositionality enabler for   
¢  CRPD-aware response-time, and   
¢  multi-core timing analysis 
 
Not provided even by simple, in-order pipelines. 
 
Strictly in-order pipeline is free of timing 
anomalies and provides timing compositionality. 
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Future Work 

Evaluate impact on analysis efficiency, average-
case performance, and predictable performance. 

Extensions: 
¢  Can we extend the approach to more complex, 

e.g. even out-of-order pipelines? 

Thank you for your attention! 
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