ASTRA: A Tool for Abstract Interpretation
of Graph Transformation Systems

Peter Backes Jan Reineke

Saarland University
Saarbricken, Germany

Graph Transformation Systems

Graph Transformation System =
Start Graph + Set of Rules

Graph Transformation Systems

Graph Transformation System =
Start Graph + Set of Rules

Rule: @ = @

Graph Transformation Systems

Graph Transformation System =
Start Graph + Set of Rules

Rule: @ = @

Rule
Application:

Graph Transformation Systems

Graph Transformation System =
Start Graph + Set of Rules

e D) 4 (D
| !
')

|

Rule
Application:

Graph Transformation Systems

Graph Transformation System =
Start Graph + Set of Rules

Rule: O = @

Rule
Application:

Example: List Traversal

| ¥ L ¥
Rule: L \

o next>° o.ﬂE!L)o

Example: List Traversal

| ¥ (R
Rule: L \

A next>° o.ﬂiflo

Y X

v — |
o‘/next>° m&xt’)o vxext>° o wext>° next

Example: List Traversal

| ¥ IL; «
Rule: \\/ \

o next>o oiﬂgo
Y X
v — |
a/next>° n&xt)o next>° o naxt>° next
X

next
(>

>O

Rule:

Example: List Traversal

| % IL; ¥
b

A next onextys

next
(2]

>O

\ —
next wext>° nex€ O wﬁ%t>° next>°

>O

m

>O

Example: List Traversal

| ¥ (G

Rule: \ = \
v pext ¢

o >o o) neéx >O

Semantics of Graph Transformation System =

All graphs reachable from start graph via rule applications

/
o\//vsext'>° n&xt)o V\ext>° 0 vx&xt>\l/ n&xt)o n&xt’)o
X N X
— \ — \
V\ext V\C‘(t V\&‘(t 0 n&xt o v\ext ° n&xt)o
© >e >© >o > 50—

Example: List Traversal

| ¥ (G

Rule: \ = \
v pext ¢

o >o o) neéx >O

Semantics of Graph Transformation System =

All graphs reachable from start graph via rule applications

/
o\//vsext'>° n&xt)o V\ext>° 0 vx&xt>\l/ n&xt)o n&xt’)o
X N X
— \ — \
V\ext V\C‘(t V\&‘(t 0 n&xt o v\ext ° n&xt)o
© >e >© >o > 50—

Graph Transformation

Useful to model many kinds of computations:
- dynamic message-passing systems,

- biological processes,

- business processes,

- heap-manipulating programs, etc.

Our Main Area of Application:
Dynamic Message-Passing Systems

Characteristics:

Our Main Area of Application:
Dynamic Message-Passing Systems

Characteristics:

 Unbounded number of concurrent processes

Our Main Area of Application:
Dynamic Message-Passing Systems

Characteristics:

 Unbounded number of concurrent processes

* Processes dynamically construct and destruct
communication topologies

Our Main Area of Application:
Dynamic Message-Passing Systems

Characteristics:

 Unbounded number of concurrent processes

* Processes dynamically construct and destruct
communication topologies

 Each process executes a finite state protocol;
makes transitions based on its local view of
the system state

Example: Car Platooning

D®
QO’Q o

TEO

Free Agent = O Platoon Leader = O Follower = O

Example: Car Platooning

Example: Car Platooning
Can |

join your ,@ \O
platoon? &—
O o ©

Ao\\o

Can we
merge?

Free Agent = O Platoon Leader = Q Follower = O

Example: Car Platooning
Can |

join your .
pIathorlmj? &\O
O
N
(IO
Can we

merge?

Free Agent = Q Platoon Leader = Q Follower = O

leaving!

Example: Car Platooning

Can |
join your — . \O
latoon? ’ﬁQ
~, leaving!
(D O O
Can we |
. Are we
Mmerge: there yet?

Free Agent = Q Platoon Leader = Q Follower = O

Example: Car Platooning
Can |

join your — .
platoon? (’\jQ @ —
AT\ S —)

— L\)

Verification goal:

Establish that the local views of processes are
consistent with each other at all times

 dll VWC
merge?

Are we
there yet?

Free Agent = O Platoon Leader = Q Follower = <>

Example:
Merge Protocol from Car Platooning

All processes concurrently execute the following protocol
+ new processes may appear arbitrarily:

?(ack, aux, =)

!(ack, bldr, aux)

(flws, U, aux) D)
(aux, \,aux)

(aux, \,aux)
?(req, bldr, =)
!(ack, bldr, id)

?(req, bldr, =)
!(ack, bldr, id)

?(ca,ldr, =)
I(req, Idr, id)

?(newl, Idr, =)
I(ack, Idr,id)

Example:
Merge Protocol from Car Platooning

All processes concurrently execute the following protocol
+ new processes may appear arbitrarily:

?(ack, aux, =)
|(ack hldr_any)

Simple translation into graph transformation system:
* One rule for each transition in the automaton
* One rule for process creation

(newf | Idr, flws)

?(ca,ldr, =)
I(req, Idr, id)

?(newl, Idr, =)
I(ack, Idr,id)

Cluster Abstraction

Assumption:

Protocols designed by humans establish
invariants that are “local in nature”.

Cluster Abstraction

Assumption:

Protocols designed by humans establish
invariants that are “local in nature”.

Cluster Abstraction:

Maintain for each process only its immediate
environment.

Cluster Abstraction: Example

focal node
Graph G
neighborhood
Cluster P ha.p @ summary node
& K 1

< =-constraint

2
core node pass @ periphery

Cluster Abstraction: Example

focal node
Graph G
neighborhood
Cluster P ha.p @ summary node
& K 1

A N2 5-constraint
& bldr)
core node pass periphery

Challenge:

Computing (best) abstract transformer for cluster abstraction

See [VMCAI 2015] for more details.

Astra 2.0

Implements cluster abstraction
— Input: Graph Transformation System S

— QOutput: Set of clusters overapproximating
semantics of S

Free Software, available here:
http://www.rw.cdl.uni-saarland.de/~rtc/astra/

Some Experimental Results

Benchmark # clusters | # it. time | v?
Sync. leader-controlled merge 22509 | 135 Om | vy
Sync. follower-controlled merge 24957 | 144 22m |y
Async. leader-controlled merge 142326 | 202 | 13136m |y
Async. follower-controlled merge 58023 | 157 | 3972m |y

Some Experimental Results

Benchmark # clusters | # it. time | v?
Sync. leader-controlled merge 22509 | 135 Om | vy
Sync. follower-controlled merge 24957 | 144 22m |y
Async. leader-controlled merge 142326 | 202 | 13136m |y
Async. follower-controlled merge 58023 | 157 | 3972m |y
Firewall 31 5 Om |y
Firewall 2 45525 7 Om | n
Public/private servers 239 | 10 Om |y
Dining philosophers 41 7 Om | *
Resources 32 4 Om |y
Mutual exclusion 308 | 17 im |y
Euler walks 18 3 Om | *
Linked list 7 3 Om |y
Circular buffer 152 | 17 3m | *
Red-black tree 263 | 11 10m | vy
AVL tree 1876 | 38 5/m |y

Now: Tool Demo

