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Semantics of Graph Transformation System =

All graphs reachable from start graph via rule applications
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Graph Transformation

Useful to model many kinds of computations:
- dynamic message-passing systems,

- biological processes,

- business processes,

- heap-manipulating programs, etc.
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Our Main Area of Application:
Dynamic Message-Passing Systems

Characteristics:

 Unbounded number of concurrent processes

* Processes dynamically construct and destruct
communication topologies

 Each process executes a finite state protocol;
makes transitions based on its local view of
the system state
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Verification goal:

Establish that the local views of processes are
consistent with each other at all times
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Example:
Merge Protocol from Car Platooning
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Example:
Merge Protocol from Car Platooning

All processes concurrently execute the following protocol
+ new processes may appear arbitrarily:

?(ack, aux, =)
|(ack hldr_any)

Simple translation into graph transformation system:
* One rule for each transition in the automaton
* One rule for process creation

(newf | Idr, flws)

?(ca,ldr, =)
I(req, Idr, id)

?(newl, Idr, =)
I(ack, Idr,id)
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Assumption:

Protocols designed by humans establish
invariants that are “local in nature”.

Cluster Abstraction:

Maintain for each process only its immediate
environment.
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Challenge:

Computing (best) abstract transformer for cluster abstraction

See [VMCAI 2015] for more details.



Astra 2.0

Implements cluster abstraction
— Input: Graph Transformation System S

— QOutput: Set of clusters overapproximating
semantics of S

Free Software, available here:
http://www.rw.cdl.uni-saarland.de/~rtc/astra/




Some Experimental Results

Benchmark # clusters | # it. time | v?
Sync. leader-controlled merge 22509 | 135 Om | vy
Sync. follower-controlled merge 24957 | 144 22m |y
Async. leader-controlled merge 142326 | 202 | 13136m |y
Async. follower-controlled merge 58023 | 157 | 3972m |y
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Sync. leader-controlled merge 22509 | 135 Om | vy
Sync. follower-controlled merge 24957 | 144 22m |y
Async. leader-controlled merge 142326 | 202 | 13136m |y
Async. follower-controlled merge 58023 | 157 | 3972m |y
Firewall 31 5 Om |y
Firewall 2 45525 7 Om | n
Public/private servers 239 | 10 Om |y
Dining philosophers 41 7 Om | *
Resources 32 4 Om |y
Mutual exclusion 308 | 17 im |y
Euler walks 18 3 Om | *
Linked list 7 3 Om |y
Circular buffer 152 | 17 3m | *
Red-black tree 263 | 11 10m | vy
AVL tree 1876 | 38 5/m |y




Now: Tool Demo



