
A r c h i t e c t u r e - P a r a m e t r i c
T i m i n g A n a l y s i s

J a n R e i n e k e !
J o h a n n e s D o e r f e r t

20th IEEE Real-Time and Embedded Technology and Applications Symposium
April 15-17, 2014
Berlin, Germany

computer science

saarland
university

A r c h i t e c t u r e - C o n f i g u r a t i o n C h a l l e n g e :
A t D e s i g n T i m e

2

Core

Local
Cache

Core

Local
Cache

Core

Local
Cache

Core

Local
Cache

Bus

Shared Cache

A r c h i t e c t u r e - C o n f i g u r a t i o n C h a l l e n g e :
A t D e s i g n T i m e

2

Core

Local
Cache

Core

Local
Cache

Core

Local
Cache

Core

Local
Cache

Bus

Shared Cache

Maximal
Frequency

A r c h i t e c t u r e - C o n f i g u r a t i o n C h a l l e n g e :
A t D e s i g n T i m e

2

Core

Local
Cache

Core

Local
Cache

Core

Local
Cache

Core

Local
Cache

Bus

Shared Cache

Maximal
Frequency

Size

Size

A r c h i t e c t u r e - C o n f i g u r a t i o n C h a l l e n g e :
A t D e s i g n T i m e

2

Core

Local
Cache

Core

Local
Cache

Core

Local
Cache

Core

Local
Cache

Bus

Shared Cache

Maximal
Frequency

Latency,
Bandwidth

Size

Size

A r c h i t e c t u r e - C o n f i g u r a t i o n C h a l l e n g e :
A t R u n t i m e

3

Core

Local
Cache

Core

Local
Cache

Core

Local
Cache

Core

Local
Cache

Bus

Shared Cache

Dynamic
Frequency/

Voltage Scaling

TDMA
Configuration

Partitioning,
Turn off?

A r c h i t e c t u r e - C o n f i g u r a t i o n C h a l l e n g e :
M a n y - C o r e

4

Network on Chip

Main Memory

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

Bus

Shared Cache

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

Bus

Shared Cache

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

Bus

Shared Cache

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

Bus

Shared Cache
Configuration

Latency,
Bandwidth

A r c h i t e c t u r e - C o n f i g u r a t i o n C h a l l e n g e :
M a n y - C o r e

4

Network on Chip

Main Memory

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

Bus

Shared Cache

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

Bus

Shared Cache

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

Bus

Shared Cache

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

Bus

Shared Cache
Configuration

Latency,
Bandwidth

Configuration affects implementation cost, energy
consumption, and worst-case execution times!

A r c h i t e c t u r e - P a r a m e t r i c
T i m i n g A n a l y s i s

5

Network on Chip

Main Memory

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

Bus

Shared Cache

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

Bus

Shared Cache

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

Bus

Shared Cache

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

Bus

Shared Cache

Embedded Software

Configurable Platform

+

Parametric WCET

?

A r c h i t e c t u r e - P a r a m e t r i c
T i m i n g A n a l y s i s

5

Network on Chip

Main Memory

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

Bus

Shared Cache

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

Bus

Shared Cache

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

Bus

Shared Cache

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

C
or
e

L
o
ca
l
C
ac
h
e

Bus

Shared Cache

Embedded Software

Configurable Platform

+

Parametric WCET

?

Desiderata:
• Precise
• Efficiently evaluable

A r c h i t e c t u r e - P a r a m e t r i c T i m i n g A n a l y s i s :
“ B l a c k - B o x ” A p p r o a c h

6

Conventional
non-parametric
timing analysis

Configuration Configuration

WCET

Black-Box
WCET

Analysis

Software
Binary

Configuration
1

Configuration
2

Configuration
3

Configuration
4

Configuration
5

Configuration
1

WCET 1

Black-Box
WCET

Analysis

Generalize
from

Examples

Parametric
WCET

Software
Binary

Configuration
2

WCET 2
Configuration

3
WCET 3

Configuration
4

WCET 4
Configuration

5
WCET 5

A r c h i t e c t u r e - P a r a m e t r i c T i m i n g A n a l y s i s :
“ B l a c k - B o x ” A p p r o a c h

7

Configuration
1

Configuration
2

Configuration
3

Configuration
4

Configuration
5

Configuration
1

WCET 1

Black-Box
WCET

Analysis

Generalize
from

Examples

Parametric
WCET

Software
Binary

Configuration
2

WCET 2
Configuration

3
WCET 3

Configuration
4

WCET 4
Configuration

5
WCET 5

A r c h i t e c t u r e - P a r a m e t r i c T i m i n g A n a l y s i s :
“ B l a c k - B o x ” A p p r o a c h

7

1. How to generalize
from examples?

Configuration
1

Configuration
2

Configuration
3

Configuration
4

Configuration
5

Configuration
1

WCET 1

Black-Box
WCET

Analysis

Generalize
from

Examples

Parametric
WCET

Software
Binary

Configuration
2

WCET 2
Configuration

3
WCET 3

Configuration
4

WCET 4
Configuration

5
WCET 5

A r c h i t e c t u r e - P a r a m e t r i c T i m i n g A n a l y s i s :
“ B l a c k - B o x ” A p p r o a c h

7

1. How to generalize
from examples?

2. Where to sample
black box?

R e q u i r e m e n t s f o r S o u n d a n d E f f i c i e n t
G e n e r a l i z a t i o n

8

Necessary:
Execution times should be monotone in parameters:
 “higher frequencies yield shorter execution times”
 “smaller caches yield longer execution times”

Desirable for efficiency:
Execution time should depend linearly on parameters:
 “doubling the processor frequency will decrease
 execution time by a factor of two”

R e q u i r e m e n t s f o r S o u n d a n d E f f i c i e n t
G e n e r a l i z a t i o n

9

|cache|=0
c=1
m=0 WCET=13

|cache|=0
c=0
m=1 WCET=5

|cache|=4096
c=1
m=0 WCET=10

|cache|=4096
c=0
m=1 WCET=3

|cache| >= 4096

WCET=
10*c+3*m

WCET=
13*c+5*m

Yes No
Generalize

from
Examples

1 . H o w t o G e n e r a l i z e f r o m E x a m p l e s ?  
R e d u c t i o n t o P a r a m e t r i c L i n e a r P r o g r a m m i n g

10

Formulate a series of parametric linear programs,
encoding:
• Configurations/WCETs obtained from Black Box
• Properties that allow to generalize

|cache|=0
c=1
m=0 WCET=13

|cache|=0
c=0
m=1 WCET=5

|cache|=4096
c=1
m=0 WCET=10

|cache|=4096
c=0
m=1 WCET=3

|cache| >= 4096

WCET=
10*c+3*m

WCET=
13*c+5*m

Yes No
Generalize

from
Examples

1 . H o w t o G e n e r a l i z e f r o m E x a m p l e s ?  
R e d u c t i o n t o P a r a m e t r i c L i n e a r P r o g r a m m i n g

10

Formulate a series of parametric linear programs,
encoding:
• Configurations/WCETs obtained from Black Box
• Properties that allow to generalize

See paper for details!

Configuration
1

Configuration
2

Configuration
3

Configuration
4

Configuration
5

Configuration
1

WCET 1

Black-Box
WCET

Analysis

Generalize
from

Examples

Parametric
WCET

Software
Binary

Configuration
2

WCET 2
Configuration

3
WCET 3

Configuration
4

WCET 4
Configuration

5
WCET 5

“ B l a c k - B o x ” A p p r o a c h

11

2. Where to sample
black box?

2 . W h e r e t o s a m p l e t h e b l a c k b o x ?

12

Wanted:
Small set of configurations that yields
 precise parametric WCET

fast
analysis

=
“close” to
black-box

“everywhere”

2 . W h e r e t o s a m p l e t h e b l a c k b o x ?
I n c r e m e n t a l S a m p l i n g

13

Software
Binary

Generalize
from

Examples

Black-Box
WCET

Analysis

Parametric
WCET

Parametric
Lower
Bound

Difference
less than
epsilon?

Return
Parametric

WCET
Bound

Violating
Configuration

Configuration
1 WCET 1

Configuration
2 WCET 2

Configuration
3 WCET 3

Configuration
4 WCET 4

Configuration
5 WCET 5

2 . W h e r e t o s a m p l e t h e b l a c k b o x ?
I n c r e m e n t a l S a m p l i n g

13

Theorem: Algorithm terminates.

Software
Binary

Generalize
from

Examples

Black-Box
WCET

Analysis

Parametric
WCET

Parametric
Lower
Bound

Difference
less than
epsilon?

Return
Parametric

WCET
Bound

Violating
Configuration

Configuration
1 WCET 1

Configuration
2 WCET 2

Configuration
3 WCET 3

Configuration
4 WCET 4

Configuration
5 WCET 5

Ta r g e t f o r P r o t o t y p e :
A P a r a m e t e r i z e d P r e c i s i o n - T i m e d A r c h i t e c t u r e

14

Parameterized version of the PTARM, a predictable
microarchitecture developed within the PRET project.
!
6 parameters that control
• latencies of arithmetic and branch instructions,
• latencies of loads and stores to the scratchpads and to DRAM,
• sizes of instruction and data scratchpads.
!

Ta r g e t f o r P r o t o t y p e :
A P a r a m e t e r i z e d P r e c i s i o n - T i m e d A r c h i t e c t u r e

14

Parameterized version of the PTARM, a predictable
microarchitecture developed within the PRET project.
!
6 parameters that control
• latencies of arithmetic and branch instructions,
• latencies of loads and stores to the scratchpads and to DRAM,
• sizes of instruction and data scratchpads.
!
For experimental evaluation:
• Black-box WCET analysis based on OTAWA
• Parameterized PTARM simulator

E x p e r i m e n t a l E v a l u a t i o n :
P r e c i s i o n o f B l a c k B o x

15

Mälardalen benchmarks
minus floating-point,
recursion, complex
switch statements

Black Box/Simulator

TABLE II. BRIEF SUMMARY OF THE BENCHMARKS.
Name Size [byte] Brief description
adpcm 26852 Adaptive pulse code modulation algorithm.
bs 4248 Binary search for the array of 15 integer elements.
bsort100 2779 Bubblesort program.
crc 5168 Cyclic redundancy check computation on 40 bytes of data.
fdct 8863 Fast Discrete Cosine Transform.
fibcall 3499 Simple iterative Fibonacci calculation, to calculate fib(30).
insertsort 3892 Insertion sort on a reversed array of size 10.
janne complex 1564 Nested loop program.
jfdctint 16028 Discrete-cosine transformation on a 8x8 pixel block.
matmult 3737 Matrix multiplication of two 20x20 matrices.
ns 10436 Search in a multi-dimensional array.
nsichneu 11835 Simulate an extended Petri Net.
qsort-exam 4535 Non-recursive version of quick sort algorithm.
statemate 52618 Automatically generated code.

GNU ARM toolchain including GCC version 4.3.2. Time
measurements were performed on an INTEL CORE I7 920
running at 2.67 GHz with 12 GB of RAM. We chose 64 KB
as the maximal value for both the instruction and the data
scratchpad memories. Linear parameters, modeling latencies,
may take any rational value between 0 and 10.

B. Evaluation Results

Our first evaluation goal is to confirm that the black-
box WCET analysis over-approximates the timing of the
parameterized PTARM, and to evaluate its precision. To this
end, we determine for each benchmark the ratio between the
black-box WCET estimate and the execution time determined
using the PTARM simulator in a single simulation run with the
inputs that are provided with the MÄLARDALEN benchmarks.
As the value analysis in the black box is very simple and thus
bound to be imprecise, we perform this comparison with all
linear parameters, including the DRAM latencies, set to 1. This
eliminates the influence of the value analysis from the results.
The results of this analysis are illustrated in Table III. For some
benchmarks the black-box estimate is very close to the simula-
tion result, yet for others the ratio is extremely large. This is due
to imprecise loop bounds and other constraints on the control
flow, and to the fact that the input exercised during simulation
does not represent the worst-case input, e.g., in the sorting tasks.

Next, we evaluate how the number of black-box WCET
samples affects the precision of the parametric analysis results
on unsampled parameter vectors. To this end, we modify
Algorithm 3 to report upper and lower bounds whenever a new
sample has been taken. This yields two ASTs, �

P,i

and �

P,i

,
corresponding to the lower and upper bounds on the black box,
for each benchmark P in the set of benchmarks P and number
of samples i. Then, we sample the parameter space uniformly at
random 100 times. For each of the randomly drawn parameter
valuations (�

j

,µ

j

), we evaluate the black box BB
P

, and the
upper and lower bounds �

P,i

,�

P,i

, and determine their ratios:

r

over
P,i,j

:=

J�
P,i

K(�
j

,µ

j

)

BB
P

(�

j

,µ

j

)

and r

under
P,i,j

:=

J�
P,i

K(�
j

,µ

j

)

BB
P

(�

j

,µ

j

)

.

We summarize these ratios by taking their geometric means
r

over
i

, r

under
i

over all benchmarks found in Table III. In
Figure 3, we depict r

over
i

and r

under
i

for i between two2 and
26. The experiment was performed with a precision target
of (✏ = 1024, ⌧ = (0, 0))

3, which ensures that an arbitrary
number of samples can be taken. We observe a strong precision

2We start at two samples, because Algorithm 3 performs two samples before
entering the refinement loop.

3Where ⌧ refers to the monotone parameters µI-SPM-Size and µD-SPM-Size.

TABLE III. PRECISION OF THE BLACK-BOX WCET ANALYSIS.

Name Black Box (cycles) Simulator (cycles) Ratio
adpcm 9989637 1598152 6.25
bs 318 279 1.14
bsort100 998109 8293 120.36
crc 248231 116995 2.12
fdct 11262 11069 1.02
fibcall 1140 1131 1.01
insertsort 4965 2949 1.68
janne complex 4048 753 5.38
jfdctint 14016 13951 1.00
matmult 755274 745669 1.01
ns 42550 42549 1.00
nsichneu 32339 15551 2.08
qsort-exam 2132100 11125 191.65
statemate 108766 2809 38.72

2 3 4 5 6 7 8 9 1011121314151617181920212223242526
0

1

2

Number of samples

R
at

io

rover
i

runder
i

rover
i,random

Fig. 3. Ratios between upper bound and black box rover
i , rover

i,random and ratio
between lower bound and black box runder

i in terms of the number of samples i.

improvement on samples 3 to 7. After the first 7 samples, the
obtained lower bound is very close to the actual black-box
values for all benchmarks. The upper bound comes within 5%

of the black box after 16 samples for most benchmarks, which
is reflected by the geometric mean in the figure. For most
benchmarks, the algorithm chooses to sample the black box at
a different instruction scratchpad size than before, at samples
12 and 16, which yields a significant precision improvement.

As a baseline for Algorithm 3, we determine how well upper
bounds based on a random set of samples approximate the black
box. In Figure 3, rover

i,random denotes the ratio between these upper
bounds, based on i random samples, and the black box. Random
sampling yields much less precise estimates. In addition,
computation times increase dramatically, which explains why
we only perform this experiment for up to 15 samples. This
demonstrates that some form of “intelligent” sampling is
required for the black-box approach to be precise and efficient.

To evaluate analysis efficiency, we determined the analysis
time of each benchmark up to and including the i

th sample.
We decompose this analysis time into three components:

1) Invocations of the black box.
2) Operations on affine selection trees, e.g. minimization.
3) Invocations of PIPLIB.

In Figure 4 we show the geometric mean of the analysis time
over all benchmarks up to the i

th sample. The bars are stacked,
meaning that the top of the upper most bar reflects the overall
analysis time. As the black box is called once for each sample,
its contribution to the overall analysis time grows linearly. A
superlinear growth is observed for the other two components,
which is expected, as the problems to be solved grow with
each sample. PIPLIB’s contribution grows strongest, moving
from the smallest to the largest share of analysis time. As
observed in Figure 3, 16 samples usually result in very precise
parametric upper bounds. On our benchmarks, 16 samples are
processed in less than 2.2 seconds on the average.

E x p e r i m e n t a l E v a l u a t i o n :
P r e c i s i o n i n Te r m s o f N u m b e r o f S a m p l e s

16

2 3 4 5 6 7 8 9 1011121314151617181920212223242526
0

1

2

Number of samples

R
at

io

Fig. 4. Ratios between upper bound and black box rover
i , rover

i,random and ratio
between lower bound and black box runder

i in terms of the number of samples i.

10 20 30 40
0

10,000

20,000

Number of samples

A
na

ly
si

s
Ti

m
e

(in
m

s)

PIPLIB

AST Operations
Black Box

Fig. 5. Analysis time in terms of number of samples.

observed in Figure 4, 16 samples usually result in very precise
parametric upper bounds. On our benchmarks, 16 samples are
processed in less than 2.2 seconds on the average.

In Figure 4 we have shown how the actual precision
depends on the number of samples. Next, we determine
how many samples are required to meet a certain precision
guarantee. To this end, we determine for each benchmark
and for several precision targets (✏, (⌧, ⌧))

4 the number of
samples s

P

(✏, ⌧) that Algorithm 3 takes until termination.
We summarize these values in Figure 6. Three benchmarks,
nsichneu, adpcm, statemate, ran out of memory for
smaller values of ⌧ . For the tightest precision requirement,
✏ = 32, we report the maximum required number of samples
s

max
32

(⌧) = max

P2P s

P

(32, ⌧) over all benchmarks for which
the analysis terminated successfully, for ⌧ between 8192 and
262144. For the loosest precision requirement, ✏ = 1024, on
the other hand, we report the minimum required number of
samples s

min
1024

(⌧) over all benchmarks. For ✏ between 32 and
1024, s

P

(✏, ⌧) is expected to lie between s

min
1024

(⌧) and s

max
32

(⌧).
We also report the median number of samples s

median
256

(⌧) over
all benchmarks for ✏ = 256. For most benchmarks, the number
of required samples is quite insensitive to ✏: the median for
✏ = 256 is close to the minimum for ✏ = 1024.

VIII. APPLICATION TO COMMERCIAL
MICROARCHITECTURES

We have applied APTA to a parameterized version of
the PTARM, a precision-timed architecture. It has been
designed with the specific goal of reconciling performance
and predictability. And indeed, as we demonstrate, precise and
efficient architecture-parametric WCET analysis is feasible for
the PTARM. Naturally, the question arises whether our approach
is also applicable to other existing academic and commercial

4Where (⌧, ⌧) refers to the monotone parameters µI-SPM-Size and µD-SPM-Size.

262144 131072 65536 32768 16384 8192
0

50

100

excl. nsichneu

excl. adpcm, statemate

Precision Requirement ⌧

N
um

be
r

of
sa

m
pl

es

Fig. 6. Number of samples required to reach precision guarantee (✏, (⌧, ⌧)).
Some benchmarks, namely nsichneu, adpcm, statemate, ran out of
memory for ✏ = 32 and are thus not included in smax

32 (⌧). The median and
minimum, smedian

256 (⌧) and smin
1024(⌧), could be determined for all values of ⌧ .

microarchitectures and whether a similar parameterization is
reasonable for such microarchitectures.

To answer the second question first, we believe that the pa-
rameterization of the PTARM is quite typical for both commer-
cial and research platforms: aspects that are often configurable
in single-core processors are the processor frequency, the sizes
of local memories (caches or scratchpads), and the interconnect,
affecting memory access latencies, corresponding directly to the
parameters in the PTARM. To use multi-core architectures in a
hard real-time context, most of their shared resources will have
to be partitioned (an approach promoted among others in the
MERASA and Predator projects [15], [3]) in space and/or time:
caches can be partitioned along their ways [16], buses and other
interconnect can be partitioned in time by time division multiple
access (TDMA) arbitration [17], and access to DRAM memory
can be partitioned in time [18] and space [10]. Partitioning
in space intuitively induces monotone parameters, whereas
time-based partitioning may sometimes be modeled with linear
parameters, however, caveats exist, as discussed below.

For our approach to be applicable to a particular platform,
its parameterized timing model needs to be linear or at least
monotone in all of its parameters. This is, unfortunately, not the
case for canonical models of many complex microarchitectures.
In contrast to LRU, FIFO cache replacement is known to
suffer from Belady’s anomaly, i.e., under FIFO, increasing
the cache’s size may lead to a decrease in performance. For
platforms including such non-monotone features, monotone
parameterized timing models can be developed, however, at
the cost of a loss in precision. Alternatively, if the goal is to
find a system configuration statically, our analysis may also
be performed on timing models that are not guaranteed to be
monotone. This yields parametric WCET estimations that are
not necessarily safe. Once a system configuration has been
determined based on such an estimation, the black box can
still be used to verify whether the timing constraints can be
met. If not, the parametric WCET estimation can be refined
accordingly and the process would have to be iterated.

In addition to monotonicity, our approach requires timing to
be decomposed into contributions that can be attributed to differ-
ent components. Such a decomposition is natural for so-called
fully timing-compositional architectures [3], [19]. An example
of a fully timing-compositional commercial architecture is the
ARM7 [3]. For more complex architectures such as the Infineon
TriCore or the PowerPC 755, it is possible to create conservative
compositional models. The resulting loss in precision may, how-
ever, be substantial and depends on the particular architecture
and decomposition [19], and is a topic of ongoing research.

Parametric WCET/
Black Box

Parametric Lower
Bound/Black Box

Geometric Mean

TABLE II. BRIEF SUMMARY OF THE BENCHMARKS.
Name Size [byte] Brief description
adpcm 26852 Adaptive pulse code modulation algorithm.
bs 4248 Binary search for the array of 15 integer elements.
bsort100 2779 Bubblesort program.
crc 5168 Cyclic redundancy check computation on 40 bytes of data.
fdct 8863 Fast Discrete Cosine Transform.
fibcall 3499 Simple iterative Fibonacci calculation, to calculate fib(30).
insertsort 3892 Insertion sort on a reversed array of size 10.
janne complex 1564 Nested loop program.
jfdctint 16028 Discrete-cosine transformation on a 8x8 pixel block.
matmult 3737 Matrix multiplication of two 20x20 matrices.
ns 10436 Search in a multi-dimensional array.
nsichneu 11835 Simulate an extended Petri Net.
qsort-exam 4535 Non-recursive version of quick sort algorithm.
statemate 52618 Automatically generated code.

GNU ARM toolchain including GCC version 4.3.2. Time
measurements were performed on an INTEL CORE I7 920
running at 2.67 GHz with 12 GB of RAM. We chose 64 KB
as the maximal value for both the instruction and the data
scratchpad memories. Linear parameters, modeling latencies,
may take any rational value between 0 and 10.

B. Evaluation Results

Our first evaluation goal is to confirm that the black-
box WCET analysis over-approximates the timing of the
parameterized PTARM, and to evaluate its precision. To this
end, we determine for each benchmark the ratio between the
black-box WCET estimate and the execution time determined
using the PTARM simulator in a single simulation run with the
inputs that are provided with the MÄLARDALEN benchmarks.
As the value analysis in the black box is very simple and thus
bound to be imprecise, we perform this comparison with all
linear parameters, including the DRAM latencies, set to 1. This
eliminates the influence of the value analysis from the results.
The results of this analysis are illustrated in Table III. For some
benchmarks the black-box estimate is very close to the simula-
tion result, yet for others the ratio is extremely large. This is due
to imprecise loop bounds and other constraints on the control
flow, and to the fact that the input exercised during simulation
does not represent the worst-case input, e.g., in the sorting tasks.

Next, we evaluate how the number of black-box WCET
samples affects the precision of the parametric analysis results
on unsampled parameter vectors. To this end, we modify
Algorithm 3 to report upper and lower bounds whenever a new
sample has been taken. This yields two ASTs, �

P,i

and �

P,i

,
corresponding to the lower and upper bounds on the black box,
for each benchmark P in the set of benchmarks P and number
of samples i. Then, we sample the parameter space uniformly at
random 100 times. For each of the randomly drawn parameter
valuations (�

j

,µ

j

), we evaluate the black box BB
P

, and the
upper and lower bounds �

P,i

,�

P,i

, and determine their ratios:

r

over
P,i,j

:=

J�
P,i

K(�
j

,µ

j

)

BB
P

(�

j

,µ

j

)

and r

under
P,i,j

:=

J�
P,i

K(�
j

,µ

j

)

BB
P

(�

j

,µ

j

)

.

We summarize these ratios by taking their geometric means
r

over
i

, r

under
i

over all benchmarks found in Table III. In
Figure 4, we depict r

over
i

and r

under
i

for i between two2 and
26. The experiment was performed with a precision target
of (✏ = 1024, ⌧ = (0, 0))

3, which ensures that an arbitrary
number of samples can be taken. We observe a strong precision

2We start at two samples, because Algorithm 3 performs two samples before
entering the refinement loop.

3Where ⌧ refers to the monotone parameters µI-SPM-Size and µD-SPM-Size.

TABLE III. PRECISION OF THE BLACK-BOX WCET ANALYSIS.

Name Black Box (cycles) Simulator (cycles) Ratio
adpcm 9989637 1598152 6.25
bs 318 279 1.14
bsort100 998109 8293 120.36
crc 248231 116995 2.12
fdct 11262 11069 1.02
fibcall 1140 1131 1.01
insertsort 4965 2949 1.68
janne complex 4048 753 5.38
jfdctint 14016 13951 1.00
matmult 755274 745669 1.01
ns 42550 42549 1.00
nsichneu 32339 15551 2.08
qsort-exam 2132100 11125 191.65
statemate 108766 2809 38.72

2 3 4 5 6 7 8 9 1011121314151617181920212223242526
0

1

2

Number of samples

R
at

io

Fig. 3. Ratios between upper bound and black box rover
i , rover

i,random and ratio
between lower bound and black box runder

i in terms of the number of samples i.

improvement on samples 3 to 7. After the first 7 samples, the
obtained lower bound is very close to the actual black-box
values for all benchmarks. The upper bound comes within 5%

of the black box after 16 samples for most benchmarks, which
is reflected by the geometric mean in the figure. For most
benchmarks, the algorithm chooses to sample the black box at
a different instruction scratchpad size than before, at samples
12 and 16, which yields a significant precision improvement.

As a baseline for Algorithm 3, we determine how well upper
bounds based on a random set of samples approximate the black
box. In Figure 4, rover

i,random denotes the ratio between these upper
bounds, based on i random samples, and the black box. Random
sampling yields much less precise estimates. In addition,
computation times increase dramatically, which explains why
we only perform this experiment for up to 15 samples. This
demonstrates that some form of “intelligent” sampling is
required for the black-box approach to be precise and efficient.

To evaluate analysis efficiency, we determined the analysis
time of each benchmark up to and including the i

th sample.
We decompose this analysis time into three components:

1) Invocations of the black box.
2) Operations on affine selection trees, e.g. minimization.
3) Invocations of PIPLIB.

In Figure 5 we show the geometric mean of the analysis time
over all benchmarks up to the i

th sample. The bars are stacked,
meaning that the top of the upper most bar reflects the overall
analysis time. As the black box is called once for each sample,
its contribution to the overall analysis time grows linearly. A
superlinear growth is observed for the other two components,
which is expected, as the problems to be solved grow with
each sample. PIPLIB’s contribution grows strongest, moving
from the smallest to the largest share of analysis time. As

E x p e r i m e n t a l E v a l u a t i o n :
Ve r s u s R a n d o m S a m p l i n g

17

Random Samples

E x p e r i m e n t a l E v a l u a t i o n :
A n a l y s i s T i m e i n Te r m s o f N u m b e r o f S a m p l e s

18

2 3 4 5 6 7 8 9 1011121314151617181920212223242526
0

1

2

Number of samples
R

at
io

Fig. 4. Ratios between upper bound and black box rover
i , rover

i,random and ratio
between lower bound and black box runder

i in terms of the number of samples i.

10 20 30 40
0

10,000

20,000

Number of samples

A
na

ly
si

s
Ti

m
e

(in
m

s)

PIPLIB

AST Operations
Black Box

Fig. 5. Analysis time in terms of number of samples.

observed in Figure 4, 16 samples usually result in very precise
parametric upper bounds. On our benchmarks, 16 samples are
processed in less than 2.2 seconds on the average.

In Figure 4 we have shown how the actual precision
depends on the number of samples. Next, we determine
how many samples are required to meet a certain precision
guarantee. To this end, we determine for each benchmark
and for several precision targets (✏, (⌧, ⌧))

4 the number of
samples s

P

(✏, ⌧) that Algorithm 3 takes until termination.
We summarize these values in Figure 6. Three benchmarks,
nsichneu, adpcm, statemate, ran out of memory for
smaller values of ⌧ . For the tightest precision requirement,
✏ = 32, we report the maximum required number of samples
s

max
32

(⌧) = max

P2P s

P

(32, ⌧) over all benchmarks for which
the analysis terminated successfully, for ⌧ between 8192 and
262144. For the loosest precision requirement, ✏ = 1024, on
the other hand, we report the minimum required number of
samples s

min
1024

(⌧) over all benchmarks. For ✏ between 32 and
1024, s

P

(✏, ⌧) is expected to lie between s

min
1024

(⌧) and s

max
32

(⌧).
We also report the median number of samples s

median
256

(⌧) over
all benchmarks for ✏ = 256. For most benchmarks, the number
of required samples is quite insensitive to ✏: the median for
✏ = 256 is close to the minimum for ✏ = 1024.

VIII. APPLICATION TO COMMERCIAL
MICROARCHITECTURES

We have applied APTA to a parameterized version of
the PTARM, a precision-timed architecture. It has been
designed with the specific goal of reconciling performance
and predictability. And indeed, as we demonstrate, precise and
efficient architecture-parametric WCET analysis is feasible for
the PTARM. Naturally, the question arises whether our approach
is also applicable to other existing academic and commercial

4Where (⌧, ⌧) refers to the monotone parameters µI-SPM-Size and µD-SPM-Size.

262144 131072 65536 32768 16384 8192
0

50

100

excl. nsichneu

excl. adpcm, statemate

Precision Requirement ⌧

N
um

be
r

of
sa

m
pl

es

Fig. 6. Number of samples required to reach precision guarantee (✏, (⌧, ⌧)).
Some benchmarks, namely nsichneu, adpcm, statemate, ran out of
memory for ✏ = 32 and are thus not included in smax

32 (⌧). The median and
minimum, smedian

256 (⌧) and smin
1024(⌧), could be determined for all values of ⌧ .

microarchitectures and whether a similar parameterization is
reasonable for such microarchitectures.

To answer the second question first, we believe that the pa-
rameterization of the PTARM is quite typical for both commer-
cial and research platforms: aspects that are often configurable
in single-core processors are the processor frequency, the sizes
of local memories (caches or scratchpads), and the interconnect,
affecting memory access latencies, corresponding directly to the
parameters in the PTARM. To use multi-core architectures in a
hard real-time context, most of their shared resources will have
to be partitioned (an approach promoted among others in the
MERASA and Predator projects [15], [3]) in space and/or time:
caches can be partitioned along their ways [16], buses and other
interconnect can be partitioned in time by time division multiple
access (TDMA) arbitration [17], and access to DRAM memory
can be partitioned in time [18] and space [10]. Partitioning
in space intuitively induces monotone parameters, whereas
time-based partitioning may sometimes be modeled with linear
parameters, however, caveats exist, as discussed below.

For our approach to be applicable to a particular platform,
its parameterized timing model needs to be linear or at least
monotone in all of its parameters. This is, unfortunately, not the
case for canonical models of many complex microarchitectures.
In contrast to LRU, FIFO cache replacement is known to
suffer from Belady’s anomaly, i.e., under FIFO, increasing
the cache’s size may lead to a decrease in performance. For
platforms including such non-monotone features, monotone
parameterized timing models can be developed, however, at
the cost of a loss in precision. Alternatively, if the goal is to
find a system configuration statically, our analysis may also
be performed on timing models that are not guaranteed to be
monotone. This yields parametric WCET estimations that are
not necessarily safe. Once a system configuration has been
determined based on such an estimation, the black box can
still be used to verify whether the timing constraints can be
met. If not, the parametric WCET estimation can be refined
accordingly and the process would have to be iterated.

In addition to monotonicity, our approach requires timing to
be decomposed into contributions that can be attributed to differ-
ent components. Such a decomposition is natural for so-called
fully timing-compositional architectures [3], [19]. An example
of a fully timing-compositional commercial architecture is the
ARM7 [3]. For more complex architectures such as the Infineon
TriCore or the PowerPC 755, it is possible to create conservative
compositional models. The resulting loss in precision may, how-
ever, be substantial and depends on the particular architecture
and decomposition [19], and is a topic of ongoing research.

E x p e r i m e n t a l E v a l u a t i o n :
A n a l y s i s T i m e i n Te r m s o f N u m b e r o f S a m p l e s

18

2 3 4 5 6 7 8 9 1011121314151617181920212223242526
0

1

2

Number of samples
R

at
io

Fig. 4. Ratios between upper bound and black box rover
i , rover

i,random and ratio
between lower bound and black box runder

i in terms of the number of samples i.

10 20 30 40
0

10,000

20,000

Number of samples

A
na

ly
si

s
Ti

m
e

(in
m

s)

PIPLIB

AST Operations
Black Box

Fig. 5. Analysis time in terms of number of samples.

observed in Figure 4, 16 samples usually result in very precise
parametric upper bounds. On our benchmarks, 16 samples are
processed in less than 2.2 seconds on the average.

In Figure 4 we have shown how the actual precision
depends on the number of samples. Next, we determine
how many samples are required to meet a certain precision
guarantee. To this end, we determine for each benchmark
and for several precision targets (✏, (⌧, ⌧))

4 the number of
samples s

P

(✏, ⌧) that Algorithm 3 takes until termination.
We summarize these values in Figure 6. Three benchmarks,
nsichneu, adpcm, statemate, ran out of memory for
smaller values of ⌧ . For the tightest precision requirement,
✏ = 32, we report the maximum required number of samples
s

max
32

(⌧) = max

P2P s

P

(32, ⌧) over all benchmarks for which
the analysis terminated successfully, for ⌧ between 8192 and
262144. For the loosest precision requirement, ✏ = 1024, on
the other hand, we report the minimum required number of
samples s

min
1024

(⌧) over all benchmarks. For ✏ between 32 and
1024, s

P

(✏, ⌧) is expected to lie between s

min
1024

(⌧) and s

max
32

(⌧).
We also report the median number of samples s

median
256

(⌧) over
all benchmarks for ✏ = 256. For most benchmarks, the number
of required samples is quite insensitive to ✏: the median for
✏ = 256 is close to the minimum for ✏ = 1024.

VIII. APPLICATION TO COMMERCIAL
MICROARCHITECTURES

We have applied APTA to a parameterized version of
the PTARM, a precision-timed architecture. It has been
designed with the specific goal of reconciling performance
and predictability. And indeed, as we demonstrate, precise and
efficient architecture-parametric WCET analysis is feasible for
the PTARM. Naturally, the question arises whether our approach
is also applicable to other existing academic and commercial

4Where (⌧, ⌧) refers to the monotone parameters µI-SPM-Size and µD-SPM-Size.

262144 131072 65536 32768 16384 8192
0

50

100

excl. nsichneu

excl. adpcm, statemate

Precision Requirement ⌧

N
um

be
r

of
sa

m
pl

es

Fig. 6. Number of samples required to reach precision guarantee (✏, (⌧, ⌧)).
Some benchmarks, namely nsichneu, adpcm, statemate, ran out of
memory for ✏ = 32 and are thus not included in smax

32 (⌧). The median and
minimum, smedian

256 (⌧) and smin
1024(⌧), could be determined for all values of ⌧ .

microarchitectures and whether a similar parameterization is
reasonable for such microarchitectures.

To answer the second question first, we believe that the pa-
rameterization of the PTARM is quite typical for both commer-
cial and research platforms: aspects that are often configurable
in single-core processors are the processor frequency, the sizes
of local memories (caches or scratchpads), and the interconnect,
affecting memory access latencies, corresponding directly to the
parameters in the PTARM. To use multi-core architectures in a
hard real-time context, most of their shared resources will have
to be partitioned (an approach promoted among others in the
MERASA and Predator projects [15], [3]) in space and/or time:
caches can be partitioned along their ways [16], buses and other
interconnect can be partitioned in time by time division multiple
access (TDMA) arbitration [17], and access to DRAM memory
can be partitioned in time [18] and space [10]. Partitioning
in space intuitively induces monotone parameters, whereas
time-based partitioning may sometimes be modeled with linear
parameters, however, caveats exist, as discussed below.

For our approach to be applicable to a particular platform,
its parameterized timing model needs to be linear or at least
monotone in all of its parameters. This is, unfortunately, not the
case for canonical models of many complex microarchitectures.
In contrast to LRU, FIFO cache replacement is known to
suffer from Belady’s anomaly, i.e., under FIFO, increasing
the cache’s size may lead to a decrease in performance. For
platforms including such non-monotone features, monotone
parameterized timing models can be developed, however, at
the cost of a loss in precision. Alternatively, if the goal is to
find a system configuration statically, our analysis may also
be performed on timing models that are not guaranteed to be
monotone. This yields parametric WCET estimations that are
not necessarily safe. Once a system configuration has been
determined based on such an estimation, the black box can
still be used to verify whether the timing constraints can be
met. If not, the parametric WCET estimation can be refined
accordingly and the process would have to be iterated.

In addition to monotonicity, our approach requires timing to
be decomposed into contributions that can be attributed to differ-
ent components. Such a decomposition is natural for so-called
fully timing-compositional architectures [3], [19]. An example
of a fully timing-compositional commercial architecture is the
ARM7 [3]. For more complex architectures such as the Infineon
TriCore or the PowerPC 755, it is possible to create conservative
compositional models. The resulting loss in precision may, how-
ever, be substantial and depends on the particular architecture
and decomposition [19], and is a topic of ongoing research.

16 Samples:
~ 2.2 seconds

C o n c l u s i o n s a n d F u t u r e W o r k

19

First general framework for
architecture-parametric timing analysis.

!

Future Work:
• Parametric schedulability analysis
• Integrate into a design-space exploration
• Study applicability to commercial microarchitectures
• “White-box” approach

C o n c l u s i o n s a n d F u t u r e W o r k

19

First general framework for
architecture-parametric timing analysis.

!

Future Work:
• Parametric schedulability analysis
• Integrate into a design-space exploration
• Study applicability to commercial microarchitectures
• “White-box” approach

Thank you for your attention!

