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Abstract—Multi-core architectures are shaking the fundamen-
tal assumption that in real-time systems the WCET, used to
analyze the schedulability of the complete system, is calculated
on individual tasks. This is not even true in an approximate
sense in a modern multi-core chip, due to interference caused
by hardware resource sharing. In this work we propose (1) a
complete framework to analyze and profile task memory access
patterns and (2) a novel kernel-level cache management technique
to enforce an efficient and deterministic cache allocation of the
most frequently accessed memory areas. In this way, we provide
a powerful tool to address one of the main sources of interference
in a system where the last level of cache is shared among
two or more CPUs. The technique has been implemented on
commercial hardware and our evaluations show that it can be
used to significantly improve the predictability of a given set of
critical tasks.

1. INTRODUCTION

Modern systems are at a turning point as multi-core chips
become mainstream. Multi-core architectures are shaking the
very foundation of modern real-time computing theory, i.e. the
assumption that worst case execution time (WCET) can be
calculated on individual tasks to compute the schedulability
of the complete system when tasks are running together. This
fundamental assumption has been broadly accepted by classic
scheduling theory for the past three decades; unfortunately, it
is not even true in an approximate sense in a modern multi-
core chip, and this leads to a lack of composability. Shared
hardware resources like caches, main memory, and I/O buses
are all sources of unpredictable timing behaviors and temporal
dependencies among contending real-time tasks. In this work,
we focus on cache-based multi-core architectures and we
provide a solution to the problem of efficiently exploiting the
benefits of cache memory without paying the penalty of non-
deterministic temporal behavior. In fact, CPU caches sharply
improve average case task performance, but their behavior
leads to several issues when calculating WCET bounds for
hard real-time tasks [1, 2].

In commercial multi-core systems, contention for allocation
of memory blocks in last level cache is a major source of
unpredictability. We distinguish four main types of cache
interference: a) intra-task interference, occurring when a task
evicts its own cached blocks; b) inter-task interference, oc-
curring whenever a task evicts cached blocks of another task
scheduled on the same CPU; c) cache pollution caused by
asynchronous Kernel Mode activities, such as Interrupt Service
Routines (ISR) and deferrable functions; and d) inter-core
interference, occurring when two tasks running on different
cores evict each other on a shared cache. While the first
three types of interference occur in both single-core and multi-
core systems, the last one creates inter-core dependency which
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makes traditional schedulability analysis not applicable. Due
to all the different sources of interference that exist in a multi-
core system, enforcing a deterministic behavior on traditional
caches means making them operate in a restrictive manner.
Various solutions (see Section II) have been proposed in the
literature to address these different scenarios; however, to
the best of our knowledge, there is no available software
mechanism that can simultaneously address all four sources
of interference while efficiently utilizing the available cache
resources. For example, core-based cache partitioning suffers
from inter/intra-task interference; blindly locking memory
areas in cache is highly inefficient because in the worst case no
more than W lines can be locked in a T¥/-way set associative
cache.

We propose an integrated solution. Our solution is divided
in two stages that address two different but highly coupled
problems. First, we propose to profile critical real-time tasks to
determine what their memory access patterns are. We perform
the memory analysis by running each task in a test envi-
ronment, recording all the memory accesses and generating
a “profile file”. This profile is execution-independent, i.e. it
is independent from the particular set of virtual memory ad-
dresses assigned by the kernel at execution time. Such profile
file, generated offline, can be used to drive the second stage
(deterministic cache allocation). The execution-independence
allows it to be used to drive the second stage an arbitrary
number of times on the same or on a compatible system (see
Section IV).

Secondly, we propose a novel, highly efficient deterministic
cache allocation strategy called “Colored Lockdown”. The key
idea of the proposed Colored Lockdown is to combine two
techniques (coloring and lockdown, see Section II) that have
been proposed in the past, exploiting the advantages of both
of them but mitigating their disadvantages. In particular, we
use (a) coloring to optimize the packing in cache of those
memory pages which are frequently accessed (this can be
done by re-arranging physical addresses); then, we use (b)
lockdown to override the behavior of the cache replacement
policy to make sure that what has been allocated, on behalf
of a given task, will not be evicted while that task is running.
It is important to note that, in the proposed solution, cache
allocation is deterministically controlled at the granularity of
a single memory page and that it is independent from the
specific cache replacement policy.

We have successfully implemented and tested the proposed
framework on a commodity ARM-based development board
and we have evaluated the porting effort on a Freescale P4080
platform. It is worth to note that the proposed cache man-
agement framework can be exploited requiring no hardware
modification. Moreover, similarly to what we did on the P4080



platform, the proposed technique can be applied to a variety
of platforms currently available on the market. Finally, unlike
many works that have been presented in the past, our technique
works on both data and code regions [3, 4, 5]. Experimental
results show that, in the considered benchmarks, eliminating
the interference in the last level cache can lead up to a 250%
improvement of the execution time, with a resulting cache
occupation as small as 4 memory pages.
The main contributions of this paper are:

e Providing a complete framework to analyze the memory
access patterns of a given task, generating a memory
profile which can be used to perform deterministic cache
allocation. This can be done with minimal effort and
without impacting schedulability or certifiability.
Developing a novel kernel-level, efficient and determinis-
tic cache allocation technique which can be used in com-
modity embedded multi-core systems. Such technique can
be operated regardless of the cache replacement policy in
use and without any hardware modification, to meet hard
real-time constraints.

Showing experimentally that the problem of finding an
optimal cache allocation, when the cache size is limited,
can be treated as a convex optimization problem. In fact,
the performance curves, obtained when incrementally
locking memory pages according to the generated profile,
can be fit with convex functions to exploit well known
convex optimization algorithms.

Providing a cache management framework that improves
execution predictability of critical real-time tasks in a
multi-core environment by enforcing a 100% cache hit
rate on the most “hot” (frequently accessed) memory
pages. Such a framework can also be exploited by static
analyzers to compute tighter WCET bounds.

The rest of the paper is organized as follows. First, Section II
recalls some background principles and reviews prior research
related to profiling and cache management techniques. Sec-
tion III introduces the considered task model. Next, Section IV
illustrates the proposed memory profiling technique. Section V
explains how Colored Lockdown works. The presented results
in Section VI show how the proposed framework can improve
the schedulability of a set of critical tasks by eliminating
last level cache interference. Finally, the paper concludes in
Section VIL

II. BACKGROUND AND RELATED WORK

In this section we will briefly discuss existing profiling and
cache management techniques and we will explain how our
cache allocation strategy differs from existing related work.

A. Task execution and memory profiling

One method that can be deployed to understand the behavior
of a task, as well as its memory requirements, is profiling. The
key idea is to observe the actions that the task itself performs
while executing. The profiling approach is an alternative
technique over static analysis when dealing with complex
architectures that are difficult to model due to inherently
non-deterministic components. Profiling can be performed by
adding instrumentation instructions to the original code of the
task. Instrumentation tools are usually classified in two cat-
egories: source-level and binary. Binary instrumentation adds
extra instructions to a compiled program, before it is executed
(e.g. QPT [6], Pin [7]) or while the program is running (e.g.
Valgrind [8]). In the source-level approach, instrumentation
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is performed at compile time. Existing automatic source-
level instrumentation is done either by performing source-to-
source translation (e.g. ROSE [9]), or by introducing additional
specific compilation logic [10, 11].

Since our target is to understand the memory access pattern
of a given task, the chosen solution involved using a tool which
adds instrumentation at run-time. Specifically, as a part of our
proposed framework, we have used Valgrind (the Lackey tool)
to perform the first step of the analysis. The advantage of
this solution is twofold. First, it does not cause a difference
in the memory access patterns of the task under analysis
when switching from the profiling environment to the actual
execution. In this way, we are able to trace any memory access
performed by the task in a non-intrusive manner. Second, since
Valgrind is available for a large number of architectures, it
does not limit the portability of our technique.

To the best of our knowledge, no solutions have been
proposed before to create a memory-page-level detailed profile
of an application which is, as previously stated, execution-
independent and that can be used to optimize system cache
allocation at run-time.

B. Cache management

Modern commercial CPUs feature at least one cache level
organized as a write-back, W-way set associative cache.
Depending on the addressing patterns of processes running on
the system, data is loaded into and written-back from cache
in units known as cache lines (or cache blocks). A W-way
set associative cache is divided into W cache ways. Each data
block can be loaded in any way, chosen at fetch time by the
cache controller according to the replacement policy [12].

Once the cache way has been selected, the exact position
inside the way is given by the value of a subset of the
bits which compose the data address, called the index. An
associative set, or simply set, is the set of all the cache lines
(one for each of the W cache ways) with the same index.
Tag bits are used to detect hits, while offset bits are used
to address a particular byte in a cache block. The resulting
address structure is shown in Figure 3a in Section V.

If the cache controller considers as tag (index) the value
of some bits in the physical address of the fetched data,
then we say that the cache is physically tagged (indexed).
Otherwise it is called a virtually tagged (indexed) cache [12].
In multi-core systems, shared caches cannot work with virtual
addresses, thus, modern COTS systems are increasingly being
built featuring physically indexed, physically tagged caches.

In order to mitigate the inherently non-deterministic cache
behavior, several different techniques have been proposed to
directly or indirectly control cache allocation. They can be
grouped in three main categories: cache partitioning, cache
locking, and page coloring [13].

1) Cache partitioning: The idea behind cache partitioning
is to assign a given portion of cache to a given task or core
in the system to reduce cache pollution. Similar techniques
can be applied in software [3, 14, 15, 16, 17] or in hardware
[18, 19, 20] with different granularities. Software partitioning
techniques usually rely on an indirect control over the cache,
manipulating address-to-line mapping at OS, compiler, or
application level. However, they are not easily applicable in
a system-wide fashion. On the other hand, hardware-based
techniques require additional fine-grained platform support
and, since they are typically core-based, they are not suitable
to resolve inter/intra-task interference.



2) Cache lockdown: Commercial cache controllers usually
implement a simpler content management paradigm: cache
lockdown. Locking a portion of the cache means excluding the
contained lines from the cache replacement policy, so that they
never get evicted over an arbitrary time window. Lockdown
is a hardware-specific feature, which typically is done at a
granularity of a single line or way.

Because the number of ways W is usually limited (in
the range from 4 to 32), mechanisms that can lock down a
whole cache way have not been explored deeply. Conversely,
techniques which exploit “lockdown by line” mechanisms
have been extensively studied [21, 22, 23, 24]. However, the
“lockdown by line” strategies provided by most of the current
commercial embedded platforms are non-atomic. This makes
it difficult to predict what is cached and what is not. Moreover,
multi-core shared caches are usually physically indexed (and
tagged). Thus, if no manipulation is enforced on the physical
addresses of the locked entries, in the worst case no more than
W locked lines could be kept at the same time.

3) Page coloring: A particular case of software-based
cache partitioning is page coloring [25, 26, 27, 28, 29]. In this
case, partitioning is enforced at the granularity of a memory
page, and can be done by manipulating the virtual-to-physical
page translation at the OS level. Some coloring strategies
have been shown to improve average case performances
[28, 29, 26, 30].

However, this approach shares a fundamental problem with
cache partitioning: if a non-deterministic replacement policy is
implemented, then self-evictions could always occur, hence in
the worst case one single cache way is exploited. In addition,
coloring kernel pages and data accessed by Interrupt Service
Routines (ISRs) can be difficult, especially due to hardware-
specific constraints which force some structures to be placed
at hard-coded offsets in physical memory. This leads to a lack
of predictability and, again, to pessimistic WCET bounds.

In our proposed Colored Lockdown, we use coloring in a
completely different way: we do not allocate a particular color
to a given entity of the system, but we instead color pages
to make sure that a given page will map to a specific cache
set. This allows us to efficiently pack all the most frequently
accessed memory pages of each hard real-time process in
cache and to perform selective lockdown. As a result, system
designers can be confident about which memory area accesses
of a real-time task will always trigger a cache hit, no matter
what other tasks are running on the system. Thereby, using the
proposed hard real-time cache management framework results
in less pessimistic WCET bounds for critical tasks.

III. TASK MODEL

We consider a system with mixed criticalities, where both
critical and non-critical tasks can be active at the same time.
For the sake of simplicity, we assume a partitioned, priority-
based scheduler, even if this work can be easily extended to
systems having a global scheduler. In our model, non critical
tasks are considered as black boxes, and we do not enforce
any constraint on them. On the other hand, we assume that
critical tasks are periodic and have an initial start-up phase
executed once for initialization, and a series of periodically
released jobs.

Moreover, for the profiling procedure to produce a valid
output, an additional constraint is required: that the task under
analysis does not perform any dynamic memory allocation
after the start-up phase. This is because dynamic allocations
can trigger the creation of a new memory region. As we

47

will show, we need the set of memory regions detected at
the end of the start-up phase to remain stable throughout
the task execution, and we need that the number and the
order of such memory regions is unaltered from execution
to execution. Note however that when dealing with real-time
systems, this assumption is generally satisfied, since dynamic
memory allocations are a source of unpredictability and are
strongly discouraged for certification purposes [31].

IV. MEMORY PROFILING

The aim of the memory profiler is to identify the “hot”
(most frequently accessed) virtual memory pages for a given
executable. However, the detection procedure can not be
based on absolute virtual addresses, because virtual addresses
change from execution to execution. A common abstraction in
operating systems is the concept of a memory region: a range
of virtual addresses assigned to a process to contain a given
portion of its memory. Thus, processes own several memory
regions to hold executable code, the stack, heap memory and
so on. Our goal is thereby exploiting such an abstraction to
create a profile where a hot page is expressed as an offset from
the beginning of the memory region it belongs to. In this way,
the profile needs to be created only once, and it is possible to
determine the effective address of the hot page at execution
time. For instance, the hottest memory page might be the fifth
page (offset) inside the third memory region of the process. In
this case, the corresponding entry in the memory profile will
look like: 3 + 0x0005.

Memory pages belonging to dynamically linked libraries are
not included in the produced profile. Thus, if it is necessary
to keep track of the memory accesses performed by a given
task inside a library procedure, that library has to be statically
linked inside the task executable.

Note that in the presented implementation we have gener-
ated the profiles considering a single input vector for each task.
However, as a future work, we plan to improve the profiling
technique to aggregate the data acquired from several task
executions with different input vectors to enhance coverage.

If the assumptions made in the previous section hold, then,
from the memory profile, it will always be possible to correctly
calculate the position of each hot memory page. Finally,
the obtained profile can then be handed off to the Colored
Lockdown module, which can process this information and
perform the desired operations on the correct set of pages.

A. Approach description

The proposed profiling technique can be divided in three
phases. In the first phase, called “accesses collection”, the
following operations are performed:

1) collect all of the virtual addresses accessed during the

task execution;

2) create a list of all the accessed memory pages sorted by

the number of times they were accessed;

3) record the list of memory regions assigned by the kernel

in the profiling environment.

In the second phase, called “areas detection”, the analyzed task
is run outside of the profiling environment, so that we can:
4) record the memory areas assigned by the kernel under
normal conditions.
Finally, in the third phase, called “profile generation”, we:
5) link together the list of memory regions assigned during
the profiling (obtained in step 3) with those owned by
the process under normal conditions (step 4);
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Fig. 1. Profile creation for the benchmark “a2time01” and relations between the files involved, starting from the ranked list of accessed memory pages (a)

to the final profile file (f).

6) determine in which region of the list obtained in step 4
each entry of the list obtained in step 2 falls, according
to the mapping determined in step 5;

7) generate the execution-independent memory profile of
the task.

The profile file obtained at the end of the procedure can be
given as an input to drive the Colored Lockdown procedure.

In order to exploit the presented technique on a given
executable, we need to insert, in the executable code, a call to
a small procedure which generates the intermediate auxiliary
files. In particular, it has to be inserted between the end of
the start-up phase and the beginning of the periodic phase.
In the final version of the executable, or in general once the
profile has been generated, the procedure can be maintained
(and called) as it is, to avoid altering the arrangement of the
text section. Alternatively, its assembly instructions can be
replaced with NOPs. In the rest of the paper we will refer
to this procedure as: aux_files_out.

1) Accesses collection: To collect information on which
memory pages are most frequently used, the profiler must
first intercept all memory accesses. To perform this step, we
used a sub-tool of Valgrind called Lackey, which outputs
(virtual) memory accesses as the program is running. Since
the granularity of the Colored Lockdown mechanism is one
memory page, in the first elaboration step, we trim the 12 least
significant bits of the outputted addresses to obtain the (virtual)
page number. These page accesses are recorded together with
the number of times they are accessed. Doing so, it is possible
to sort pages by the number of accesses to produce a ranking
of the most frequently used “hot” memory pages.

The list produced in this step is called mempages.dat.
The entries in this list are shown in Figure la, where an
alphabetic ranking is associated with the page hotness. How-
ever, it contains a list of hot memory pages identified by
absolute memory addresses. As previously stated, they have to
be converted to relative values with respect to process memory
regions.

Valgrind uses a library preload mechanism to instrument
running processes. This means that, when an executable runs
under Valgrind, it owns a completely different set of memory

regions than when it runs outside the profiling environment.
Moreover, the tool Lackey also records the accesses to some
memory locations belonging to Valgrind itself. For these two
reasons, the pages listed in mempages.dat have to be
mapped back into memory regions owned by the process
outside of the profiling environment.

In this access collection phase, the aforementioned
aux_files_out procedure generates two additional
files, called respectively memareas.profile and

memaddrs.profile. The first file, shown in Figure 1b,
contains the list of memory regions assigned to the analyzed
task in the profiling environment. Each region is reported
as a pair of the form (start address,end address). This list
is obtained relying on the standard Linux proc virtual file
system. Specifically, memareas.profile is generated as
a copy of the file /proc/<pid>/maps.

The second file memaddrs.profile, reported in Fig-
ure lc, is generated by outputting the address of a set of
variables located in different regions of the executable. Specif-
ically, the addresses of a stack, a text, a data and a read-only
data variable. As explained at the end of this section for sake
of simplicity, tracing heap addresses requires additional logic.

2) Areas detection: As previously discussed, we need to
map all the memory accesses performed by the process in
the profiling environment back to the set of memory regions
owned by the same executable running under regular condi-
tions. To do this, we perform a second run of the task without
Valgrind, in the native environment.

As in the access collection phase, the discussed
aux_files_out generates a pair of files which are seman-
tically identical to the previous case, in which the values are
referred to the executable in its native environment. These
files, reported in Figure le and Figure 1d, are given the names
memareas.real and memaddrs.real respectively.

3) Profile generation: In this last phase, the actual pro-
file is generated by merging all the pieces of information
contained in the set of files previously created, as we show
in Figure 1. For the first step, we leverage on the fact that
there is a 1:1 correspondence between the lines of the two
files memaddrs.profile and memaddrs.real, since
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they have been generated by the same procedure. We exploit
this property to establish a mapping between the set of
memory regions belonging to the task in the native and in
the profiling environment, i.e. between the entries in the files
memareas.real and memareas.profile.

Once the mapping between the two set of memory regions
has been computed, it is possible to relate each accessed
page in the profiling environment - i.e. each entry of the
file mempages.dat - to the correspondent area in the set
of memory regions assigned to the process in the native
environment. Thus, it is finally possible to come out with a
relative notation to address a given hot page that will be valid
for every task execution.

Finally, the memory profile (Figure 1f) for the executable
is generated. Each entry in this file identifies a hot page by
a memory region index and an offset. The entries in this
list respect the same alphabetical order as in Figure la. The
Colored Lockdown module will read this file to determine
which pages need to be locked. Note that some pages - such
as those belonging to dynamically linked libraries - are not
present in the final file because they have been filtered out.

B. Heap memory

As previously mentioned in the accesses collection phase,
outputting the address of a single variable in each memory
region of interest leverages on the assumption that a text
variable, a stack variable, and so on, can be only contained in
one memory region. Nevertheless, this is not the case with
the heap: the heap could actually be covered by multiple
memory regions.' Thereby, to find the heap memory regions
and to make sure that we catch all the other memory regions
that are created using mmap, we need to do a little extra
work. In particular, we compile the executable wrapping
all malloc and mmap calls, which is easily done using
a GCC extension (-Wrap 1d’s option), and does not in-
volve re-engineering or rewriting the executable source code.
The wrapper is implemented so as to intercept all malloc
and mmap calls which create an anonymous memory region
(MAP_ANONYMOUS flag). Finally, the starting address of ev-
ery allocated memory area is appended to the already dis-
cussed files memaddrs.profile and memaddrs.real
(Figure 1c,d).

C. Cross-platform compatibility

As previously mentioned, the produced memory profile can
be used an arbitrary number of times on the same system
where it has been produced. Moreover, it can be produced on
a cross-platform and moved in the final system, given that the
latter is a compatible system. In particular, two platforms are
compatible if:

1) they are based on the same architecture;

2) the memory region assignment policy is known to be
the same (e.g. they run the same Linux kernel);

3) both use the same compilation tool-chain.

It is worth noticing that the proposed technique relies
on task abstractions (such as memory regions) which are
common to almost all the OSes. This means that the profiling
mechanism can be ported to virtually any OS, provided that
it offers as an invariant that the order of the memory regions

'Under certain implementations of malloc, memory allocations over a
fixed size are put into a new memory section using mmap instead of expanding
the heap using the brk system call.

assigned to a task does not vary from execution to execution.
This is true for the great majority of UNIX-based systems.

Moreover, the memory access collection is performed using
Valgrind and the dynamic memory allocation detection ex-
ploits a GCC extension. Both the tools are available for a wide
range of platforms, thus we are confident that our technique
applies to a variety of architectures, including x86, ARM and
PowerPC.

V. COLORED LOCKDOWN

The Colored Lockdown approach consists of two distinct
phases. In the first phase, called start-up color/way assign-
ment, the system assigns to every hot memory page of every
considered task a color and a way number, depending on the
cache parameters and the available blocks. During the second
phase, called dynamic lockdown, the system prefetches and
locks in the last level of cache all (or a portion of) the hot
memory areas of a given task. In our model this procedure
can be deferred until the activation of the first job in the task
that will address a certain set of hot memory areas, as shown
in Figure 2b.

A. Hardware features

Our work can be applied to systems featuring a last level
cache organized as a write-back physically indexed, physically
tagged WW-way set associative cache. Furthermore, we assume
that the way size in bytes is a multiple of the memory
page size. This is required to enforce memory coloring at a
granularity of one memory page. This assumption is generally
valid because modern embedded systems typically have pages
of 4 KB and caches in the range from 128 KB to 2048 KB,
with a number of ways W in the range of 4 to 32.

We also assume that the system provides a set of registers
or dedicated instructions to manage the behavior of the cache
controller. In particular, to enforce a deterministic behavior in
a SMP system (without stalling any CPU), we have to avoid
evictions caused by other cores while fetching on a given CPU.
This can be done if: (A) there exists an atomic instruction
to fetch and lock a given cache line into the cache, or (B)
it is possible to define, for each single CPU in the system,
the lockdown status of every cache way. The last mechanism
is called lockdown by master in multi-core systems, and can
be thought as a generalization of the single-core equivalent
lockdown by way [32].

Platform Lockdown by
Name Cores | Cache size | Master | Line, atomic
TI OMAP4430 2 1024 KB Yes No
TI OMAP4460 2 1024 KB Yes No
Freescale P4080 8 2048 KB No Yes
Freescale P4040 4 2048 KB No Yes
Nvidia Tegra 2 2 1024 KB Yes No
Nvidia Tegra 3 4 1024 KB Yes No
Xilinx Zynqg-7000 2 512 KB Yes No
Samsung Exynos 4412 4 1024 KB Yes No

TABLE I

LOCKDOWN FEATURES ON MULTI-CORE EMBEDDED SYSTEMS

On a dual-core platform featuring a 2-way set associative
cache and a controller with a lockdown by master mechanism,
we can set up the hardware so that way 1 is unlocked for
CPU 1 and locked for CPU 2, while way 2 is locked for
CPU 1 and unlocked for CPU 2. This means that: first, a
task running on CPU 1 will deterministically allocate blocks
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Task 1, on CPU1 - legacy model

C) Before C/W Assignment  d) After C/W Assignment

Page  Color Way Page  Color Way
Al Bl | [ B | [ BN | | [ | [ BN |
» P, 1 N 1 1
Non-critical task on CPU2 — no property enforced P, 1 I 1 2
M (N [ W] e, <l
Hﬂﬂ Startup D = Memory access
Task 1, on CPU1 - proposed model
A A A A
b) P, -Executlon D = Prefetch & lock
N ~ -Lockedway . Color/Way Assignment
1 1 1 Cache o
e) Q
é&é status O \wavs NB Lockdown status for CPU1.

All ways always locked for CPU2.

Fig. 2. Comparison between the legacy (a) and the proposed (b) real-time task model on a multi-core architecture.

on way 1; second, blocks allocated on way 1 could never be
evicted by a task running on CPU 2. The mirrored situation
happens on way 2 referring to CPU 2. This assignment can be
easily changed at runtime by manipulating a set of registers
provided by the cache controller interface.

If the platform provides an atomic instruction to fetch
and lock a cache line, a software procedure that realizes a
mechanism functionally equivalent to the lockdown by master
can be easily built. Thus, in the rest of this paper we assume
without loss of generality that the system provides a lockdown
by master mechanism. Table I lists the lockdown features of
a few current embedded multi-core systems.

B. Visual example

In the rest of the paper, we will use N to indicate the
number of critical real-time tasks in the system with decreasing
priority, so that I' = {7y, ..., 7y} is the critical task set. Each
task 7, (1 <4 < N) is composed of a start-up phase s; and
a sequence of jobs 7; 1,7;2,.... Each job 7; ; is preemptive.
Furthermore, we define as M; the set of the m; = |M;| hot
memory pages addressed by the jobs in 7;. As previously
discussed, the set of hot memory pages can be determined
at the end of the start-up phase, when the Colored Lockdown
procedure is invoked, relying on the corresponding profile file.

To show an example, we now refer to Figure 2 to show how
this mechanism can work on a dual-core system featuring a
2-way set associative shared cache whose total size is S. =
16 KB (4 pages). The system is using a partitioned scheduler
to bind 7y to CPU 1 and a non-critical task to CPU 2. No
assumptions are made on the non-critical task. Pages P; 1,
P, 5, P; 3 are hot memory pages for jobs in 71, however P o
is not accessed during the considered time window.

We will use W; to identify the minimum number of cache
ways that are needed to hold the considered hot pages. Once
this parameter has been calculated (see Equation 3), the first
W, cache ways are locked at system initialization. In our
example W; = 2, as shown in Figure 2e.

Using the legacy model (i.e. no property is enforced on the
cache behavior) shown in Figure 2a, the status of the shared
cache is unknown because: (1) P;; and P; 3 can evict each
other, since they have the same color if no reassignment is
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made; (2) the non-critical task can evict any of the cache lines
at any moment. Thereby, in the WCET computation we have
to consider the case in which every hot page access causes
cache misses. The status of the hot pages before any color/way
assignment operation is shown in Figure 2c.

In the proposed model (Figure 2b), we execute a color/way
assignment phase right after the start-up phase s;. The result-
ing cache coordinates in terms of color and way are shown in
Figure 2d. The assignment phase has a variable length that
depends on the number of modified colors, but since it is
executed before the first job is released, it has no impact on
system schedulability. In our example, only page P 3 need to
be recolored.

C. Cache color/way assignment

Let K be the number of available colors. In this phase to
each memory page P; ;, € M; (1 < k < m;) of every task 7; is
associated a couple (W; 1., K; 1,). Here, the value 1 < W, j, <
W, encodes the way in which the page P; ;, will be prefetched
and locked, while 1 < K; j, < K encodes the color assigned to
the page P; . The assignment is done with just one constraint,
namely that different way numbers shall be assigned to pages
having the same color. The following property holds:

VP, VPjy  1<4,j<N,1<k<m;l<li<m,

Win=W;1= K, #Kj, )

As we have previously mentioned, page coloring is a
software technique which can be operated at the OS level
to control the mapping between physical memory pages and
cache blocks. To understand how this can be done, refer to
Figure 3. Figure 3a shows the structure of a physical address
from the point of view of the cache controller, as divided
in tag, index, and offset. Figure 3b shows the same physical
address from the point of view of the OS in a system which
uses virtual-to-physical address translation.

We define the color of a cache page as the value of the
(physical) address bits [I: 12], where I is the most significant
bit of the cache index (while the 12 less significant bits encode
the offset in a 4 KB page). Color bits (highlighted in the
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Fig. 3. Physical address structure as seen by the cache controller (a) and
the OS (b).

gray area) have the following properties: (1) given the virtual
address of a memory page, by manipulating color bits stored
in the corresponding Page Table Entry the OS can influence
the mapping of memory to cache page; (2) the operation is
completely transparent to the task running in user space.

In an W-way set associative cache having size S. bytes,
with a page size of P; bytes, the number of available colors
K is given by:

Se/W
K= 2
P, 2
Given K, it is possible to determine W, for a task set:
1N
W, = L{ ; mw 3)

If the way size in bytes is greater than the size of one
memory page, the value of I can be calculated as:
S,
I =logo (

w>1

In the example shown in Figure 2, the number of available
colors is K = 2. Then, since the number of ways is W = 2, no
more that two pages can have the same color. In the example,
P 3 has been recolored from color 1 to color 2 (Figure 2c and
2d). In our example, P; 3 has been assigned to way number
2, and this information will be used later to determine where
to prefetch P 3.

c

“4)

D. Dynamic lockdown

During this phase we execute the prefetch and lock proce-
dure on the given set of hot pages. As previously stated, this
step can be executed at different times, depending on when the
colored hot pages are requested. In our example in Figure 2,
page P ; is prefetched right at the end of the previous phase,
while P 3 is prefetched at the beginning of job 7y 5.

As previously stated, an invariant of the procedure is that
before and after the routine is executed, the first W, cache
ways are locked for every CPU in the system, so that none of
them can perform an allocation in said ways.

Since lockdown by master lets us define a different cache
way lockdown status for each CPU in the system, in order
to prefetch and lock a given page P on a given CPU, say
CPU h, we operate as follows: (1) we make sure that none
of the lines in FP; ;, are cached in any level of cache?; (2) we

2This step is hardware specific. It can be done by trashing higher cache
levels and, on the last level, through by-line invalidation mechanisms (if
supported), or invalidating all the last W — W, cache ways. Doing so, no
line in the page that is going to be prefetched could trigger a cache hit in any
other cache level or way, thereby causing an allocation in exactly way W; .

51

lock all the ways but W; ;, for the CPU h; (3) we sequentially
read the page P, in a non preemptive manner, in order to
trigger the desired cache allocations; (4) we restore the lock
status of all the W cache ways for the CPU h as it was before
step (2). Once this step has been executed for a given page,
we flag it as prefetched, so that we never run this procedure
twice on the same page.

If the previous assignment constraints are met, every time
a prefetch and lock procedure is executed, the following
assertions hold: (1) After the invalidation and trashing step,
the data contained in P;; cannot be cached in a higher level
of cache; in addition, it can not be cached in any of the last
W — W, ways, nor in any of the first 1¥; ways, because they
have been invalidated and locked at the very start-up of the
system. (2) Every line addressed in FP; ; will cause a cache
allocation in exactly the way W; ;, since any other way is
locked for the CPU which is running the prefetch. (3) Inside
the given way W, ; the prefetch procedure will not evict any
previously prefetched page because page F; 1, has a color K i,
which no other page locked on the same way can have (See
Equation 1).

Therefore, if the prefetch and lockdown procedure has been
executed for a given page F; i, then every access of a job in
task 7; to any cell contained in F; ; will certainly result in a
cache hit. This property can be exploited in static analysis in
order to compute tight WCET bounds for the critical tasks.

Note that a part of the cache will be unusable by non-critical
tasks, and this can have a negative impact on their average
performances. However, this is usually an acceptable tradeoff
in real-time systems. Note also that a subset of hot pages could
be shared among a group of tasks. Nonetheless, handling a
similar case requires additional logic and it goes beyond the
scope of this work.

Finally, based on experimental results, it is worth to mention
that task execution time as a function of the number of locked
pages is well approximated by a convex function (see Figure 5
and 6). This has an important consequence; in fact, whenever
the total number of hot pages (in the task set) exceeds the
available cache size, an optimal cache allocation to multiple
tasks can be approximately computed by using a convex
optimization algorithm [33] like Q-RAM [34].

VI. EVALUATION

In this section we present the results obtained with an
experimental implementation of the proposed framework, as
well as the relevant hardware details of the testbed platform.

A. Methodology

We adopted for this work a Pandaboard development
board. It is a low-cost embedded ARM platform featuring
a OMAP4430 processor [35]. This processor incorporates a
dual-core ARM Cortex-A9 MPCore with symmetric multipro-
cessing (SMP). The OMAP4430 operates at a clock frequency
of 1.0 GHz. The total DRAM available is 1GB and there
are two cache levels [36]. In particular, there are two L1
caches which are private to each core. Since our interest is
to study the interference on the shared cache, the L1 caches
have been disabled to perform the experiments. In general,
performing the evaluations on the last level (shared) cache
disabling the higher levels allows us to obtain an upper bound
of the response time of the cache hierarchy. Such upper bound
can be more or less pessimistic according to the cache features
and the memory footprint of the tasks under analysis.



The second and last level of cache is a unified, physically
indexed, physically tagged L2 cache. It is shared among the
two Cortex-A9 cores, has a total size of 1024 KB and it is
internally organized as a 16-way set associative cache. The
cache is controlled by a hardware circuit called PL310 which
exposes a set of memory mapped registers to control the cache
behavior [32]. The PL310 supports the following lockdown
policies: by line, by way, by master. The lockdown by master
policy works as we have explained before. Lockdown by
way is the lockdown by master policy when a single CPU
is connected to the cache controller. Finally, the provided
lockdown by line mechanism is not atomic, thus implementing
Colored Lockdown using such lockdown policy is non trivial.

Each Cortex-A9 core features a set of performance coun-
ters, including a 32-bit clock cycle counter. We have used
this counter to collect accurate execution time measurements
during our experiments because it can be configured to be
accessed from user space with a negligible overhead.

For our experiments, we have used a set of benchmarks
from the EEMBC AutoBench suite [37] which are reported in
Table II. The benchmarks in this suite feature algorithms to
test the performance of embedded platforms in automotive and
industrial applications. For this reason, they share some key
characteristics with real-time applications (limited memory
footprint, limited use of dynamic memory, etc.) and can
therefore be considered representative of a typical real-time
workload.

As reported in [37], each benchmark features an iterative
structure and allows us to specify a customized number of
iterations per each run. However, since the execution time of
each iteration is too small to be considered a job of a typical
real-time task, we performed some adaptations to make each
adopted benchmark compliant with the periodic task model.
In particular, we have determined the number I of iterations,
reported in the last column of Table II, needed by the algorithm
to loop over the input buffer once. In this way, we consider a
job as the aggregation of [ iterations. Using a combination of
setitimer/sigaction system calls, a new job is released
every 30 ms. Each sample presented in the following results
summarizes the execution of 110 jobs. The first 10 jobs are
used to put the cache in a hot status, therefore their execution
time is not accounted.

Moreover, to simulate a partitioned scheduler, we bind the
benchmark tasks to the first CPU and schedule them according
to a real-time, fixed-priority scheduling policy. Interference
on the shared cache is created running a synthetic, memory
intensive task on the second CPU.

B. Memory Profiling

The results of running the memory profiler on the seven
EEMBC benchmarks can be seen in Table II. The second
column displays how many different memory pages were
found to be accessed by a given benchmark. This number is
equivalent to the number of lines in the profile file, similar
to the sample one in Figure 1f. In our experiments, we
have chosen to color/lock a subset of the resulting pages. In
particular, the third column of Table II shows how many pages
per each benchmark have been selected. The fourth column
reports the percentage of accesses that fall in the selected pages
with respect to the total number of accesses. As it is shown
in the table, we have selected the minimum number of pages
so to cover at least the 80% of accesses.
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Benchmark | Total pages | Hot pages iZb h'ftc;i;e‘:s Iters/Job
a2time 15 4 81% 167
basefp 21 6 97% 675
bitmnp 19 5 80% 43
cacheb 30 5 92% 22
canrdr 16 3 91% 498
rspeed 14 4 85% 167
tblook 17 3 81% 78
TABLE II

MEMORY PROFILING RESULTS

C. Colored Lockdown Results

Once we generated the memory profile for each benchmark,
we compared the execution time of these benchmarks with and
without Colored Lockdown. The results of these experiments
can be seen in Figure 4. The plotted values are those of the
observed worst case. The first bar displays the execution time
of the benchmark without any protection and in isolation.
The second bar displays the execution time of the same task
still without protection, but, this time, with the interference
task running on the second CPU. In all the benchmarks,
in the latter case, the execution time increases significantly,
sometimes more than 2.5 times. Finally, the third bar of
each cluster displays the observed worst case execution time
when interference is still present and the Colored Lockdown
protection is enforced. All bars are normalized to the first
bar. We observe that, in most cases, Colored Lockdown
eliminates the effects of the interference task, leading us to
the conclusion that Colored Lockdown effectively isolates the
task by eliminating the interference on the shared last level
cache. In some cases, enforcing protection through Colored
Lockdown slightly improves execution time with respect to
the isolation case. This is due to the fact that self-evictions
(cache evictions caused by the same task) are also reduced.

25 T

T T
No protection, no interference ==
No protection, interference ssesse

rotection, interference

slowdown

tblook

cacheb canrdr

benchmark

a2time basefp bitmnp rspeed

Fig. 4. Graph of observed worst case execution time for each benchmark,
with 1) no interference and no protection, 2) interference and no protection,
and 3) interference and protection.

The number of pages locked by Colored Lockdown in the
above mentioned results were also minimized: between three
to six pages were locked in each benchmark. For instance,
in the case of a2time, we see from Table II that as many
as 15 pages were found to be accessed by the benchmark,
but only the four hottest pages needed to be locked to
significantly reduce the stall time caused by cache interference.
The graph in Figure 5 displays the average execution time as a
function of how many pages were locked. The horizontal line



displays the execution time of the benchmark under normal
circumstances (no interference task on the second CPU and
no Colored Lockdown protection). One can observe that the
benefit of locking more pages diminishes after 4 pages, which
corresponds to the case where 81% of memory accesses are
locked in the last level cache and do not require a DRAM
access. In a scenario where the total memory footprint is
bigger than the cache size, this type of analysis helps selecting
those pages which provide the highest benefit if locked in
cache. A similar effect can be seen in the canrdr benchmark,
in Figure 6, where similarly only 3 pages need to be locked.
Similar curves, that we are not showing for sake of space, have
been obtained for all the benchmarks. In both the presented
figures, the depicted error bars represent the observed best and
worst execution time over the 100 measurements.

Note that through profiling we obtain a correct rank of
memory pages according to how frequently they are accessed.
Conversely, if the task behavior is not inspected through
profiling, it is hard to find an efficient solution to determine
such curves, because it would involve running the task several
times.
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Fig. 5. Graph of execution time depending on the number of pages locked,
for the benchmark a2time.
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Fig. 6. Graph of execution time depending on the number of pages locked,
for the benchmark canrdr.

Another experiment has also been carried out to under-
stand the behavior of multiple tasks with different priorities
scheduled at the same time on the same CPU. Again, we are
interested in comparing what happens if protection is enforced
using Colored Lockdown versus the case in which no cache
allocation is performed. The results are shown in Figure 7. In
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the graph, the first four bars represent the normalization base
for the following cases and correspond to the case in which all
the tasks are running without protection and no interference is
generated on the last level cache by the other core. Note that,
in this case, some cache interference coming from the other
three tasks on the same CPU is suffered by each task. However,
since the footprint of the considered tasks is small, applying
the protection in this case does not influences performances
much, as shown by the second group of bars.

3 T
a2time - priority 4 ==

basefp - priority 3 sessss
cacheb - priority 2 s
canrdr - priority 1

slowdown

No protection No protection

Protection Protection
No interf. from CPU 2 No interf. from CPU 2  Interf. from CPU 2

Interf. from CPU 2

Fig. 7. Resulting observed average time for four benchmarks scheduled at
the same time with different priorities. The highest priority level (a2time) is
the top priority.

According to the depicted values, in case interference in
the last level cache is introduced running memory intensive
processes on the second CPU (third group of bars), even the
highest priority task can suffer a 2.5x slowdown. Conversely,
in the last cluster of bars, we show the behavior of the
system when, per each task, the number of hottest memory
pages reported in Table II is colored and locked in the last
level cache. In this case, the enforced protection enhances the
isolation between all the tasks of the system, so that just a
negligible slowdown is suffered. To understand the source of
this slowdown, we can compare Figure 4 and Figure 7. In par-
ticular, considering the cases where interference is generated
on CPU 2 and no protection is enforced (Figure 4, second bar
of each cluster), we note that almost all the tasks run slower
in the co-scheduling experiment (Figure 7, third cluster). This
is because, in the latter case, DRAM accesses generated by
inter-task interference on non-locked pages compete with those
generated by CPU 2. In fact, this effect is not visible when
CPU 2 is idle (in the first and second cluster of Figure 7) but
generates the slight slowdown observed in the last cluster of
the same result set.

VII. CONCLUSION

Memory resources are the main bottleneck in many real-
time multi-core systems. In this work, we have proposed a
complete cache management framework for real-time systems
which integrates a memory analysis tool and a technique to
perform deterministic cache allocation.

The memory analysis tool leverages on profiling techniques
to analyze the memory access pattern of a given task and to
determine the most frequently accessed memory pages.

Moreover, colored lockdown is used to manage the content
of a cache shared among two or more tasks, both in single-core
and multi-core platforms. This technique combines page col-
oring and cache lockdown in order to enforce a deterministic
cache hit rate on a set of hot memory regions.



Exploiting the presented framework, it is possible to in-
crease isolation among tasks, a key property for certifiable
hard real-time systems. In fact, it can be used to avoid critical
tasks from suffering interference coming from self-eviction,
preemption, asynchronous kernel flows (i.e. ISRs), and other
tasks running on the same core or on a different one.

We have fully implemented the proposed techniques on
a commercial multi-core embedded platform and we have
shown that enforcing such protection can sharply improve the
schedulability of critical tasks.

As a part of our future work, we plan: (1) to extend the
implementation of our profiling technique to merge in a single
profile the data collected during multiple executions of the
same task with different input vectors; (2) to correlate the
data about memory accesses with timing information, in order
to detect a change in the memory workload of a task across
time and adapt the Colored Lockdown strategy accordingly.
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