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Abstract—Mixed critical platforms are those in which ap-
plications that have different criticalities, i.e. different levels
of importance for system safety, coexist and share resources.
Such platforms require a memory controller capable of pro-
viding sufficient timing independence for critical applications.
Existing real-time memory controllers, however, either do not
support mixed criticality or still allow a certain degree of
interference between applications. The former issue leads to
overly constrained, and hence more expensive, systems. The
latter issue forces designers to assume the worst case latency
for every individual memory transaction, which can be very
conservative when applied to determine the worst-case execution
time (WCET) of a task that performs many memory requests. In
this paper, we address both issues. The main contributions are:
(1) A memory controller that allows a predetermined number of
critical and non-critical applications to coexist, while providing
an interference-free memory for the former. To achieve that, we
treat the memory as a set of independent virtual devices (VDs).
Therefore, we also provide (2) a partitioning strategy to properly
map mixed critical workloads to VDs. We present experiments
that show that our controller allows DRAM sharing with no
interference on critical applications and minimal performance
overhead on non-critical ones (they perform on average only
15% slower in the shared environment).

I. INTRODUCTION

The trend in designing safety critical real-time embed-
ded systems is moving from distributed setups, where each
function is implemented on its own hardware unit, towards
an integrated environment, where different functionalities are
implemented in the same silicon chip and share resources [1].
If the functionalities have different levels of importance for
the system safety, i.e. if they have different criticalities, the
system is said to be mixed critical. For instance, the mixed
critical system presented in Figure 1 has four cores, half of
them running critical applications (depicted in white) and half
running non-critical applications (depicted in gray).

All cores share the interconnect fabric and a DRAM, which
helps to reduce implementation costs and power consumption
of the final product. However, the competition for resources
causes applications to interfere with each other’s performance.
Therefore, mechanisms to ensure that critical applications are
temporally isolated must be employed [2].
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Fig. 1: A mixed critical system with shared resources.

A particular challenge is observed with dynamic RAMs
(DRAMs). In these devices, the latency of an access depends
heavily on the history of previous accesses. In a scenario where
multiple applications share the memory, the access history
is the interleaving of accesses performed by all requestors.
(In this paper, we use the terms requestor and application
interchangeably). In order to provide latency and throughput
guarantees to all of them, several predictable hardware mem-
ory controllers [3]–[7] have been proposed.

Nevertheless, as we detail in Section III, they either do
not support mixed criticality, i.e. do not acknowledge that
applications can have different levels of importance to sys-
tem safety, or they allow a certain degree of interference
between them. The former issue can lead to overly constrained,
and therefore more expensive systems, because latency and
throughput guarantees are given to all applications, even the
ones that do not require it. The latter issue forces designers
to assume the worst case latency for every individual memory
transaction, which can be very conservative when applied to
determine the worst-case execution time (WCET) of a task
that performs many memory requests [8].

In this paper, we propose the Mixed Critical Memory
Controller (MCMC), a controller that addresses both issues.
We make a clear distinction between critical applications, for
whom we provide an interference-free memory (with through-
put and latency guarantees), and non-critical applications, for
whom we do not give service guarantees. Our approach is an
extension of the bank privatization scheme presented in [3].
Such scheme abstracts the complex DRAM access protocol
and display the memory as a set of independent virtual devices



(VDs), all capable of providing fixed bandwidth.
We propose to share each VD between one critical and a

predetermined number of non-critical applications. We make
critical applications completely unaware of the existence of in-
terfering requestors through fixed-priority arbitration. We also
propose a partitioning strategy, that can guide system designers
through the task of mapping a mixed critical workload to the
VDs.

To test our approach, we use a mixed critical workload
based on applications from MiBench [9] and EEMBC [10].
We collect memory access traces from the applications and
feed them to a cycle accurate SystemC model of our memory
controller. The results show that our controller allows DRAM
sharing with no interference on critical applications and mini-
mal performance overhead on non-critical ones (they perform
on average only 15% slower in the shared environment).

The rest of this paper is structured as follows. Section II cov-
ers the theoretical foundation required to understand this work.
Section III discusses the limitations of the existing approaches.
Section IV describes our solution. Finally, experiments are
presented in Section V, followed by the conclusion in Section
VI.

II. BACKGROUND

We firstly discuss the concepts of performance monotonic-
ity, timing composability and timing predictability. They are
important to understand the limitations of existing approaches.
Then, we present the details of the DRAM access protocol.
Finally, we cover the bank privatization technique.

A. Performance monotonicity

A processor is said to be performance monotonic [11] if
local reductions in its execution time cannot lead to longer
overall execution times. This is not the case, for instance, for
processors with out-of-order execution pipelines. These pro-
cessors suffer from timing anomalies [12] and might actually
have a longer overall execution time in case their memory
requests are served faster than expected.

B. Timing Composability vs. Timing Predictability

Predictability is the ability to provide an upper bound
on the timing properties of a system. Composability is the
ability to integrate components while preserving their temporal
properties [13]. Although composability implies predictability,
the opposite is not true. A round-robin arbiter, for instance,
is predictable, but not composable. A TDM (Time Division
Multiplexing) arbiter, on the other hand, is predictable and
composable.

A predictable shared resource does not completely eliminate
the interference that requestors can exert on each other, only
provides an upper bound on it. In other words, it still allows
a small degree of interference between them. This poses two
problems. Firstly, it forces designers to assume the worst case
latency for every individual memory transaction, which can
be very conservative when applied to determine the worst-case
execution time (WCET) of a task that performs many memory
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Fig. 2: Generic 4-banks DRAM device structure.

requests [8]. Secondly, it prevents requestors from being
verified in isolation, in case they do not exhibit performance
monotonicity.

This is not the case for composable shared resources, which
eliminate all interference between requestors. Requestors shar-
ing a composable resource are completely unaware of the
existence of each other or, in other words, are completely
isolated. Hence, composable resources allow requestors to be
verified in isolation, even when they do not exhibit perfor-
mance monotonicity.

However, providing timing composability for all requestors
in a system is expensive. To reach a compromise, our memory
controller provides it only for critical requestors, i.e. those
who are important to the safety of a system. The non-critical
requestors, i.e. those who do not play a role in the system
safety, do not receive guarantees.

C. Dynamic Random Access Memory (DRAM) Operation

DRAM memories have a three dimensional geometry. As
depicted in Figure 2, a DRAM device is composed of banks,
rows and columns [14]. The number of banks in each DRAM
device varies between different DDR generations, e.g. DDR2
and DDR3 have 4 and 8 banks, respectively. Each bank has
a data matrix composed of several rows. The rows contain
word-sized columns, and the columns contain either 4, 8 or
16 bits. The column size matches the number of data bus pins
from the device (without loss of generality, we consider the
column size to be 16 bits throughout the rest of this paper).

A memory controller operates a DRAM device by issuing
five different commands: activate, read, write, precharge and
refresh. The activate (ACT) command loads a row into the
bank’s row buffer, a process known as opening a row. The
read (RD) or write (WR) commands are used to retrieve or
forward columns from or to an opened row. The acronym CAS
(Column Access) refers to both RD and WR commands. The
number of columns accessed by a CAS is determined by the
burst length (BL) parameter. For DDR2, the burst length must
be configured in the mode register inside the device and can
be either 4 or 8 [15]. For DDR3, only a burst of 8 is supported
[16]. A precharge (PRE) command is used to write the row



TABLE I: Timing constraints for DDR3-1333H and DDR2-
400.

JEDEC Specification (cycles)
Constraint Description DDR3- DDR2-

1333H 400
tRCD ACT to RD/WR delay 9 3
tRP PRE to ACT delay 9 3
tRC ACT to ACT (same bank) delay 33 11
tRAS ACT to PRE delay 24 8
tBURST data bus transfer 4 2 or 4 1

tCWD WR to data bus transfer delay 7 2
tCAS RD to data bus transfer delay 8 3
tRTP RD to PRE delay 5 2
tWR End of a WR operation to PRE delay 10 3
tRRD ACT to ACT delay (different banks) 4 2
tFAW Four ACT window (different banks) 20 -
tRTW RD to WR delay (any bank) 7 4 or 6 2

tWTR End of WR to RD delay (any bank) 5 2

buffer back to the corresponding bank’s data matrix. Lastly, the
refresh (REF) command must be executed regularly to prevent
the capacitors that are used to store data from discharging.

DRAM also supports delayed CAS commands (known as
posted-CAS). Unlike other commands, a posted-CAS is held
by the DRAM device and issued after a predefined additive
latency. Both CAS and posted-CAS commands can be issued
with the Auto Precharge Flag, which automatically precharges
the accessed row after transferring the data, preparing it for a
next access.

There are several timing constraints that dictate how many
cycles apart consecutive commands must be. Table I enu-
merates such constraints for a DDR3-1333H and a DDR2-
400 devices. For instance, trtw specifies how many cycles
apart a write command should be from a read command. The
constraints are measured in data bus clock cycles. Notice how
the numbers are higher for the DDR3 device. The reason is that
the constraints measured in nanoseconds are similar between
different generations. Therefore, the higher the frequency of a
device, the bigger its timing constraints measured in cycles.

Except for tRRD, tFAW , tRTW and tWTR, the constraints
only apply to the bank level. This allows commands to be
pipelined across different banks, which in turn increases the
utilization of the data bus. For instance, the controller can issue
an ACT command to bank 0, and before the corresponding row
is opened, precharge the row buffer from bank 1 (preparing it
for a new access). This technique is known as bank interleav-
ing.

A controller can go even further and interleave commands
to different ranks. A rank is a group of devices that share a
clock, command bus and a chip-select signal. It is seen by the
memory controller as a single DRAM device with a bigger
number of data bus pins (wider data bus). One ore more ranks
can be grouped on a printed circuit board to form a module.
The module depicted in Figure 3, for instance, has 2 ranks,
each with 4 DRAM devices. A multiplexer controlled by the
chip select signal then selects between the data bus from rank

1For BL = 4 and BL = 8, respectively.
2See footnote 1.
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Fig. 3: DRAM module structure.

0 or 1.
The tRRD, tFAW , tRTW and tWTR constraints only apply

to the rank level. Interleaving requests to different ranks
hides the latency imposed by these constraints and allows the
controller to increase further the utilization of the data bus.

D. Bank Privatization

The bank privatization scheme was introduced in [3]. It
proposes a memory controller back-end that displays the
memory as a set of independent virtual devices (VDs) capable
of providing fixed bandwidth. A VD in this approach is a
group of banks from the same rank. The virtual devices are
accessed in a rank interleaved fashion, hiding the latency
imposed by timing constraints. To illustrate the technique, we
consider a dual rank DDR3-1333H memory module (a DDR2-
400 module was used in [3]).

The chosen memory module has 2 ranks, each with 8 banks.
Only a burst length of 8 is supported and, therefore, each CAS
operation occupies the data bus for BL/2 = 4 cycles. The data
bus runs at a frequency of 666.67 MHz and is operated using
double data rate (data is transferred both in the rising and
the falling clock edges). The data bus size (DBS) depends on
the number of DRAM devices inside the ranks. Each DRAM
device contributes with 16 bits. Hence, a rank with 1, 2,
or 4 devices would have a data bus size of 16, 32 or 64,
respectively.

We explain the scheduling mechanism. Each VD is a group
of 2 banks from the same rank. There are a total of 8, named
VD0 to VD7. A TDM arbiter periodically grants time slots
to the VDs. VDs use a time slot to serve a read or write
request (by issuing an ACT and a posted-CAS commands).
The schedule is depicted in figure 4. Notice that each slot is 5
clock cycles long. We refer to this value as slot width (SW).
Since there are 8 VDs, granting one time slot to each of them
takes 40 cycles. We refer to this value as round width (RW).

We detail the contents of a slot. In the first cycle, an
ACT is issued to open the required row. There is no need
to precharge the bank before opening the row because the
controller always uses the Auto Precharge Flag for the posted-
CAS commands. In the second cycle, the controller issues a
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Fig. 4: A TDM scheduling round.

posted-CAS command to write or read data. The posted-CAS
command is required to avoid a tRCD constraint violation.
The other 3 cycles of the slot are filled with NOPs to match
the slot width of 5. The slot width must be 5 (instead of the 4
cycles required by a data transfer) because there is a 1 cycle
offset between read and write latencies (tCAS and tCWD). If
a VD is granted a turn in the TDM schedule but there are no
outstanding requests for it, its time slot is filled with NOPS,
i.e. it is said to be empty.

We explain the refresh strategy. The controller manually
refreshes the DRAM rows when it is necessary. A row can
be refreshed by simply loading it into the row buffer and
sending it back to the data matrix. This is accomplished using
a time slot to read data from the corresponding row (the data
is simply discarded). Each VD has 32768 rows that need to be
refreshed every 64 ms (2 banks, each with 16738 lines). This
requires a row to be refreshed every 64ms/32678 = 1.9531µs
or 1.9531µs/(1µs/666.67cycles) = 1302.08 cycles. Which
means that for each virtual device, every b1302/40c = 32th
slot would be used for a refresh operation. We refer to the
percentage of slots that are not refresh operations as refresh
efficiency (RE). For the DDR3-1333H, the refresh efficiency
is RE = 31/32 = 0.9687.

We calculate the bandwidth provided by this approach. If no
refreshes are accounted for, each VD is able to transfer DBS
bytes every RW cycles. Incorporating the refresh efficiency,
the bandwidth provided by a virtual device (bwvd) is given
by equation 1. The total bandwidth (bwtotal) is given by
multiplying bwvd with the number of VDs. For instance, for
a module with a data bus width of 32 bits, the controller
provides a total bandwidth of 4131.84MB/s, each device being
responsible for 516.48MB/s.

bwvd =
DBS bytes

RWcycles ∗ 1µs
666.67cycles

∗RE (1)

Finally, we discuss the number of VDs in which the memory
can be split. For the DDR3-1333H, the bank privatization
scheme needs at least 8 VDs to function without the insertion
of unnecessary NOPs in the command bus. This is because
accesses to the same bank must be at least 40 cycles apart,
which is the time required to open a row, issue a write
command, transfer the data and precharge the row for the next
access. Having 8 VDs (each being granted a 5-cycles time slot)
matches this constraint perfectly. If a smaller number of VDs

is required, e.g. if there are less than 8 requestors, the time
slots have to be redesigned. We discuss how this can be done
in Section IV.

III. RELATED WORK

Although there are several works that address the problem
of achieving predictability for DRAMs [3]–[7], they either do
not support mixed criticality, i.e. do not acknowledge that
applications can have different criticalities, or they do not
offer timing composability, i.e. do not completely eliminate
the interference on critical requestors. The first issue leads to
more expensive systems because guarantees are given to all the
requestors, even those who do not need it. The second issue
forces designers to assume the worst case latency for every
individual memory transaction, which can be very conservative
when applied to determine the worst-case execution time
(WCET) of a task that performs many memory requests
[8]. Also, not providing composability makes the controllers
suitable only for performance monotonic requestors, which is
not always the case.

To our knowledge, the only real-time memory controllers
that make use of bank privatization are [3] and [6]. In [3]
(the work that introduced bank privatization), the authors
focused on having a single requestor per VD. The approach is
composable, but does not provide support for mixed criticality.

In [6], the authors also only allow one requestor per VD, but
try to reduce the bandwidth waste (empty slots) by replacing
the TDM arbiter with a sophisticated scheduler that exploits
open-page policy, which means that rows are not precharged
after a CAS operation. The idea behind it is that processor
requests tend to exhibit spatial locality, which means that the
probability that consecutive requests target the same row is
high. The approach is, however, limited by the number of
banks available, as each requestor must be assigned exclusive
access to a bank. Neither timing composability nor support for
mixed criticality are provided.

All the other approaches treat the memory as an indivisible
unit. In [5], the authors introduce the Predator back-end.
To share it between multiple requestors, the authors employ
a credit-controlled static-priority (CCSP) [17] arbiter. This
arbitration scheme does not support the idea of sharing a
criticality level between more than one application, neither
provides timing composability.

In [18], the authors used the same back-end with a TDM
arbiter. The TDM arbiter can be dynamically reconfigured to
better suit the current workload. Reconfiguration consists of
assigning more or less time slots to an application. The TDM
arbiter ensures composability. However, if an application does
not use all of its TDM time slots, the bandwidth is wasted.
Also, although the authors claim that the controller supports
mixed criticality, guarantees are given to all requestors.

In [4], the authors presented the Analyzable Memory Con-
troller (AMC). They group the requestors into a critical and a
non-critical groups. The critical group is always given priority.
The non-critical group is only served in the absence of the
critical. Round-robin is used to arbitrate between requestors



inside the same group. Although the scheme is able to provide
upper bounds on request latency, the round-robin arbitration
and the lack of independent virtual devices do not ensure
timing composability.

Finally, there were also attempts that rely in a combination
of software plus COTS memory controllers. In [19], the
authors only consider a scenario with a single critical and
more than one non-critical requestors sharing the memory. In
[20] the authors rely on access pattern prediction and only
consider soft real-time requestors. Both software approaches
do not offer timing composability.

IV. PROPOSED SOLUTION

As described in the Introduction, we allow critical and non-
critical requestors to coexist, while providing an interference-
free (timing composable) memory for the former. This is
achieved by splitting the memory request scheduler into a
back-end, that uses bank privatization to provide the illusion
of independent virtual devices (VDs), and a front-end, that
arbitrates requests at VD level.

In our approach, each VD is shared between at most one
critical and a predetermined number of non-critical requestors.
The front-end, comprised of one fixed-priority arbiter for each
VD, ensures that the critical requestors are unaware of the
existence of interfering requestors. The non-critical requestors
receive only the portion of bandwidth not used by the critical
ones. We present later a partitioning strategy, to help system
designers ensure that this portion is big enough to avoid
starvation.

Although our approach is generic and can be applied to
different DDR3 memory modules, throughout this section we
assume a DDR3-1333H dual rank module, with 8 banks per
rank. Furthermore, we refer to the number of VDs displayed
by the back-end as n. An in-depth discussion about n is also
presented later.

The rest of the Section is organized as follows. The ar-
chitecture of our controller is covered in Section IV-A. The
request scheduler is presented in Section IV-B. The discussion
about n is covered in IV-C. Timing aspects of our approach are
given in Section IV-D. Our partitioning strategy is described in
Section IV-E. Finally, we compare the functionalities provided
by our controller against those provided by existing real-time
memory controllers in Section IV-F.

A. Controller Architecture

The memory controller architecture is presented in Figure 5.
It comprises 6 different blocks: ports, address translation, data
buffers, scheduler, access controller and data manager. For
each VD, there are two sets of request/response ports, one for
critical and one for non-critical requestors. The non-critical set
of ports must be shared (e.g. through round robin arbitration),
shall more than one non-critical requestor be assigned to a
VD.

The address translation phase converts a logical address into
bank, row and column numbers. The data buffer holds the
data that should be written to the memory or the response that
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should be sent to a requestor in case of a write or read request,
respectively. The scheduler is covered in detail in Section IV-B
and is left here as a black box. Notice that it only handles
requests (addresses and commands). The actual data is stored
in the data buffers and retrieved/forwarded by the data manager
block when the request is being served. This technique was
used by Heithecker et al. in [21], [22] and prevents the data
from being routed through the two big multiplexers inside the
scheduler. Finally, the access controller handles the physical
communication with the DRAM. It is connected to the data
manager, from/to which it reads/writes the request data.

B. Scheduler Architecture

The implementation of the scheduler is depicted in Figure
6. The front end is composed of a set of one critical and one
non-critical buffers for each VD, plus the corresponding fixed
priority arbiters.

The back-end uses a modulo-RW counter to create the
illusion of VDs, where RW is the round width (40 cycles).
The counter is divided by n, yielding the VD that has the
current turn in the TDM schedule. The result of the division
is used to control the multiplexer that interfaces with the front-
end. The command generator issues commands to the memory
(ACT, posted-CAS and NOPs) according to the current request
being served and the modulo-RW counter.



A
C

T 

P

C
A
S 

N
O

P 

N
O

P 

N
O

P 

Cycles 

A
C

T 

P

C
A
S 

N
O

P 

N
O

P 

N
O

P 

A
C

T 

P
C

A
S 

N
O

P 

N
O

P 

N
O

P 

Old slot 
A
C

T 

P
C

A
S 

N
O

P 

N
O

P 

N
O

P 

New Slot 

   Old Slot Width (SW)       Old Slot Width (SW) 

 1      2      3     4       5     6      7     8      9     10 Command to 
bank 0 or 1 

Command to 
bank 2 or 3 

                        New Slot Width (SW) 

Fig. 7: New slot format (for n = 4).

C. Number of virtual devices

Ideally, the back-end should be configured to display one
VD per each critical requestor. However, for the back-end
to use the memory efficiently, n needs to be a power of 2.
To explain the motive, we recall that, for the DDR3-1333H,
accesses to the same bank need to be at least 40 cycles apart
from each other. Since each time slot in the bank privatization
scheme is 5-cycles long, a perfect bank interleaving can only
be achieved if n is bigger than 40/5 = 8.

Therefore, to create a system with less than 8 VDs and
still keep a perfect bank interleaving, we use the original VDs
(provided using n = 8) as a building block to create larger
VDs. For instance, it is possible to group the original 8 VDs
in pairs, thereby creating 4 larger VDs, each being a group of
4 (instead of 2) banks from the same rank. Every TDM round,
each larger VD is granted a 10-cycles time slot, composed of
2 original 5-cycles time slots, as depicted in Figure 7. The
same can be employed to configure the back-end to display
the memory as a set of 2 or 1 VDs.

This allows us to not only respect the 40 cycles constraint,
but also to reuse the refresh strategy (every 32nd slot is used
for a refresh). Nevertheless, it must be noticed that reducing
the number of VDs increases the request size and bwvd by the
same factor, e.g. if the number of VDs is reduced by a factor
of 2, the request size becomes two times bigger.

We summarize the relationship between request size, band-
width and data bus size (DBS) for n = 8 and n = 4 in table
II. For instance, when the DBS is 32, the request size and
bwvd are 32 bytes and 516.48MB/s for n = 8, and 64 bytes
and 1032.96MB/s for n = 4. Notice that the total bandwidth
(4131.84MB/S) only depends on the DBS.

D. Timing aspects

Our controller provides throughput guarantees to critical
requestors: they have access to the entire bandwidth provided
by their corresponding VDs. To derive latency guarantees,
we employ the busy window approach presented in [23]. We
compute a maximum q-event busy-time β+(q), which gives
an upper bound on the amount of time a VD requires to serve
q critical requests, assuming they arrive sufficiently early. By
sufficiently early, we mean that the q-th request arrives before
the previous q-1 were served (see [8]). This would be the case,

TABLE II: Request size and bandwidth for different values of
the data bus size.

Data bus size (DBS)
16 32 64

Number of Virtual Devices (n) = 8
Request Size 16 bytes 32 bytes 64 bytes
Bandwidth 258.24MB/s 516.48MB/s 1032.96MB/sper device (bwvd)
Total Bandwidth 2065.92MB/s 4131.84MB/s 8263.68MB/s(bwtotal)

Number of Virtual Devices (n) = 4
Request Size 32 bytes 64 bytes 128 bytes
Bandwidth 516.48MB/s 1032.96MB/s 2065.92MB/sper device (bwvd)
Total Bandwidth 2065.92MB/s 4131.84MB/s 8263.68MB/s(bwtotal)

for instance, for a DMA engine that makes requests bigger
than the granularity offered by the controller.3.

Since we are using fixed priority to select between critical
and non-critical requestors, we only need to consider the back-
end in order to calculate β+(q). The back-end grants one time
slot to each VD every scheduling round (RW cycles). Also,
it uses every 32nd time slot to perform a refresh operation.
Therefore, in the worst case scenario, the first of the q request
arrives precisely one cycle after the beginning of a 31st time
slot.

We present a graphical representation of the worst case
scenario for q = 2 in Figure 8. In the Figure, the q requests
are directed to VD0, whose time slots are drawn in black.
The time slots granted to the other VDs are drawn in gray.
The time required to serve 2 requests is divided in 5 parts.
The first one is the phase shift penalty (PSP), and refers to
the RW − 1 = 39 cycles required before the corresponding
VD is granted the next time slot. The second part refers to the
overhead imposed by the refresh. The refresh basically burns a
time slot, which forces the VD to wait RW cycles for the next
usable time slot. The third part accounts for the q-1 scheduling
rounds required to serve the first q-1 requests. The fourth part
is the time required for the qth transfer to start, counting from
the beginning of the corresponding time slot. We refer to this
part as CAS. Finally, the fifth part accounts for the transfer
time (TT). The transfer time is 4 cycles for n = 8 (with 5-
cycles time slots), but increases if we use smaller n (bigger
time slots).

In case q > 32, more than one refresh will be necessary.
Hence, instead of RW cycles, the refresh overhead becomes
(bq ∗ (1−RE)c+ 1) ∗RW , where RE is the refresh effi-
ciency. Consequently, the expression used to calculate the
maximum q-event busy-time β+(q) is given by equation 2:

β+(q) = PSP + (bq ∗ (1−RE)c+ 1) ∗RW+

(q − 1) ∗ RW + CAS + TT (2)

3In such cases, the request is broken into several smaller ones, whose sizes
match the controller’s granularity.
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Fig. 9: Worst case response time for different values of q.

We plot β+(q) for different values of q in Figures 9a and
9b. The time is measured in cycles from the memory data
bus, which runs at a frequency of 666.67 MHz. We assume
n = 8, which implies TT = 4 cycles. The first Figure
shows β+(q) for a small number of requests (q between 1
and 8). For instance, when q = 1, the worst case latency is 98
memory cycles. In the second Figure, we use bigger values
of q (between 29 and 36) to show the influence of refreshes.
When q is greater or equal to 32, a second refresh is required,
which causes a change in the slope of the graph.

E. Partitioning Strategy

Accommodating a workload on our memory controller
requires 3 steps: choosing n, selecting the data bus size (DBS)
and mapping applications to VDs. In the first step, we select
the smallest n that respects the following two constraints: it
must be a power of 2 (1, 2, 4, 8 or even 16 are possible
values) and it must be greater or equal to the number of critical
requestors in the system. The former constraint is required to
keep the bank privatization scheme profitable. The latter allows
us to isolate critical requestors from each other. Notice that,
if the number of critical requestors is not a power of 2, some
VDs will only contain non-critical requestors.

The next step is to choose a data bus size as to match the
cache line size of the requestors. For instance, if n = 4, the
data bus size needs to be 32 so that the request size is 64 bytes
(a common cache line size for modern processors).

The final step is to map requestors to VDs. We use a
heuristic to do that. We firstly allow every (critical and
non-critical) requestor to run in a non-shared VD, i.e. with
exclusive access to one of the VDs, and measure its average

TABLE III: Real-time memory controllers features comparison

Features
MixedController Predictability Composability Criticality

PRET DRAM [3] Yes Yes No
Open-Page Contr. [6] Yes No No
Predator (CCSP) [5] Yes No Yes
Predator (TDM) [18] Yes Yes No
AMC [4] Yes No Yes
Our Approach (MCMC) Yes Yes Yes

request load (rate of non-empty slots). Then, we assign the
requestors to the VDs as to distribute the average request load
evenly, remembering to allocate at most one critical requestor
per VD.

To check if the memory is properly sized, we need to
observe the sum of average request loads per virtual device. If
the sum of the average request load of all requestors allocated
to a VD is over 100%, the memory is undersized. In this
case, although the critical requestor still remains completely
isolated, the non-critical ones are going to have a significative
performance penalty. The solution is to add a second, or even
more memory controllers to the system, as is often seen in
commercially available System-on-Chips (SoCs), e.g. Tile 64
from Tilera [24], which has 4 memory controllers.

F. Comparison with existing controllers

We do not make an experimental comparison because
existing real-time memory controllers do not fundamentally
provide the same functionalities as we do. Instead, we make
a features comparison in table III. We take three features
into account: predictability, composability and mixed critical-
ity support. By predictability and composability, we mean
the definitions given in Section II-B. By mixed criticality
support, we mean the ability to provide latency and throughput
guarantees only to critical requestors.

The left-most column lists the real-time memory controllers.
Software approaches were excluded. Each row of the table
describes the features of the corresponding controller. For
instance, the PRET DRAM approach, which introduced the
concept of bank privatization, provides predictability and
composability. It does not, however, provide mixed criticality
support, as it gives guarantees to all requestors, including the
non-critical ones. Our approach is the only one that exhibits
the three listed features.

V. EXPERIMENTAL EVALUATION

We demonstrate that our scheme allows DRAM sharing with
no interference on critical applications and a small overhead
for non-critical ones. Although our approach is generic, we
consider a dual rank DDR3-1333H module. We devise a
mixed critical workload and feed it to a SystemC cycle-
accurate model of our controller. We collect statistics about
the simulation and discuss the results in detail.

The rest of the Section is organized as follows: Section
V-A covers the mixed critical workload. Section V-B details
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Fig. 10: Block diagram of the simulation infrastructure.

the simulation infrastructure. Section V-C shows the partition-
ing of the workload. Finally, Sections V-D and V-E present
simulation results.

A. Mixed Critical Workload

The mixed critical workload is created using applications
from EEMBC [10] and MiBench [9].

The critical applications are represented by four EEMBC
AutoBench applications: matrix01, cacheb01, aifft01 and ai-
ifft01. The first application is a sparse matrix multiplication
program. The second emulates the behavior of an application
with a high cache miss ratio. The two last are a fast Fourier
and an inverse fast Fourier transforms, respectively. The other
applications from EEMBC AutoBench perform very little
DRAM accesses, and could easily be served with a small
ROM. Therefore, we do not use them in our experiments.

The non-critical part of the workload is represented by the
Mibench [9] suite. There is a total of 21 applications from five
different categories: consumer, office, network, telecommuni-
cations and security.

Memory traces were obtained by running the critical and
non-critical applications in a non-shared memory environment
on the Gem5 [25] platform. An ARM processor clocked at
1GHz with a single level of caching was used. The cache
was split into a 32kB data and a 32kB instruction parts. The
chosen block size was 64 bytes. The computation time between
consecutive requests to the DRAM was measured and recorded
into text files. To speed up simulation time, we limited each
trace to a 100µs interval.

B. Simulation Infrastructure

The entire simulation infrastructure is developed in cycle-
accurate SystemC. The memory controller model can be
configured for a different number of VDs and data bus sizes.
We present a block diagram of it in Figure 10. The picture
omits the controller implementation details and focus on the
traffic injectors and statistics that are collected.

The traffic injectors mimic the behavior of a processor with
a cache. They receive as input the memory access traces

TABLE IV: Application mapping to the virtual devices

Mapping
Virtual Critical Non-Critical
Device Application Applications
VD0 matrix01 tiffdither, tiff2rgba, madplay, and qsort
VD1 aifftr01 susan, tiffmedian, cjpeg, stringsearch

and djpeg
VD2 aiifft01 crc32, blowfish, adpcm, gsm, lout, dijkstra

and tiff2bw
VD3 cacheb01 bitcount, sha, patricia, fft and basicmath

collected as described in Section V-A. After a request is
injected, the injector adds the corresponding computation time
and only then issues the next request. We allow a maximum
of 4 outstanding requests before stalling the traffic injector.
Injecting the entire trace produces the total execution time of
an application including both computation and memory access
time. We use the expression execute an application to refer to
the injection of its memory trace.

A round robin arbiter is used to select between the traffic
injectors that represent non-critical requestors. This is neces-
sary because, as explained in Section IV-B, there is only one
set of non-critical request/response ports per virtual device.
The response is routed to the right non-critical requestor using
a simple demultiplexer. In the picture, the non-critical traffic
injectors and extra logic to share the request/response ports
are depicted in gray, while the critical traffic injector is white.

The source code is instrumented to record the following
statistics: the execution time of applications and the request
load in the VDs. The first one is obtained from the traffic
injectors, while the second is retrieved from the back-end.
In the Figure, the light blue blocks represent the collected
statistics.

C. Partitioning

We use our partitioning strategy to map the applications
to the VDs. We firstly select the appropriate n. There are
4 critical applications, hence, the back-end is configured to
display the memory as a set of 4 independent VDs (n = 4).
Secondly, we choose the data bus size. The processor that we
used to generate our memory access traces has a cache line of
64 bytes. Therefore, we employ a data bus size of 32, which
allows a cache line to be transferred with a single request to
our controller.

Finally, we map the applications to the VDs. This requires
measuring, for all applications, the average request load (rate
of non-empty slots) in a non-shared memory environment.
Non-shared memory environment refers to giving an appli-
cation exclusive access to a VD.

After the average request load is known, we spread the
applications to the VDs as to distribute the load evenly. The
resulting mapping is presented in table IV. For instance, the
critical application allocated to VD0 is matrix01, the non-
critical ones are tiffdither, tiff2rgba, madplay and qsort.

D. Results - Non-Shared Memory

We investigate the memory access pattern from the applica-
tions that belong to our mixed critical workload. To do that,
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Fig. 11: Request load of 4 different applications running with
exclusive access to one of the VDs.

we execute each of them without the presence of interfering
requestors, i.e. with exclusive access to one of the VDs,
and measure how its request load (rate of non-empty slots)
oscillates through time.

The results are very diverse. Certain applications have a re-
ally high cache hit ratio, and therefore access the DRAM very
rarely. This is case for crc32, blowfish, adpcm, stringsearch,
bitcount, sha and susan.

Other applications have a bursty access pattern, alternating
periods of intense and low memory activity. This is the
case for matrix01, aifftr01, aiifftr01, madplay, qsort, cjpeg,
djpeg, dijkstra, lout and gsm. The request load graphs for
applications matrix01, aifftr01 and qsort are presented in
Figures 11a, 11b and 11c, respectively. We omit the graphs
for the other applications to save space. The graphs were
produced sampling the load every 800-slots interval. Notice
that they show several spikes, which indicate that the request
load oscillates a lot.

Finally, some applications exhibit an stable access behavior
through time. This is the case for cacheb01, all the TIFF
manipulation applications and for patricia. To save space, we
only show the request load graph for patricia (Figure 11d).

E. Results - Shared Memory

In this Section, we present simulation results obtained
executing the entire workload simultaneously, as opposed to
the previous Section, which does not consider VD sharing.

We partition the mixed critical workload according to what
was described in Section V-C. We simulate and measure
the oscillation of the request load imposed on the 4 VDs
(named VD0 to VD3). We also compute the slowdown of
each application. The slowdown is the ratio between the
execution time in the non-shared and in the shared memory
environment. For instance, a slowdown of 1.15 means that the
application runs 15% slower when sharing the memory with
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Fig. 12: Request load in each of the 4 virtual devices (the VDs
are shared by more than one requestor, as described in table
IV).

interfering requestors. The smaller the slowdown, the smaller
the overhead of executing the application in a shared-memory
environment.

The request loads imposed by the workload on VD0, VD1,
VD2 and VD3 are presented in Figures 12a, 12b, 12c and 12d,
respectively. The graphs were produced by sampling the load
every 800-slot interval. The red line represents the percentage
of slots occupied by requests issued by the critical requestor.
The green line represents the total load. The total load is
defined as the percentage of slots that are non-empty. The
average total load during the entire period of 100 µs was
90.7%, 74.4%, 88.1% and 93.1% for VD0, VD1, VD2 and
VD3, respectively.

The slowdown for the applications that were allocated to
VD0, VD1, VD2 and VD3 are presented in Figures 13a,
13b, 13c, 13d, respectively. In the Figures, the (leftmost) red
bar represents the critical application and the green bars (in
the middle) represent non-critical ones. The (rightmost) blue
bar is used for the average slowdown of all the non-critical
applications.

The slowdown for the critical applications was 1.0 in all
4 virtual devices. This means that the applications’ execution
times remain the same in the non-shared and in the shared
memory environment, which confirms that our controller pro-
vides timing composability for critical requestors. The average
slowdown for the non-critical applications was 1.14, 1.18,
1.12 and 1.17 for applications allocated to VD0, VD1, VD2

and VD3, respectively. The average slowdown over all non-
critical applications was 1.15. The non-critical applications
least affected by running in a shared memory environment
were, as expected, the ones that presented a high spatial
locality. Crc32, blowfish and adpcm, for instance, mostly only
had compulsory cache misses and, therefore, made very little
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Fig. 13: Slowdown per application.

DRAM accesses. Applications that require more often DRAM
accesses, such as jpeg decoding, suffered the biggest impacts.

VI. CONCLUSION

In this paper we propose a memory controller suitable for
mixed critical environments. We reuse the bank privatization
scheme proposed in [3], that presents the memory as a set
of independent virtual devices with fixed bandwidth. In each
virtual device, we allocate one critical and a predetermined
number of non-critical requestors. A fixed priority arbiter
then eliminates the interference on critical requestors. To test
our approach, we devised a mixed critical workload based
on applications from Mibench and EEMBC. We collected
memory access traces from the applications and fed them to
a cycle accurate SystemC model of our controller. The results
show that it ensures complete isolation for critical applications
while having a minimal performance overhead on non-critical
ones (they perform on average only 15% slower in the shared
environment). Future work in this area includes providing an
environment capable of accommodating more than one critical
requestor per virtual device and the development of an FPGA
prototype.
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