
Q-Clouds: Managing Performance
Interference Effects for QoS-Aware Clouds

Ripal Nathuji and Aman Kansal
Microsoft Research

Redmond, WA 98052
{ripaln, kansal}@microsoft.com

Alireza Ghaffarkhah
University of New Mexico
Albuquerque, NM 87131
alinem@ece.unm.edu

Abstract
Cloud computing offers users the ability to access large
pools of computational and storage resources on demand.
Multiple commercial clouds already allow businesses to re-
place, or supplement, privately owned IT assets, alleviating
them from the burden of managing and maintaining these
facilities. However, there are issues that must be addressed
before this vision of utility computing can be fully real-
ized. In existing systems, customers are charged based upon
the amount of resources used or reserved, but no guaran-
tees are made regarding the application level performance or
quality-of-service (QoS) that the given resources will pro-
vide. As cloud providers continue to utilize virtualization
technologies in their systems, this can become problematic.
In particular, the consolidation of multiple customer appli-
cations onto multicore servers introduces performance inter-
ference between collocated workloads, significantly impact-
ing application QoS. To address this challenge, we advocate
that the cloud should transparently provision additional re-
sources as necessary to achieve the performance that cus-
tomers would have realized if they were running in isolation.
Accordingly, we have developed Q-Clouds, a QoS-aware
control framework that tunes resource allocations to miti-
gate performance interference effects. Q-Clouds uses online
feedback to build a multi-input multi-output (MIMO) model
that captures performance interference interactions, and uses
it to perform closed loop resource management. In addition,
we utilize this functionality to allow applications to specify
multiple levels of QoS as application Q-states. For such ap-
plications, Q-Clouds dynamically provisions underutilized
resources to enable elevated QoS levels, thereby improving
system efficiency. Experimental evaluations of our solution

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
EuroSys’10, April 13–16, 2010, Paris, France.
Copyright c© 2010 ACM 978-1-60558-577-2/10/04. . . $10.00

using benchmark applications illustrate the benefits: perfor-
mance interference is mitigated completely when feasible,
and system utilization is improved by up to 35% using Q-
states.

Categories and Subject Descriptors C.0 [General]: Sys-
tem architectures; C.4 [Performance of Systems]: Model-
ing techniques; D.4.8 [Operating Systems]: Performance—
Modeling and prediction; K.6.4 [Management of Comput-
ing and Information Systems]: System Management

General Terms Design, Management, Performance

Keywords Virtualization, Cloud computing, Resource man-
agement

1. Introduction
Cloud computing is rapidly gaining prominence, as evi-
denced by the deployment and growth of commercial cloud
platforms [2, 9, 18]. The existence of these services enables
businesses to replace, or dynamically supplement, their own
IT infrastructures with large pools of computational and stor-
age resources that are available on demand. While these
consolidated infrastructures provide significant scale and ef-
ficiency advantages, there are still issues which prevent their
widespread adoption. In particular, an important problem
that remains to be effectively addressed is how to manage
the quality-of-service (QoS) experienced by customers that
share cloud resources.

Today, cloud providers charge customers based upon us-
age or reservation of datacenter resources (CPU hours, stor-
age capacity, network bandwidth, etc), and service level
agreements (SLAs) are typically based on resource avail-
ability. For example, a cloud provider may make guaran-
tees in terms of system uptime and I/O request reliability.
However, current systems do not make any application layer
quality-of-service (QoS) guarantees. In environments where
a given resource usage directly translates to application QoS,
this is reasonable since customers deterministically receive
levels of QoS based upon their purchased resource capac-
ities. In shared cloud infrastructures, though, this is often
not the case. Cloud platforms routinely employ virtualiza-

tion [3, 32, 35] to encapsulate workloads in virtual machines
(VMs) and consolidate them on multicore servers. Virtual-
ization helps enable cohosting of independent workloads by
providing fault isolation, thereby preventing failures in one
application from propagating to others. However, virtual-
ization does not guarantee performance isolation between
VMs [16]. The resultant performance interference between
consolidated workloads obfuscates the relationship between
resource allocations and application QoS.

For customers, performance interference implies that
paying for a quantity of resources does not equate to a de-
sired level of QoS. For example, an application using one
core of a multicore processor may experience significantly
reduced performance when another application simultane-
ously runs on an adjacent core, due to an increased miss
rate in the last level cache (LLC) [8, 13, 39]. One approach
to deal with this indeterminism is to improve virtualization
technologies, through better resource partitioning in both
hardware and software, and remove performance interfer-
ence altogether. A benefit of this approach is that the cloud
can continue to be agnostic of application QoS and main-
tain simple resource capacity based provisioning and billing.
However, perfect resource partitioning can be difficult and
costly to implement, and even if accomplished, may result
in inefficient use of resources [36].

To overcome the challenges imposed by performance
interference effects, we advocate an alternative approach:
QoS-aware clouds that actively compensate for perfor-
mance interference using closed loop resource management.
We present Q-Clouds, a QoS-aware control theoretic man-
agement framework for multicore cloud servers. Q-Cloud
servers manage interference among consolidated VMs by
dynamically adapting resource allocations to applications
based upon workload SLAs. The SLAs are defined in terms
of application specific performance metrics, and online
adaptation is achieved through simple semantic-less [14]
feedback signals. Q-Clouds ensures that the performance
experienced by applications is the same as they would have
achieved if there was no performance interference.

The Q-Clouds system makes multiple contributions.
First, Q-Clouds employs application feedback to build multi-
input multi-output (MIMO) models that capture interference
relationships between applications. An advantage of the ap-
proach is that the system does not need to determine the
underlying sources of interference. The MIMO model is
used in a closed loop controller to tune resource allocations
and achieve specified performance levels for each VM. Our
second contribution builds on the Q-Clouds performance
driven resource management to increase resource utiliza-
tions. In particular, applications may specify multiple QoS
levels denoted as Q-states. Here, the lowest Q-state is the
minimal performance that an application requires, but higher
Q-states may be defined by the customer when they are will-
ing to pay for higher levels of QoS. Q-Clouds uses this infor-

mation to provision underutilized resources to applications
when possible, while still guaranteeing that accompanying
performance interference effects do not cause collocated ap-
plications to experience reduced QoS. We evaluate Q-Clouds
on Intel Nehalem based multicore hardware with the Hyper-
V virtualization platform. Our experiments with benchmark
workloads, which exhibit performance degradations of up
to 31% due to interference, show that Q-Clouds is able to
completely mitigate the interference effects when sufficient
resources are available. Additionally, system utilization is
improved by up to 35% using application Q-states.

2. The Need for QoS-Aware Clouds
Managing application performance and QoS remains a key
challenge for cloud infrastructures. The fundamental prob-
lem that arises in these environments is that application per-
formance can change due to the existence of other virtual
machines on a shared server [16, 31]. Moreover, the presence
of other applications cannot be controlled by the customer.
As a result, cloud promises on resource availability and ca-
pacity do not guarantee application performance. In this sec-
tion we highlight the performance interference problem and
discuss why adopting resource partitioning approaches to
mitigate such effects are undesirable for cloud scenarios. We
argue that interference should instead be addressed proac-
tively with performance SLAs, as proposed in Q-Clouds.

2.1 Performance Interference with Consolidated VMs
If each customer application were allowed to run on dedi-
cated compute, network, and storage resources, there would
be no interference. In that situation, ignoring heterogeneous
hardware [22], resource level SLAs in effect provide ap-
plication QoS guarantees. However, the key advantages of
cloud platforms come from efficient resource sharing and
scaling. The nature of resource sharing is governed by two
technology trends: virtualization and multicore processing.
Virtualization [3, 32, 35] is employed for fault isolation and
improved manageability, while multicore designs allow pro-
cessors to continue leveraging Moore’s Law for performance
benefits. However, since each hosted workload may not be
parallelized or scale-up to make use of all cores within a
server, it becomes imperative to consolidate multiple work-
loads for efficient hardware utilization. The workloads, en-
capsulated in VMs, are then allocated “virtual” processors
(VPs) that are backed by individual cores, or fractions of
cores.

While virtualization helps to isolate VMs with respect
to faults and security [20], it does not provide perfect per-
formance isolation. For example, consolidating VMs onto a
multicore package that incorporates a shared last level cache
(LLC) creates an opportunity for the VMs to interfere with
each other. We experimentally illustrate this problem us-
ing data collected on a quad-core Nehalem processor with
an 8MB LLC. To localize the effects of cache interference,

we first disable hardware prefetching mechanisms. We then
measure the performance, in terms of execution time, of a
simple synthetic CPU bound microbenchmark running in a
VM. The microbenchmark is written such that the applica-
tion iterates over a specified working set size multiple times
until it has accessed a constant amount of data (2GB) which
is significantly larger than the working set size. Therefore, as
the working set size increases, the number of total iterations
decreases to maintain a constant amount of work. Figure 1
provides the data obtained from this experiment.

0

20

40

60

80

100

120

140

160

180

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Working Set Size

Running Alone

Running vs 1 Thread

Running vs 2 Threads

Running vs 3 Threads

Figure 1. Performance impact of cache interference on con-
solidated VMs.

As illustrated in the figure, when a VM is running by it-
self, its performance degrades once the working set becomes
larger than the LLC since it is effectively memory bound. We
compare this performance to the case where the single VM
is consolidated with a second VM running synthetic memory
bound threads. The number of collocated threads varies from
one to three, giving a total of up to four active threads, equal
to the number of physical cores. Depending on the working
set size, the performance of our first VM with a resource
guarantee of one core, is significantly impacted, by up to
380%, due to LLC sharing.

2.2 Resource Partitioning to Mitigate Interference
For cloud systems, performance variations for the same re-
source usage, as seen in Figure 1, are not acceptable. One
approach to handle performance interference is to better
enforce resource partitioning in the shared system. For in-
stance, the LLC can be effectively partitioned among VMs
using page coloring [37] to avoid interference due to LLC
sharing. Figure 2 illustrates the effects of page coloring in
our previous experiment. Here, each of the two VMs are
guaranteed their own 4MB partition of the cache. As ex-
pected, the existence of additional threads in the other VM
no longer causes performance interference.

Based upon the page coloring results in Figure 2, resource
partitioning may seem like a promising direction to solve the
performance interference problem. However, adopting this
approach is not plausible for two reasons. First, there is a
cost in terms of system complexity when implementing par-
titioning mechanisms such as page coloring. Moreover, there

0

20

40

60

80

100

120

140

160

180

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Working Set Size

Running Alone

Running vs 1 Thread

Running vs 2 Threads

Running vs 3 Threads

Figure 2. Mitigating LLC interference with VM page col-
oring.

are several dimensions of performance interference such as
shared I/O and memory bandwidths [16], placing additional
requirements on both hardware and software for effective
partitioning across all of them. Secondly, even if the com-
plexity of partitioning mechanisms is acceptable, it is likely
that partitioning would lead to inefficient use of resources.
For example, without dynamic page recoloring, in our ex-
ample we would have allocated all of our LLC to the two
VMs. This could prevent us from consolidating additional
VMs, causing inefficient processor usage. Even with hard-
ware support for cache partitioning, there would be ineffi-
ciencies in cache utilization due to the fact that lines rarely
used by one core could not be used by another due to the
strict partitioning [36]. Finally, in some cases, technologies
like HyperThreading [30] that are designed to increase re-
source efficiency naturally add interference in the system.
Thus, perfect performance isolation with partitioning may
neither be practical due to complexity nor efficient in terms
of resource utilization. Therefore, we must employ an al-
ternative approach that ensures applications experience the
QoS expected from purchased cloud resources.

2.3 Managing Clouds with Performance SLAs
When performance interference effects are present, the rela-
tionship between the amount of resource guaranteed and the
application QoS achieved is broken. As a result, there are
various scenarios that can be considered in terms of the met-
ric used to charge the customer and the metric that is guaran-
teed. Figure 3 lays out four possibilities, based on whether
the cloud charges by resources or application performance
and whether the cloud guarantees resource or application
performance. We discuss the key aspects of each of these
below.

Scenario 1: Our first scenario is agnostic of application
performance. Guarantees and prices are based solely on re-
source usage. This approach is simple to implement, and
widely adopted in current cloud implementations. However,
due to performance interference, this method is not sufficient
for customers since the existence of other workloads, out-
side of their control, can cause significant performance vari-

Figure 3. Pricing and guarantee scenarios for clouds.

ations. Indeed, with this scenario the cloud provider bene-
fits if interference prone workloads get placed together as
then the application performance is minimized and the cus-
tomer is forced to pay for more resources to meet perfor-
mance SLAs.

Scenario 2: Following from scenario 1, in the second
case the cloud still guarantees resource capacities but the
price charged to the customer is based on the actual perfor-
mance that is experienced. Compared to the first scenario,
here if the customer experiences reduced performance be-
cause of interference, their payment to the cloud provider is
adjusted accordingly. This case is still detrimental to the cus-
tomer since there is no guarantee of performance. Moreover,
in this case the cloud is also impacted negatively since the
revenue generated by contracting resources is not determin-
istic.

Scenario 3: In this scenario, the cloud guarantees that the
performance SLAs of applications are met. The customer is
charged, however, based upon the amount of resources re-
quired to meet the SLA. This variation on scenario 1 there-
fore provides the customer with the benefit of performance
guarantees, but still has the drawback that the customer is
inevitably responsible for the costs of additional resources
that are required to meet the performance SLA when there is
interference amongst consolidated VMs.

Scenario 4: Our final case combines the benefits of sce-
narios 2 and 3. The cloud manages applications in a man-
ner that performance guarantees are observed. Moreover, the
customer is charged in terms of that level of performance,
even if the cloud must tune resource allocations due to per-
formance interference. The interesting issue, then, is how the
charge for a level of performance is determined. Recalling
that resource usage dictates application performance in the
absence of interference, pricing can be based upon the re-
sources required to meet a level of QoS when an application
is running in an isolated manner. Then, if interference does
occur, the cloud tunes resource allocations so that the desired

performance is still achieved without affecting the charge to
the customer. This provides the best experience for the cus-
tomer, and the cloud is motivated to optimize resource usage
and minimize interference, leading to the most efficient con-
figurations. It is clear, then, that this is the best alternative
amongst our four scenarios. Realizing this case, however,
requires integrating QoS-aware resource management into
cloud computing systems.

2.4 Enabling QoS-Aware Clouds
The Q-Clouds system is designed to support QoS-aware
management of cloud hosted applications under perfor-
mance interference effects. In particular, we are concerned
with platform-level interference issues. From a cloud man-
agement perspective, there are two implications of interfer-
ence that motivate the functional requirements of Q-Clouds.
First, when placing VMs to maximize resource utilization
and efficiency, it is necessary to understand the resource us-
age and requirements of the encapsulated applications. This
information allows packing algorithms to deploy VMs in a
manner that requires the least number of physical servers to
be kept online. Such placement decisions may result in SLA
violations if workloads need more resources than expected
due to interference with co-hosted VMs. In the absence of a
reliable mechanism that can compute the extent of interfer-
ence for any possible VM placement, a practical approach
towards handling this issue is for the VM deployment agent
to maintain a resource “head room” when deploying VMs.
The head room allows a Q-Clouds enabled server to dynam-
ically tune resource allocations. An interference predictor
could be used to estimate headroom allocations [16], or an
empirically determined value can be used. The first require-
ment of Q-Clouds is then to repurpose unallocated resources
from the head-room, when necessary due to interference, to
maintain performance SLAs.

A second implication of performance interference is that,
due to large variations in the extent of interference, the as-
signed head rooms will by nature be conservative. There-
fore it is likely that the overall system will go underutilized.
From an efficiency perspective, this is undesirable. One way
to address this is by allowing applications to use the excess
resources from the left over head rooms. In a cloud envi-
ronment, this is only beneficial if the excess resources do
indeed increase the application performance for some ap-
plications, the respective customers are willing to pay for
the additional performance, and if any resulting interference
effects do not cause other applications to drop below their
SLAs. We enable such resource allocations through appli-
cation Q-states, where customers can specify additional dis-
crete levels of QoS that would be desirable, and for each
state, the additional cost they would be willing to incur. The
second requirement of Q-Clouds is to utilize application Q-
states to increase system utilizations when there is remaining
head room.

3. Q-Clouds Management Architecture
3.1 System Overview
Figure 4 presents an architectural overview of the manage-
ment components used in Q-clouds, which we discuss next.
Methods for the consolidation policies used by the cloud
scheduler are assumed available from prior work [4, 11, 15],
and are summarized only briefly. The focus of this paper is
on the platform level mechanisms required in the subsequent
online control. However, we discuss all of these elements to
provide a holistic view of Q-Clouds enabled datacenters.

Cloud
Scheduler

Staging
System

VMs Interference
Mitigation

Control

Resource
Efficiency
Control

Q-Clouds Server Controller

VMs[],
QoS[]

Figure 4. VM Deployment and QoS management with Q-
Clouds.

Cloud Scheduler: The cloud scheduler determines the
placement of VMs submitted by customers on cloud servers.
The cloud scheduler makes this decision based upon the
resource requirements of workloads, as well as any other
constraints that must be satisfied for security or reliabil-
ity [29]. In order to determine resource requirements, VMs
are first profiled on a staging server to determine the amount
of resources needed to attain a desired level of QoS in an
interference-free environment. The resource capacity deter-
mined here dictates what the VM owner will pay, regardless
of whether additional resources must be provisioned at run-
time due to performance interference. Once the resource re-
quirement information is available, previously proposed so-
lutions to the consolidation problem, such as those based on
bin-packing [4, 11, 15] and those used in commercial clouds,
may be employed. We assume any such solution is used, but
with one variation: during VM placement, the cloud sched-
uler leaves a prescribed amount of unused resources on each
server for use in subsequent online control. We refer to this
unused capacity as “head-room” which, for example, may be
determined empirically based on typical excesses used in in-
terference mitigation. Upon completion, the cloud scheduler
sends each Q-Clouds server a set of VMs along with their
associated interference-free QoS and resource requirements.

Interference Mitigation Control: The head-room on
each server is used to allocate additional resources to im-
pacted VMs to bring their performance to the same level
as what would have been observed without interference. In
particular, we incorporate a closed loop interference mitiga-
tion control component that helps realize Scenario 4 from
Section 2.3 by tuning resource allocations to achieve the de-

sired performance for each VM. The controller operates on
each server individually, where it employs a MIMO model
to relate resource usage of all collocated VMs with their
performance levels. We discuss the MIMO modeling and
control approach in more detail in Section 3.2.

Resource Efficiency Control: Since the resource capac-
ity used for interference mitigation is not known beforehand
and the interference among VMs can vary, it is likely that the
head-room allocated by the cloud scheduler ends up being
conservative. The slack in resource can then be dynamically
allocated to applications to achieve higher levels of QoS. In
particular, we consider provisioning additional resources to
applications that have multiple QoS levels defined via Q-
states. We discuss Q-states in more detail in Section 3.3, but
the goal of the resource efficiency control component is to
determine when higher Q-states can be achieved, and to re-
define target QoS points for interference mitigation control
based upon the results of its optimization.

3.2 MIMO Modeling and Control
The control methods utilized by Q-Clouds rely upon the
availability of a model that describes the relationship be-
tween resource allocations and the QoS experienced by
VMs. A key capability of the system is that it learns this
model online. A requirement to do so, however, is access
to both the system inputs and the outputs. The inputs are
readily available as control actuators to the underlying sys-
tem. Access to the outputs, VM performance, requires ac-
tive feedback from applications. To meet this need, the Q-
Clouds platform relays QoS information from each VM on
the server to the platform controller. In particular, we expose
a paravirtualized interface that allows performance informa-
tion to be communicated between virtual machines and an
agent in the management partition (e.g. Root for the Hyper-
V platform, or Dom0 for Xen). A question, however, is what
type of QoS data is required from each application. An ar-
tifact of cloud environments is that each application may
have its own metric of performance. For example, compute
applications may measure performance in millions of in-
structions per second (MIPS), while server workloads may
use response time or request throughput. Our design does
not use any semantic information regarding these perfor-
mance metrics as the goal of Q-Clouds is simply to modify
resource allocations so that the required level of QoS is met.
This maps to a tracking control problem and it is sufficient
for each application to provide its QoS information as a raw
data value. This feedback is then used for two purposes:
to build a system model and to drive online control of the
platform.

In order to apply efficient resource allocation control,
it is desirable for the system model to incorporate perfor-
mance interference relationships between VMs that are con-
solidated onto a server. To meet this need, we adopt a multi-
input, multi-output (MIMO) model approach which natu-
rally captures performance interference interactions. Specif-

ically, we consider a discrete-time MIMO model of the plat-
form with p inputs and q outputs in order to design a model
predictive control framework for Q-Cloud servers. The in-
puts u1[k], u2[k], . . . , up[k] of the model are defined to be
the actuators used by the platform controller to manage re-
source allocations at time step k. For example, the system
may utilize virtual processor (VP) capping mechanisms [23]
on each VM to throttle the processing resources an appli-
cation can use. The outputs y1[k], y2[k], . . . , yq[k] of the
model are the predicted QoS values at time step k. Let us
denote by u[k] =

[
u1[k] u2[k] · · · up[k]

]T
and y[k] =[

y1[k] y2[k] · · · yq[k]
]T

the stacked vectors of the model
inputs and outputs respectively. The general MIMO model
of the platform is then given by a set of nonlinear difference
equations as shown in Equation 1, where Φ() determines the
outputs at time step k based upon previous outputs as well
as current and previous inputs. The impact of previous out-
puts on the values at the current time step is determined by
the parameter n and referred to as the order of the system.
Similarly, the value m determines to what extent previous
values of the input continue to impact the output at time step
k. When n or m are nonzero, the current output depends on
the history of prior inputs and outputs.

y[k] = Φ
(
y[k−1], · · · ,y[k−n],u[k], · · · ,u[k−m]

)
(1)

In general, modeling of nonlinear dynamical system as
depicted by Equation 1 is quite challenging. First, most non-
linear system identification techniques require significant
computational complexity resulting in real-time implemen-
tation issues. Also, the large amount of learning data re-
quired for such modeling often makes the system identifica-
tion of nonlinear dynamical systems impractical. However,
in most applications, there exist simplified models that can
capture the input-output interactions with a small amount of
uncertainty. For example, static models are typically used
for computing platforms experiencing very fast dynamics.
In this case the platform model can be specified as y[k] =
Φ
(
u[k]

)
with n = m = 0. We observed that in most of

our experiments, a static approximation of the system model
given by y[k] = Au[k] + b is precise enough when the
range of inputs under control is small, as is the case for inter-
ference mitigation control. Adopting this approximation en-
ables the use of fast learning algorithms such as Least Mean
Squares (LMS) or Recursive Least Squares (RLS) for find-
ing the model parameters A and b. Thus, for interference
mitigation control, the model can be learned at run time as
VMs get placed, allowing the controller to rapidly tune re-
source allocations as interference effects are observed.

It is important to note that the most accurate model in
general can depend upon the workloads that are being con-
sidered, and the level of accuracy required may depend upon
the type of control being applied. For example, if the control
being applied requires capturing system dynamics and non-

linearities, neural networks might be applicable to better es-
timate the relationship in Equation 1 [24]. For our purposes,
we evaluate and compare multiple cases in Section 5.1 to
study these tradeoffs in our experiments. Once an appropri-
ate MIMO model has been found, at any step we find optimal
control inputs by solving a constrained optimization prob-
lem that leverages the predictive capabilities provided by the
model. Taking the case where we model y[k] = Au[k] + b,
Equation 2 provides an overview of the optimization based
control, where u∗ represents the optimal set of inputs based
upon Λ

(
y
)

and Ψ
(
y
)
. As denoted by argminu in the equa-

tion, we attempt to find among the possible input vectors
u, the one which minimizes Λ

(
y
)
. For example, Λ

(
y
)

can
quantify the deviation from the SLA outputs prescribed to
the controller. The goal of the optimization is to find the
minimum of this function where u is in the space of allow-
able inputs U , and constraints on the output represented by
Ψ
(
y
)
≤ 0 are met. For example, where we want to meet

some SLA outputs ySLA, Ψ
(
y
)

= ySLA − y. In this man-
ner, Λ

(
y
)

and Ψ
(
y
)

are chosen based upon the desired QoS
metrics for each of the consolidated VMs.

u∗ = argminu Λ
(
y
)

= argminu Λ
(
Au + b

)
s.t.

u ∈ U ,
Ψ
(
y
)

= Ψ
(
Au + b

)
≤ 0 (2)

As summarized above, our control approach is based
upon a MIMO model that is learned and adapted online, and
then used as a prediction tool for optimization based con-
trol. A benefit of this approach is that the model can also be
used to determine whether provisioning additional resources
to an application results in an improvement to QoS, and sub-
sequently if such over provisioning may negatively impact
other workloads. This ability can be used to determine when
idle resources can be used to allow VMs to execute at higher
QoS levels as described next.

3.3 Improving Cloud Efficiency with Q-states
For management purposes, we assume a minimum perfor-
mance SLA is specified by customers for a VM deployed
in the cloud. For example, a customer may request a level
of QoS that requires half a processing core for a VM when
it runs in isolation. Q-Clouds must then ensure that the ap-
plication achieves that QoS during consolidated execution,
even if additional resources must be supplied because of
performance interference. Let us denote this level of QoS
as Q0. For some customers, it may be that provisioning re-
sources beyond those required to achieve Q0 may have ad-
ditional value that they are willing to pay for. For example,
certain computations may be able to vary their level of ac-
curacy, where a base level of accuracy is denoted as Q0, but
the customer may be willing to pay for marginal improve-
ments beyond this [14]. Q-clouds allows customers to define

additional Q-states that convey this desire so that servers can
dynamically allot supplemental resources to applications, in-
creasing the overall utilization and revenue of the cloud.

0

2

4

6

8

10

12

14

16

18

200 250 300 350 400 450 500 550 600

W
ill

in
gn

e
ss

-t
o

-p
ay

QoS/Performance

Q0

Q1

Q2

Q3

Figure 5. Example of application QoS and definition of Q-
states and willingness-to-pay values.

The relationship between QoS and user benefit is often
captured by continuous utility functions. Though continuous
functions are convenient from a mathematical perspective,
they are practically difficult for a user to define. Indeed,
in the case where additional utility implies the willingness
to pay extra for additional resources, it is likely that the
mapping of utility to QoS may not even be continuous.
Therefore, we support discrete Q-states, where we expect
that it is much easier for customers to define a few levels
of QoS, Qx, in addition to Q0 along with the amount of
money that they would be willing to pay if the level of QoS
is achieved. Figure 5 provides an example of this idea.

Given a set of Q-states for each VM, the platform con-
troller can dynamically use up surplus head room on a server.
In particular, the resource efficiency control component can
perform an optimization to determine which, if any, VMs
may be able to run at an elevated Q-state within the remain-
ing resource capacity. At the same time, the controller must
ensure that every VM still achieves its minimal QoS level of
Q0. To do this the controller again makes use of our MIMO
model. In this manner, Q-states allows future capabilities for
customers to autonomously bid on and purchase additional
resources only when it is beneficial to them (i.e. they get a
performance benefit that pushes them to the next Q-state),
while not disturbing other co-hosted applications. While in
this paper we consider the use of Q-states to improve re-
source utilization, in the future we hope to investigate how
they can help realize market based allocation of stranded dat-
acenter resources [5].

4. Experimental Methodology
In this section we provide a brief overview of the experi-
mental setup and implementation used to evaluate Q-Clouds
enabled servers. We begin by defining the performance in-
terference effects and workloads that we have chosen to con-
sider. We then briefly describe our system implementation.

4.1 Performance Interference Effects and Workloads
As highlighted in previous work, performance interference
can occur for various reasons including interference in CPU
caches, memory bandwidth, and I/O paths [13, 16, 19, 31].
The Q-Clouds management framework is designed to han-
dle any of these effects, with the availability of appropriate
control actuators. Our current system includes the ability to
cap the VP utilizations of guest VMs, thereby limiting ac-
cessibility to CPU resources [23]. Therefore, we limit our
evaluation to interference effects that can be directly affected
by varying CPU resources. In this context, there are three
points of possible interference. First, multiple memory inten-
sive applications can affect each other’s performance due to
interference in their respective memory bandwidth availabil-
ity [19]. Second, as shown in Figure 1, applications can con-
tend for resources in the last level cache (LLC). A final inter-
ference point is created by the use of hardware prefetching
in processors. Here, the prefetchers employ a policy to de-
termine when to prefetch cache lines, and scale back dynam-
ically based upon bus utilization, etc. Figure 6 illustrates the
inclusion of this affect when we enable prefetching in the ex-
periments for Figure 1. Here, we see that even when the mea-
sured thread has a working set of 1MB and is not affected by
sharing the LLC, its execution time doubles when it is run-
ning against three other threads due to reduced prefetching.

0

20

40

60

80

100

120

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Working Set Size

Running Alone

Running vs 1 Thread

Running vs 2 Threads

Running vs 3 Threads

Figure 6. Performance impact of cache and prefetch hard-
ware interference on consolidated VMs.

Based upon these multiple points of interference, and
the availability of the VP capping actuator, in this paper,
we focus on CPU bound workloads. In the future we plan
to include additional control actuators so that we can bet-
ter address I/O bound applications as well. For our evalua-
tion, we use a set of benchmarks from the SPEC CPU2006
suite. Prior work has grouped these workloads according to
their sensitivity to characteristics of the memory hierarchy
(cache size, etc) [17]. As in Figure 6, our experiments uti-
lize four applications running on the same quad-core pro-
cessor. Therefore, we choose five of the SPEC CPU2006
benchmarks that are identified as being sensitive, and use
all possible combinations of four as experimental workload
mixes, shown in Table 1.

Table 1. SPEC CPU2006 workload mixes.

Benchmark Workload Mix
1 2 3 4 5

436.cactusADM X X X X
437.leslie3d X X X X
459.GemsFDTD X X X X
470.lbm X X X X
471.omnetpp X X X X

4.2 System Implementation
We implement and evaluate the Q-Clouds system using a
dual socket enterprise server. Each socket is provisioned
with a quad core Nehalem processor and 18GB of mem-
ory, for a total of eight cores and 36GB of memory on the
platform. The Nehalem processor incorporates a three level
cache hierarchy, where each core has its own L1 (32KB)
and L2 (256KB) caches, and there is a large shared 8MB
L3. Since this configuration restricts the interference effects
we consider to each package, in our experiments we run
four VMs that are consolidated onto one package, and leave
the other idle. Finally, we deploy the Hyper-V virtualization
software on the server, based upon the Windows 2008 R2
operating system [35].

Hyper-V utilizes a Root partition, similar to Dom0 in
Xen, that is able to perform privileged management oper-
ations on the platform. We implement a user space Root
Agent that runs in the Root partition to drive the Q-Clouds
resource management control and QoS monitoring. For re-
source monitoring, the agent can employ one of two meth-
ods. From our prior work, we have a simple paravirtualized
interface that VM agents running in guests can use to convey
QoS information over VMBus [23]. In addition, we have en-
abled the hypervisor to utilize performance counters in the
hardware to monitor metrics on a per virtual processor (VP)
basis. For example, we can monitor the number of instruc-
tions retired, cache accesses, cache misses, etc. The Root
Agent can access this information from the hypervisor. In the
context of this paper, since we focus on CPU bound appli-
cations whose performance QoS is based upon instructions
executed, the Root Agent makes use of the hardware per-
formance counter data to monitor the performance of each
guest VM in terms of millions of instructions executed per
second (MIPS).

As explained above, the Root Agent is able to monitor
VM performance through the hypervisor. In addition, it has
the ability to dynamically adjust CPU resource allocations
provided to guest VMs by setting the associated VP utiliza-
tion cap through the hypervisor. Based upon these inputs
(VP caps) and outputs (guest QoS feedback), we implement
our system controller in Matlab. In our lab setup, the Matlab
component of the controller runs on a separate machine, and
communicates with the RootAgent over the network. This
setup is strictly due to ease of implementation, and there is

no restriction that the controller be developed in this man-
ner for our system. In our case, the Matlab component of the
controller periodically queries the Root Agent for updated
QoS feedback, and then invokes new VP caps through the
Root Agent when necessary. As described in Section 3.2, the
controller implements two pieces of functionality: 1) It uses
feedback data to develop MIMO models of the consolidated
VMs. 2) It uses the model to solve a constrained optimiza-
tion problem in order to meet the SLAs of the applications.

5. Evaluating Q-Clouds
5.1 Modeling VM Performance Interference
The feedback control implemented by Q-Cloud servers is
predicated upon an available MIMO model that allows the
controller to account for performance interference effects
between consolidated applications. Figure 7 motivates the
need for such a model. The figure illustrates the perfor-
mance of our synthetic application from Figure 1 as a func-
tion of the CPU allocation (VP cap), comparing execution
data when the application is running alone versus when it is
consolidated with three other VMs running the same appli-
cation for a total of four threads on a quad-core processor.
Figure 7(a) illustrates the resulting performance when the
working set size of the application is 1KB, and Figure 7(b)
demonstrates how things change when the working set is
made larger and interference begins to occur.

In both cases of Figure 7, we observe a linear relation-
ship between performance and VP cap when there is a sin-
gle VM running the application. We can compare this result
against when we consolidate the remaining VMs and ran-
domly vary the VP cap to all four. Both figures include the
ensuing data points based upon the monitored performance
of the first VM. As expected, when the working set is small,
there is effectively no deviation from the original trend, and
hence any performance model that captures the relationship
between resource allocation and performance for the appli-
cation by itself continues to hold under consolidation. How-
ever, in the case of the larger working set, we observe that the
consolidated performance is strictly less than that achieved
when the VM is running in isolation, and moreover, there is
a wide variance. The latter can be attributed to the varying
CPU allocations for the other three VMs, resulting in differ-
ent amounts of interference. In general, the figure supports
the fact that the system model used for control should be a
function of all the workloads that a VM is consolidated with
since performance interference interactions can vary.

We construct our system MIMO model using application
performance feedback. In general, the interactions between
applications can create nonlinear relationships. However, of-
ten you can model the nonlinear system as a linear system
and it is accurate enough within a region of operation to per-
form control. The drawback, though, is that if you want to
perform some optimized control over a larger region of the
operating space (larger range of the controlled inputs), a lin-

30 40 50 60 70 80 90 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

VM CPU Cap

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

4 VMs

Single VM

(a) Application with 1KB Working Set Size

30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

VM CPU Cap

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

4 VMs

Single VM

(b) Application with 3MB Working Set Size

Figure 7. Comparing the deviation from isolated perfor-
mance as VMs are consolidated onto a multicore package.

ear model may not allow you to find a good solution. Fig-
ure 8 illustrates this tradeoff with synthetic workloads that
stress interference effects. The figure compares two model-
ing approaches. The first, MIMO model 1, uses the linear
model described in Section 3.2 to capture the relationship
between performance of VMs as a function of all VP caps.
MIMO model 2 uses a more complex approach where the
deviation from the linear trend between VP cap and perfor-
mance when there is no performance interference is mod-
eled with a second order polynomial. Here, we find the least
squares solution for the coefficients of the polynomial to
solve for the model.

In Figure 8, we plot the normalized performance of the
system, where we have four VMs each running our synthetic
workload with a 3MB working set. In each of the data points,
the same VP cap is applied to all VMs. We can see from the

40%

50%

60%

70%

80%

90%

100%

30% 40% 50% 60% 70% 80% 90% 100%

N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

VM CPU Cap

MIMO Model 1

MIMO Model 2

Measured

Figure 8. Comparison of MIMO modeling approaches.

measured data (dashed curve in the figure) that the operat-
ing point that maximizes performance is around 65%. If we
wanted to predict this operating point with the MIMO mod-
els, the linear model would pick a poor solution since it pre-
dicts maximum performance at the operating point of 100%.
Our second model, on the other hand, is able to capture the
trends over the larger operating space much more accurately.
The drawback of MIMO model 2, however, is that it is more
complex, especially as we scale the number of system inputs.
It also requires a model learning phase, possibly performed
during system staging, where the VP caps of the VMs can
be varied randomly across the entire operating region to ac-
curately capture the interference relationships across a wider
range of controlled inputs. On the other hand, MIMO model
1 can be adapted dynamically using a small history of ob-
served data obtained during online control.

We observe that MIMO model 2 is of most benefit when
we need to predict across the larger operating space. Indeed,
our evaluations of the models show that in general, they both
have similar error on average (approximately 13%) when
you only need to predict within a small region. Therefore,
we employ the models selectively depending on our needs.
MIMO model 1 is used for interference mitigation control to
achieve a specified set of SLAs (QoS points). This model is
constructed completely online, and does not require learning
during staging. We show in Section 5.2 that this light-weight
approach allows Q-Cloud servers to control the system to
appropriately meet SLAs. MIMO model 2 is then employed
for resource efficiency control where we’d like to allocate
remaining system resources to VMs to achieve higher Q-
states. The resource efficiency control component can use
the second MIMO model to quickly determine what set of Q-
states are plausible given performance interference effects.

5.2 Meeting QoS Requirements with Q-Clouds
In evaluating the ability of Q-Cloud servers to meet QoS re-
quirements under performance interference effects, we must
assume the amount of head room that is available during
consolidated execution. As previously mentioned, in this pa-
per our focus is on the platform component of the Q-Clouds

systems. Therefore, we assume different amounts of head
room that may occur when VMs are deployed by the cloud
scheduler. In particular, for each of the workload mixes in
Table 1, we assume that all four VMs have SLAs that require
25%, 50%, or 75% of the CPU when there is no performance
interference, resulting in head rooms of 75%, 50%, and 25%
during consolidation. This gives us fifteen scenarios com-
prised of five workload mixes and three possible SLAs per
mix. In our first set of experiments we deploy the four work-
loads in a mix, and define the desired SLAs based upon the
performance experienced with the respective resource ca-
pacity when there is no interference. We compare against
a default case where the system assumes that resources re-
quired to meet the SLA do not change as workloads are con-
solidated (i.e. QoS-unaware resource allocations).

0.5

0.625

0.75

0.875

1

25% 50% 75%

N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

 v
s

SL
A

Desired CPU Equivalent Performance

436.cactusADM

437.leslie3d

459.GemsFDTD

470.lbm

(a) Default Performance

0.0%

12.5%

25.0%

37.5%

50.0%

62.5%

75.0%

87.5%

100.0%

25% 50% 75%

A
llo

ca
te

d
 C

P
U

Desired CPU Equivalent Performance

436.cactusADM

437.leslie3d

459.GemsFDTD

470.lbm

(b) Default Resource Allocation

Figure 9. Performance and resource allocations with a de-
fault QoS-unaware system for workload mix one.

Figure 9 provides results from our default case with the
first workload mix. We observe that with QoS-unaware man-
agement, applications are consistently impacted by up to
30%. While some applications are affected more heavily
than others, there is significant degradation across all of
them. This clearly demonstrates the need for the type of on-
line management provided by Q-Clouds. Taking this exper-
iment and enabling interference mitigation control, we ob-
tain the application performance and resource allocation data

provided in Figure 10. Comparing Figures 9(a) and 10(a) we
observe clearly that the Q-Clouds controller is able to use the
MIMO model of the system to adapt resource allocations so
that the desired performance is met, with the exception of the
case where the desired performance is equivalent to 75% of
the CPU. The reason for this can be observed in Figures 9(b)
and 10(b). We see that when applications desire CPU equiv-
alent performances of 25% and 50%, the Q-Clouds server
allocates additional resources to the VMs in order to meet
the desired QoS. However, in the case of 75%, the system
allocates additional resources to the point that it is unable
to provision additional capacity. Therefore, the inability of
Q-Clouds to meet QoS requirements is due to the fact that
there is not enough head room in the system for Q-Clouds to
properly provision the VMs.

0.5

0.625

0.75

0.875

1

25% 50% 75%

N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

 v
s

SL
A

Desired CPU Equivalent Performance

436.cactusADM

437.leslie3d

459.GemsFDTD

470.lbm

(a) Q-Clouds Performance

0.0%

12.5%

25.0%

37.5%

50.0%

62.5%

75.0%

87.5%

100.0%

25% 50% 75%

A
llo

ca
te

d
 C

P
U

Desired CPU Equivalent Performance

436.cactusADM

437.leslie3d

459.GemsFDTD

470.lbm

(b) Q-Clouds Resource Allocation

Figure 10. Performance and resource allocations with a Q-
Clouds enabled system for workload mix one.

Figure 11 provides the performance data for the remain-
der of our workload mixes. The results are similar to our first
mix, where Q-Clouds is able to utilize available resources
from the consolidation step to provision additional resources
to VMs so that QoS requirements can be met. Again, in the
case where applications desire performance levels equiva-
lent to 75% of a CPU, Q-Clouds is unable to meet the QoS
for all workloads. Indeed, in some cases as in workload mix
five, there is significant interference and none of the applica-

0.5

0.625

0.75

0.875

1

D
ef

au
lt

Q
-C

lo
u

d
s

D
ef

au
lt

Q
-C

lo
u

d
s

D
ef

au
lt

Q
-C

lo
u

d
s

D
ef

au
lt

Q
-C

lo
u

d
s

D
ef

au
lt

Q
-C

lo
u

d
s

D
ef

au
lt

Q
-C

lo
u

d
s

D
ef

au
lt

Q
-C

lo
u

d
s

D
ef

au
lt

Q
-C

lo
u

d
s

D
ef

au
lt

Q
-C

lo
u

d
s

D
ef

au
lt

Q
-C

lo
u

d
s

D
ef

au
lt

Q
-C

lo
u

d
s

D
ef

au
lt

Q
-C

lo
u

d
s

25% 50% 75% 25% 50% 75% 25% 50% 75% 25% 50% 75%

Workload Mix 2 Workload Mix 3 Workload Mix 4 Workload Mix 5

N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

 v
s

SL
A

VM1

VM2

VM3

VM4

Figure 11. Performance comparisons of default and Q-Clouds for workload mixes two through five.

Table 2. Q-Clouds average CPU allocation after interference mitigation control.
Workload Mix Default allocation of 25% CPU Default allocation of 50% CPU Default allocation of 75% CPU

1 33% 64% 100%
2 31% 58% 96%
3 32% 63% 100%
4 33% 63% 100%
5 36% 70% 100%

tions can meet their QoS. This is in spite of the fact that in
this case, as shown in Table 2, Q-Clouds allocates the system
fully to the applications.

Given the results in Figure 11 and Table 2, it is clear that
provisioning VMs that require CPU equivalent performance
of 75% does not leave ample head room in the system for
Q-Cloud controllers to mitigate performance interference ef-
fects. On the other hand, allocations of 25% leave significant
system resources unused, on average 67%. The intermedi-
ate case of 50% leaves between 30% and 42% of resources
unused. As we show next, we can dynamically reprovision
these resources to achieve higher QoS levels as defined by
applications, thereby increasing resource efficiency and rev-
enue for the cloud while providing better performance for
customers.

5.3 Improving Cloud Utilization with Q-states
Building on the results in Section 5.2, we evaluate the inclu-
sion of Q-states as described in Section 3.3. For our evalua-
tion, we again take our five workload mixes, but assume in
each case a head room of 50% where each VM requires per-
formance equivalent to 50% of a CPU when there is no per-
formance interference. By our definition of Q-states, these
QoS points are Q0 states. We define three addition Q-states,
Q1, Q2, and Q3, where for each VM these are defined to be
CPU equivalent performance of 60%, 70%, and 80% respec-
tively. We integrate MIMO model 2 in a global optimization
step, where the Q-Cloud resource efficiency controller de-
termines the set of Q-states that can be achieved. The idea
is that it can use the MIMO model as a predictor to deter-
mine plausible operating points. It then defines the appropri-

ate target performance points to the interference mitigation
controller which from then on uses a dynamically adapted
linear MIMO model 1 to steer the system towards the speci-
fied operating point.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 2 3 4 5

C
P

U
 E

q
u

iv
al

e
n

t
P

e
rf

o
rm

an
ce

Workload Mix

VM1

VM2

VM3

VM4

Figure 12. QoS provided to applications with Q-states:
Some VMs experience higher Q-states than Q0 (CPU equiv-
alent performance of 50%).

Figure 12 provides the QoS levels provided by the Q-
Cloud server. We observe that the system is indeed able to
identify appropriate Q-states and achieve them. Depending
on the workload mix, the system is able to provide various
levels of QoS improvement. For example, in workload mix
five, there is significant interference between applications,
so two of them are limited to Q0 while the other two receive
Q1. On the other hand, in workload mix two there is sig-
nificant flexibility, and the system is able to provision VM1
with Q3 and the others with Q2. In general, the system is
able to leverage the predictive capabilities of the more com-

plex MIMO model 2 to find an operating point that is reach-
able without overly straining the system. Though we do not
consider the ensuing revenue generated by running at higher
Q-states, the Q-Clouds controller can allow customers to bid
with willingness to pay values and determine the optimal al-
location in terms of revenue. Here we validate the benefits
of the mechanism, and plan to further investigate its abil-
ity to enable dynamic market driven resource allocation for
clouds [5].

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5

R
e

so
u

rc
e

 U
ti

liz
at

io
n

Workload Mix

Default Resource
Utilization

Q-Clouds Resource
Utilization

Q-Clouds+Q-States
Resource Utilization

Extracting resource
efficiency

Extracting SLAs

Figure 13. Resource utilization comparisons between de-
fault systems, Q-Clouds servers, and Q-Clouds with Q-state
enabled resource efficiency optimization.

As a final result, Figure 13 summarizes the system-level
benefits of the Q-Clouds system. We observe the first step in
resource utilization where the Q-Clouds platform controller
increases resource allocations in order to meet the minimal
Q0 level of QoS. Then, based upon application defined Q-
states, the system tries to provision remaining resources to
meet higher QoS levels, while still accounting for perfor-
mance interference effects so that all other applications are
still able to meet their SLA. We observe that the use of inter-
ference mitigation control to meet Q0 levels of performance
uses up additional resources by up to 20%. In addition, em-
ploying resource efficiency control increases system utiliza-
tion by another 35%. Overall, the average Q-Cloud server
utilization is 91%. This illustrates how the combination of
Q-states and closed loop control can significantly improve
resource utilizations and efficiencies even in the presence of
performance interference effects.

6. Related Work
Performance interference effects from shared resources can
significantly impact the performance of co-located appli-
cations. Hardware extensions to enable improved resource
management of shared processor resources such as caches
have been considered extensively in previous work. For ex-
ample, hardware techniques have been designed that dy-
namically partition cache resources based upon utility met-
rics [27], or integrate novel insertion policies to pseudo-
partition caches [36]. Similarly, changes to the memory
subsystem have been developed that can help manage in-

terference effects in memory bandwidth [19]. Mechanisms
to enable improved monitoring of shared cache structures
to detect and quantify interference have been proposed as
well [38]. More sophisticated techniques build on these
monitoring schemes to enable priority driven management
of resources in hardware for improved QoS support [13].
Similar to operating system scheduling techniques for per-
formance isolation [8, 39], we approach the problem of per-
formance interference based upon existing hardware plat-
form capabilities. Moreover, with Q-Clouds, our goal is to
address multiple sources of performance interference by dy-
namically provisioning additional resources when necessary
to meet QoS objectives of virtualized applications, without
having to fully understand the details of where and how
interference is occurring. However, the availability of ad-
ditional hardware support for monitoring and actuation can
help improve both modeling and control of the overall sys-
tem, and would be invaluable for instantiations of Q-Clouds
on future generations of hardware which incorporate these
types of features.

A key benefit of virtualization is the flexibility it provides
to easily manage applications. The disassociation between
virtual and physical resources allows the management layer
to transparently adapt resource allocations [21, 25, 26]. In
addition, the integration of live migration technologies [6]
introduces the ability to adaptively allocate VMs across dis-
tributed servers. This can be used to pack VMs in a manner
that minimizes unused resources, where the allocator may
even forecast future resource needs [4, 15]. More sophisti-
cated schemes may consider the overheads and sequences
of migrations necessary to achieve a desired cluster alloca-
tion [11]. However, awareness of performance interference
effects between VMs is limited in these approaches. For ex-
ample, prior attempts to intelligently place HPC workloads
to avoid cache contention have been evaluated [31]. Ap-
proaches to predict performance interference [13, 16] can be
used in conjunction with these solutions to prescribe a prac-
tical amount of excess resources on platforms. Once work-
loads have placed onto servers, Q-Clouds performs feedback
driven control to provision resources using a MIMO model
that captures interference effects from multiple points.

Feedback control methods have been applied for resource
management in various environments. For example, con-
trollers targeted for the specific case of web server ap-
plications have been developed [1]. Other instances have
considered the use of control theoretic methods to con-
currently manage application performance and power con-
sumption [23, 34]. In the case of virtualized systems, prior
work has evaluated the use of feedback control for resource
allocation between tiers of multi-tier applications [25] to
meet SLAs, where the approach can be extended to include
multiple resources beyond just the CPU using MIMO mod-
els [26]. Recognizing the proliferation of controllers across
the system, methods to coordinate distributed controllers

have also been investigated [28]. The control techniques
used in our Q-Clouds system compliment these methods,
while specifically addressing the issue of resource manage-
ment under performance interference effects for cloud envi-
ronments.

7. Conclusions and Future Work
Cloud computing is a rapidly emerging paradigm with sig-
nificant promise to transform computing systems. Indeed,
multiple commercial solutions are beginning to provide
cloud services and resources [2, 9, 18]. Today, customers
are charged based upon resource usage or reservation. How-
ever, the performance that an application will obtain from a
given amount of resource can vary. A significant source of
variation is from performance interference effects between
virtualized applications that are consolidated onto multicore
servers. It is clear that for clouds to gain significant traction,
customers must have some guarantees that a quantity of re-
source will provide a deterministic level of performance. In
this paper we present our Q-Clouds system that is designed
to provide assurances that the performance experienced by
applications is independent of whether it is consolidated
with other workloads. Contributions of our system include
the development and use of a MIMO model that captures
interference effects to drive a closed loop resource man-
agement controller. The controller utilizes feedback from
applications to meet specified performance levels for each
VM. We build on this capability by introducing the notion
of Q-states, where applications can specify additional lev-
els of QoS beyond a minimum that they are willing to pay
for. Q-Cloud servers can make use of these states to pro-
vision idle resources dynamically, thereby improving cloud
efficiency and utilizations.

In this paper we have implemented and evaluated Q-
Cloud servers based upon interference effects between CPU
bound applications. Though this work provides a solid foun-
dation, there are multiple challenging problems that are not
addressed here which we hope to pursue in the future. First,
we plan to investigate how Q-Clouds can be extended to bet-
ter address interference in the I/O paths. As part of this, we
will need to extend the platform virtualization infrastructure
with appropriate control actuators. This will require account-
ing for evolving hardware mechanisms which improve plat-
form level I/O virtualization [7], as well as how we might
leverage exposed control and monitoring mechanisms from
existing technologies that help enable performance isolation
for storage resources that are shared amongst multiple vir-
tualized hosts [10, 33]. In evaluating these enhancements,
we would also exercise Q-Clouds with a more diverse set of
workloads.

A second direction that was not discussed in this pa-
per concerns issues around applications with phased behav-
iors. Depending upon the relative time constants between
phased behavior and the windows across which SLAs are

defined and enforced, it may be necessary to manage a sys-
tem in a phase-aware manner. In order to address this need,
we can consider if and how prior work on phase monitor-
ing and prediction can be applied to our control and mod-
eling approaches [12]. A final direction of future work in-
cludes investigating the integration of performance interfer-
ence aware control for dynamic workload placement using
live migration techniques. Here we hope to better understand
how different application mixes affect the overall benefits of
our solution, and if workload heterogeneity can be exploited
to make better use of cloud hardware under QoS constraints.

References
[1] T. Abdelzaher, K. Shin, and N. Bhatti. Performance guar-

antees for web server end-systems: A control-theoretical ap-
proach. IEEE Transactions on Parallel and Distributed Sys-
tems, 13(1), 2002.

[2] Amazon Elastic Compute Cloud. http://aws.amazon.
com/ec2.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art
of virtualization. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), 2003.

[4] N. Bobroff, A. Kochut, and K. Beaty. Dynamic placement of
virtual machines for managing sla violations. In Proceedings
of the 10th IFIP/IEEE International Symposium on Integrated
Network Management (IM), 2007.

[5] A. Byde, M. Salle, and C. Bartolini. Market-based resource
allocation for utility data centers. Technical Report HPL-
2003-188, HP Laboratories, September 2003.

[6] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield. Live migration of virtual machines.
In Proceedings of the 2nd ACM/USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI), May
2005.

[7] Y. Dong, Z. Yu, and G. Rose. Sr-iov networking in xen:
Architecture, design and implementation. In Proceedings of
the First Workshop on I/O Virtualization (WIOV), December
2008.

[8] A. Fedorova, M. Seltzer, and M. Smith. Improving perfor-
mance isolation on chip multiprocessors via an operating sys-
tem scheduler. In Proceedings of the International Confer-
ence on Parallel Architectures and Compilation Techniques
(PACT), September 2007.

[9] Google App Engine. http://code.google.com/
appengine.

[10] A. Gulati, I. Ahmad, and C. A. Waldspurger. Parda: Propor-
tional allocation of resources for distributed storage access. In
Proceedings of the USENIX Conference on File and Storage
Technologies (FAST), February 2009.

[11] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, and
J. Lawall. Entropy: a consolidation manager for clusters. In
Proceedings of the International Conference on Virtual Exe-
cution Environments (VEE), 2009.

[12] C. Isci, G. Contreras, and M. Martonosi. Live, runtime phase
monitoring and prediction on real systems with application to
dynamic power management. In Proceedings of the Interna-
tional Symposium on Microarchitecture (MICRO), December
2006.

[13] R. Iyer, R. Illikkal, O. Tickoo, L. Zhao, P. Apparao, and
D. Newell. Vm3: Measuring, modeling and managing vm
shared resources. Journal of Computer Networks, 53(17),
2009.

[14] A. Kansal, J. Liu, A. Singh, R. Nathuji, and T. Abdelzaher.
Semantic-less coordination of power management and appli-
cation performance. In Workshop on Power Aware Computing
and Systems (HotPower), October 2009.

[15] G. Khanna, K. Beaty, G. Kar, and A. Kochut. Application
performance management in virtualized server environments.
In Proceedings of the 10th IEEE/IFIP Network Operations
and Management Symposium (NOMS), 2006.

[16] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and
C. Pu. An analysis of performance interference effects in vir-
tual environments. In IEEE International Symposium on Per-
formance Analysis of Systems and Software (ISPASS), pages
200–209, April 2007.

[17] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sa-
dayappan. Gaining insights into multicore cache partition-
ing: Bridging the gap between simulation and real systems.
In Proceedings of the International Symposium on High-
Performance Computer Architecture (HPCA), 2008.

[18] Microsoft Azure Services Platform. http://www.
microsoft.com/azure.

[19] T. Moscibroda and O. Mutlu. Memory performance attacks:
Denial of memory service in multi-core systems. In Proceed-
ings of the 16th USENIX Security Symposium, 2007.

[20] D. G. Murray, G. Milos, and S. Hand. Improving xen security
through disaggregation. In Proceedings of the International
Conference on Virtual Execution Environments (VEE), 2008.

[21] R. Nathuji and K. Schwan. Virtualpower: Coordinated power
management in virtualized enterprise systems. In Proceedings
of the 21st ACM Symposium on Operating Systems Principles
(SOSP), October 2007.

[22] R. Nathuji, C. Isci, and E. Gorbatov. Exploiting platform het-
erogeneity for power efficient data centers. In Proceedings of
the IEEE International Conference on Autonomic Computing
(ICAC), June 2007.

[23] R. Nathuji, P. England, P. Sharma, and A. Singh. Feedback
driven qos-aware power budgeting for virtualized servers. In
Proceedings of the Workshop on Feedback Control Imple-
mentation and Design in Computing Systems and Networks
(FeBID), April 2009.

[24] M. Norgaard, O. Ravn, N. K. Poulsen, and L. K. Hansen. Neu-
ral Networks for Modelling and Control of Dynamic Systems.
Springer, April 2003.

[25] P. Padala, K. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
A. Merchant, and K. Salem. Adaptive control of virtualized
resources in utility computing environments. In Proceedings
of the EuroSys Conference, 2007.

[26] P. Padala, K.-Y. Hou, K. Shin, X. Zhu, M. Uysal, Z. Wang,
S. Singhal, and A. Merchant. Automated control of multiple
virtualized resources. In Proceedings of the EuroSys Confer-
ence, 2009.

[27] M. Qureshi and Y. Patt. Utility-based cache partitioning:
A low-overhead, high-performance, runtime mechanism to
partition shared caches. In Proceedings of the International
Symposium on Microarchitecture (MICRO), December 2006.

[28] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and
X. Zhu. No “power” struggles: Coordinated multi-level power
management for the data center. In Proceedings of the Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), March
2008.

[29] H. Raj, R. Nathuji, A. Singh, and P. England. Resource man-
agement for isolation enhanced cloud services. In Proceed-
ings of the Cloud Computing Security Workshop (CCSW),
2009.

[30] D. Tullsen, S. Eggers, and H. Levy. Simultaneous multithread-
ing: Maximizing on-chip parallelism. In Proceedings of the
International Symposium on Computer Architecture (ISCA),
1995.

[31] A. Verma, P. Ahuja, and A. Neogi. Power-aware dynamic
placement of hpc applications. In Proceedings of the Interna-
tional Conference on Supercomputing (ICS), 2008.

[32] VMware ESX. http://www.vmware.com/
products/esx.

[33] M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R. Ganger.
Argon: performance insulation for shared storage servers. In
Proceedings of the USENIX Conference on File and Storage
Technologies (FAST), February 2007.

[34] X. Wang and Y. Wang. Co-con: Coordinated control of power
and application performance for virtualized server clusters.
In Proceedings of the 17th IEEE International Workshop on
Quality of Service (IWQoS), Charleston, South Carolina, July
2009.

[35] Windows Server 2008 R2 Hyper-V. http://www.
microsoft.com/hyperv.

[36] Y. Xie and G. H. Loh. Pipp: Promotion/insertion pseudo-
partitioning of multi-core shared caches. In Proceedings of the
International Symposium on Computer Architecture (ISCA),
June 2009.

[37] X. Zhang, S. Dwarkadas, and K. Shen. Towards practical page
coloring-based multicore cache management. In Proceedings
of the EuroSys Conference, March 2009.

[38] L. Zhao, R. Iyer, R. Illikkal, J. Moses, S. Makineni, and
D. Newell. Cachescouts: Fine-grain monitoring of shared
caches in cmp platforms. In Proceedings of the International
Conference on Parallel Architectures and Compilation Tech-
niques (PACT), September 2007.

[39] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Address-
ing shared resource contention in multicore processors via
scheduling. In Proceedings of the International Conference on
Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS), 2010.

