
34

On the Evaluation of the Impact of Shared Resources in
Multithreaded COTS Processors in Time-Critical Environments

PETAR RADOJKOVIĆ, Barcelona Supercomputing Center
SYLVAIN GIRBAL and ARNAUD GRASSET, Thales Research and Technology
EDUARDO QUIÑONES, Barcelona Supercomputing Center
SAMI YEHIA, Thales Research and Technology
FRANCISCO J. CAZORLA, Barcelona Supercomputing Center and Spanish National Research
Council (IIIA-CSIC)

Commercial Off-The-Shelf (COTS) processors are now commonly used in real-time embedded systems. The
characteristics of these processors fulfill system requirements in terms of time-to-market, low cost, and high
performance-per-watt ratio. However, multithreaded (MT) processors are still not widely used in real-time
systems because the timing analysis is too complex. In MT processors, simultaneously-running tasks share
and compete for processor resources, so the timing analysis has to estimate the possible impact that the
inter-task interferences have on the execution time of the applications.

In this paper, we propose a method that quantifies the slowdown that simultaneously-running tasks
may experience due to collision in shared processor resources. To that end, we designed benchmarks that
stress specific processor resources and we used them to (1) estimate the upper limit of a slowdown that
simultaneously-running tasks may experience because of collision in different shared processor resources,
and (2) quantify the sensitivity of time-critical applications to collision in these resources. We used the
presented method to determine if a given MT processor is a good candidate for systems with timing require-
ments. We also present a case study in which the method is used to analyze three multithreaded architectures
exhibiting different configurations of resource sharing. Finally, we show that measuring the slowdown that
real applications experience when simultaneously-running with resource-stressing benchmarks is an impor-
tant step in measurement-based timing analysis. This information is a base for incremental verification of
MT COTS architectures.

Categories and Subject Descriptors: J.7 [Computer Applications]: Computers in other systems—Real time

General Terms: Measurement

Additional Key Words and Phrases: Multithreaded COTS processors, Resource-stressing benchmarks,
WCET, evaluation

This work was done as a part of the internship of Petar Radojković in Thales Research and Technology. The
internship was funded by HiPEAC Network of Excellence. This work was also supported by the Ministry of
Science and Innovation of Spain under contract TIN-2007-60625. The work of E. Quiñones was funded by the
Spanish Ministry of Science and Innovation under the grant Juan de la Cierva JCI2009-05455. P. Radojković
holds the FPU grant AP2008-02370 (Programa Nacional de Formación de Profesorado Universitario) of the
Ministry of Education of Spain.
Authors’ addresses: P. Radojković, E. Quiñones, and F. J. Cazorla, Barcelona Supercomputing Center, Nexus
II Building, Jordi Girona, 29, 08034 Barcelona, Spain; S. Girbal, A. Grasset, and S. Yehia, Thales Research
and Technology (France); Campus Polytechnique 1, Avenue Augustin Fresnel, 91767 Palaiseau Cedex France.
Correspondence email: petar.radojkovic@bsc.es.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1544-3566/2012/01-ART34 $10.00

DOI 10.1145/2086696.2086713 http://doi.acm.org/10.1145/2086696.2086713

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 34, Publication date: January 2012.

34:2 P. Radojković et al.

ACM Reference Format:
Radojković, P., Girbal, S., Grasset, A., Quiñones, E., Yehia, S., and Cazorla, F. J. 2012. On the evaluation
of the impact of shared resources in multithreaded COTS processors in time-critical environments. ACM
Trans. Architec. Code Optim. 8, 4, Article 34 (January 2012), 25 pages.
DOI = 10.1145/2086696.2086713 http://doi.acm.org/10.1145/2086696.2086713

1. INTRODUCTION

Commercial Off-The-Shelf (COTS) processors are increasingly being considered in the
design of real-time and mission-critical embedded systems in order to reduce the non-
recurring engineering (NRE) and time-to-market (TTM) costs [Baker 2002]. In such
systems, ensuring timing predictability and meeting deadlines are of prime importance
and therefore the analysis of the system and the target applications are essential before
deployment [Wilhelm et al. 2008]. Time predictability is, in fact, a requirement not only
in the real-time market, but also coming to be of primary importance in the mainstream
market as recognized in the HiPEAC roadmap [Duranton et al.].

Currently, the COTS processor market is moving toward multithreaded (MT)1 pro-
cessor architectures. MT COTS processors are of special interest due to their good
performance-per-watt ratio and high performance opportunities [Ungerer et al. 2010].
These architectures are particularly well suited for embedded integrated architectures
in which several functions are integrated into the same processor, such as Integrated
Modular Avionics (IMA) [Watkins and Walter 2007] in the avionics domain or Auto-
motive Open System Architecture (AUTOSAR) [AUTOSAR; Natale and Sangiovanni-
Vincentelli 2010]. In this context, MT processors can potentially schedule mixed criti-
cality workloads, i.e. workloads composed of safety-critical, mission-critical, and non-
critical applications inside the same processor, improving the hardware utilization and
so reducing cost, size, weight, and energy consumption [MERASA].

Unfortunately, despite the benefits that MT COTS processors may offer in embedded
real-time systems, particularly in integrated architectures, the time-critical market
has not yet embraced such a shift. The main challenge that MT COTS architectures
face is with predicting the impact that the collision among simultaneously-running
tasks has on execution time of time-critical tasks. The loss of predictability is ex-
plained by the fact that co-running tasks have to share the hardware resources, even
if they do not communicate with each other. When two or more tasks that share a
hardware resource try to access it at the same time, the tasks experience inter-task
interference. Inter-task interferences are handled by an arbitration mechanism, which
may affect the execution time of running tasks. As a result, it is much more difficult
to provide the worst-case execution time (WCET) estimations for applications running
on MT processors than running on single-threaded processors. Several studies show
that collision in processor resources between co-running tasks may cause significant
impact to application execution time [Doucette and Fedorova 2007; Čakarević et al.]
and therefore on WCET [Pellizzoni et al. 2010a].

Static WCET analysis computes WCET bound based on the extensive program
analysis and detailed model of the hardware [Puschner and Burns 2000]. Static WCET
analysis is currently the only approach that computes safe WCET bounds, i.e. that
guarantees that the actual execution time of the program cannot be longer than the
computed WCET bound. However, there are several reasons that make the use of
static WCET analysis difficult on real industrial programs running on MT COTS

1In this paper, we will use the term “multithreaded processor” to refer to any processor that has support for
more than one thread running at a time. Multicore, HyperThreading, Simultaneous Multithreading, Coarse-
grain Multithreading, Fine-Grain Multithreading processors, or any combination of them are multithreaded
processors.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 34, Publication date: January 2012.

Impact of Shared Resources in Multithreaded COTS Processors 34:3

Fig. 1. Measurement-based timing analysis.

architectures [Kirner et al. 2005; Kirner and Puschner 2008; Mezzetti and Vardanega
2011]. Some of these reasons are: (1) Static WCET analysis of real industrial programs
with a vast number of possible execution paths is a challenging task; (2) The implemen-
tation of accurate hardware models for new architectures requires a significant effort
and a detailed description of the hardware, which is not always available; (3) Possible
interference in shared hardware resources among tasks that simultaneously execute
on MT architectures significantly increases the complexity of timing analysis.

This has motivated studies that analyze if changes in hardware can facilitate the
effective timing analysis of real industrial programs running on MT architectures.
There have been several hardware proposals [Across; Hansson et al. 2009; Genesys;
Merasa; Pret; Tta; Predator] to ease the computation of composable WCET bounds or
WCET estimates2 of tasks running on multithreaded architectures. However, these
proposals require changes in hardware and additional features that the current MT
architectures do not have. Therefore, the industry that wants to use MT architectures
in their current real-time system designs cannot benefit from them.

A measurement-based approach for single-threaded architectures computes the
WCET estimate by multiplying the longest observed execution time (LOET) by a safety
margin, usually provided by an expert with understanding of the target hardware ar-
chitecture and the reference applications (see Figure 1) [Mezzetti and Vardanega 2011].
This method has been successfully used in the past to determine WCET estimate of ap-
plications running on single-threaded processors with a moderate difference between
the Average Case Execution Time (ACET), the LOET, and the WCET estimate. How-
ever, the method provides no analytical guarantees that the estimated WCET is safe
and it may depend significantly on the quality of the test-cases used as well as the
experience of the expert(s) who compute the safety margin. A direct extension to the
measurement-based analysis presented in Figure 1 to MT COTS processors would con-
sist of running several reference applications simultaneously on the same processor,
and monitoring the execution time for each application in the workload. However, in
the case of MT architectures, the design of test-cases and the choice of the workload has
more importance than for single-threaded processors. The effect of sharing processor
hardware resources with simultaneously running (co-running) tasks may introduce sig-
nificant variations in the execution time of applications. This can make a methodology
based on safety margins fail. In addition to this, a change of any co-running task may
affect the way that co-runners interfere, and necessitates repeating the WCET analysis

2The term, WCET bound, is used to refer to safe upper bound of program execution time that is provided
by static WCET analysis. Static WCET analysis guarantees that the execution time of a given program will
not exceed its WCET bound for all valid input configurations. WCET estimate refers to the upper bound of
program execution time that is unlikely to be exceeded. The techniques that compute WCET estimate do not
provide formal verification that program execution time does not exceed WCET estimate [Kirner et al. 2005;
Kirner and Puschner 2008].

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 34, Publication date: January 2012.

34:4 P. Radojković et al.

for all the tasks in the workload. Thus, the measurement-based timing analysis used
for single-threaded processors cannot be directly extended for MT COTS architectures.

Our study provides to the industry a systematic methodology for measurement-
based timing analysis of applications running on MT COTS architectures. The main
contributions of our study are the following.

—We show that running workloads composed of real applications may not be sufficient
to determine the slowdown that simultaneously running tasks may experience be-
cause of collision in shared processor resources. Thus, the measurement-based timing
analysis used for ST processors cannot be directly extended to MT architectures.

—We present a method to determine if a given MT processor is a good candidate for
systems with timing requirements.

—We also show that measuring the slowdown that real applications experience when
co-running with designed resource-stressing benchmarks improves measurement-
based timing analysis for MT architectures. This can be used as a base for incre-
mental verification, a key feature of integrated implementations such as IMA or
AUTOSAR.

In order to reach these objectives, we defined a set of specific resource-stressing bench-
marks that introduce a high number of interferences on each potentially shared hard-
ware resource. By using these resource-stressing benchmarks as co-runners, we obtain
a good estimation of the worst-case slowdown that real applications may experience
because of collision in shared processor resources. When a workload is composed only
of resource-stressing benchmarks, the detected slowdown is unlikely to be exceeded for
any workload composed of real applications. Therefore, the slowdown detected when
using resource-stressing benchmarks may serve as an upper estimate of the effect of
inter-task interference for a given processor.

We present several case studies in which we analyze three MT COTS architectures
with different degrees of shared resources. We show that, for a given workload com-
posed of several benchmarks, all three architecture types show low interference among
co-running tasks and stable execution times. However, our method shows that the po-
tential variation in the execution time of applications is different for each architecture
under study.

As our study targets real COTS processors, we do not suggest any hardware change in
the target architecture, but propose a way to improve the measurement-based approach
for MT COTS processors. This is one of the main differences with previous works in
the field that have suggested hardware modifications to improve architecture time
predictability.

The rest of the paper is organized as follows: In Section 2, we propose a method for
analysis of potential interference of co-running tasks in shared processor resources.
Section 3 shows details of the experimental environment and methodology used in the
study. Section 4 presents a case study in which we evaluate the suitability of three
MT COTS architectures for time-critical environments. Related work is presented in
Section 5, while Section 6 summarizes the conclusion of our study.

2. ANALYSIS OF INTER-TASK INTERFERENCES IN CURRENT MT PROCESSORS

In MT processors, the execution time of a task depends not only on the underlying
hardware and the way the task is programmed, but also on the slowdown caused by
the interference between simultaneously-running tasks. In order to provide a mean-
ingful WCET estimation for tasks running on an MT processor, it is required to take
into account the inter-task interference in shared processor resources. Several studies
[Cullmann et al. 2010; Paolieri et al. 2009a, 2009b] and projects [Across; Hansson et al.
2009; Genesys; Merasa; Pret; Tta; Predator] address this problem for safety-critical

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 34, Publication date: January 2012.

Impact of Shared Resources in Multithreaded COTS Processors 34:5

applications by introducing hardware mechanisms to define the upper bound of the
delay a task can experience due to interferences in cache memory, bus, and access to
the main memory. Unfortunately, these proposals have not yet been accepted by pro-
cessor manufactures, and it is unclear if the COTS processor market will adopt them.
Even if the hardware proposals were accepted, it would take at least five to ten years
to implement them.

The analysis of the impact of inter-task interferences to application WCET is very
complex. Without the hardware support proposed in the previously mentioned studies
and projects, using static WCET analysis for MT COTS processor running real work-
loads is infeasible in practice. As we mentioned in Section 1, another solution could be
to directly extend the measurement-based approach used for single-threaded architec-
tures, and to estimate the application’s WCET based on the longest observed execution
time within all possible workloads.

The problem with this approach is that the number of different workloads in real
systems may be large. For example, assume a task set composed of n tasks is to be
executed on a target processor able to run up to k tasks at a time, in which n > k.
Under this scenario, the number of workloads that have to be analyzed is n!

k!(n−k)! .
Moreover, any change in the workload, e.g., a shift in time at which each application
in the workload starts, would invalidate the previous analysis for all running tasks,
especially when running mixed-criticality workloads with non real-time applications.
Hence, measurement-based timing analysis considering all possible workloads is not
feasible in practice for time-critical tasks running on MT COTS processors.

In this paper, we propose a software solution to this problem. In particular, we
propose the design of resource-stressing benchmarks and a methodology for their use
to quantify possible slowdown that co-running tasks may experience because of a
collision in shared resources of MT COTS processors. The objective of the resource-
stressing benchmarks is to introduce a high-load onto each of the processor hardware
resources that the task which is under the analysis may use. Thus, the resource-
stressing benchmarks can be used to provide good estimates of the potential slowdown
that a set of simultaneously-running real applications may experience because of the
collision in shared resources of a given processor. When the methodology is used on
different MT COTS architectures, it can help to determine the suitability of each
architecture to time-critical environments. The methodology can also be used for a given
architecture to determine the potential variation in execution time that a particular
task in a workload may experience if any of the co-runners change. This information is
a key to providing incremental qualification [EMPRESS].

2.1. Worst-Interference Benchmark

When designing a resource-stressing benchmark, we would like to have the worst
possible interference benchmark. This benchmark would cause the highest possible
interference in the shared resources that are used by the application under study. In
this scenario, the slowdown of the application due to collision in processor resources
could be used to compute a safe execution time bound. It is important to note that the
worst-interference benchmark would be specific for the application under study and
the target MT processor.

Unfortunately, the design of the worst-interference benchmark is extremely difficult
or even impossible, even for a single hardware shared resource. In order to illustrate
this, we analyze the design of a benchmark that should cause the worst interference
to a given application in the shared instruction fetch unit (IFU) in an SMT processor.
In this case, we assume that the IFU is designed to fetch up to one instruction in
each cycle, and implements a least recently fetched policy, i.e. the thread that last
fetched an instruction has the lowest priority. Under this fetch policy, whenever the

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 34, Publication date: January 2012.

34:6 P. Radojković et al.

worst-interference benchmark fetches an instruction, the application under study
becomes the least recently fetched task with higher priority in the next access to the
IFU. In order to design the worst-interference IFU benchmark for a given application,
it is required to (1) Determine precise cycles in which application under study will
access IFU, (2) Determine the priority of the application in each IFU access, and
(3) Consider how the interference between the application under study and the
worst-interference benchmark and will delay any future IFU requests of both tasks.

In general, in real time systems, the design of worst-interference benchmark
requires:

—Full knowledge of the processor implementation, including resource latency, arbitra-
tion policy, etc. However, many of these hardware features of COTS processors are
not reported in the public documentation.

—Full knowledge of the application, including input data set, execution flow, resource
usage pattern, etc. However, a common practice is that applications are provided by
different suppliers (Tier 1) [Gereffi 1999], making it difficult to have full knowledge
about all applications.

—The worst interference benchmark should stress all resources used by the application
under study, needing to be perfectly aligned in the access to each of shared resources
used by the application. Any misalignment between worst-interference benchmark
and application under study can significantly reduce the impact of resource sharing.

All these requirements make the design of worst interference benchmarks infeasible
in practice.

2.2. Resource-Stressing Benchmarks

A key design choice in our resource-stressing benchmarks is how to stress shared
processor resources. (1) We can design benchmarks that specifically stress a single
resource by putting a high load on it. For example, to stress the instruction fetch unit,
we could design a benchmark that fetches an instruction in each cycle. The downside of
this solution is that only one resource can be stressed at a time. (2) Alternatively, we can
design benchmarks that stress several resources at a time. For example, a benchmark
can comprise different instructions that access different resources. The downside of
this solution is that the stress in each resource decreases as several resources are
stressed simultaneously.

In architectures with two cores or hardware contexts, in which we can only run
the application under study and one resource-stressing benchmark at a time, it is
unclear which of the two approaches better show the sensitivity of applications to
hardware resource sharing. However, as the number of cores or contexts increases,
the methodology that uses benchmarks that stress a single hardware resource scales
very well. Under that methodology, we can reserve 1 out of the N cores (or hardware
contexts) to run the application under study on, and use the remaining N-1 to run
different combinations of stressing benchmarks, each stressing a given resource. This
improves the obtained slowdown as with several cores or hardware contexts we can
observe the execution of the application under different resource-stressing conditions.
In Section 4.4, we show a case study in which we use this feature of the methodology.

We start benchmark design by identifying common levels in the hardware resources
shared in MT COTS processors. This allows the creation of a set of benchmarks that
stress those particular resources. In particular, we identify three resource sharing
levels.

(1) Intra-core resources include: (1.1) Front end of the pipeline; (1.2) Back end of
the pipeline: Integer and Floating Point (FP) execution units; (1.3) The L1 data cache;
(1.4) The L1 instruction cache.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 34, Publication date: January 2012.

Impact of Shared Resources in Multithreaded COTS Processors 34:7

(2) Inter-core resources such as the L2 cache memory (the last level of cache memory).
(3) Interface to off-chip resources such as the bandwidth to the main memory.
Although these levels of shared resources are common in MT COTS processors, the

effect in time (delay) that the interference in each of these resources causes, depends
on the particular processor. To measure that delay, for each level of shared resources,
we designed at least one resource-stressing benchmark as described next.

(1.1) Front end of the pipeline. In order to stress front end of the pipeline, mainly the
instruction fetch unit and the decode unit, we designed a benchmark that executes a
series of nop instructions. The nop instruction is a low latency instruction that puts
significant stress to the front end of the pipeline and negligibly stresses rest of the
processor resources.

(1.2) Back end of the pipeline (Integer and FP execution units): In state-of-the-art pro-
cessors, different integer and FP instruction may execute in different execution units
and may have different behavior (e.g. may be pipelined or non-pipelined). To cover the
different cases of possible interference, we design six benchmarks for stressing integer
and FP execution units. intAdd, intMul, and intDiv benchmarks consist of a sequence
of integer addition, multiplication, and division instruction, respectively. fpAdd, fpMul,
and fpDiv benchmarks execute a serial of floating point addition, multiplication, and
division instructions, respectively.

(1.3) The L1 dcache benchmark consists of a sequence of load instructions that access
different cache lines of the L1 data cache. The size of the array that the benchmark
traverses is the same as the size of the L1 data cache. Therefore, when the L1 dcache
benchmark executes in isolation, most of the loads hit in the L1 data cache. However,
when L1 dcache cache is scheduled with a co-runner that uses L1 cache, the data
sets of both benchmarks do not fit in the cache, which causes L1 misses and longer
execution time.

(1.4) The L1 icache benchmark consists of a sequence of jump instructions that access
different cache lines in the instruction cache. The size of the code is equal to the size of
the instruction cache.

(2) The L2 benchmark is designed using the same principle as L1 dcache benchmark.
The only difference is that the size of the array that the benchmark traverses is equal
to the L2 cache size.

(3) Interface to off-chip resources (Memory bandwidth). One of the factors which has
a significant impact on the applications performance is access to the off-chip resources.
The mem bw benchmark is a resource-stressing benchmark that has the same structure
as L1 dcache or L2 benchmark (a sequence of load instructions that traverse the array).
Since the purpose of the benchmark is to stress the bandwidth to memory, but not to
cause any collision in the main memory, the size of the array that the benchmark
traverses has to be chosen to cause misses in the last level of cache, but not to cause
page faults in the main memory. For the configurations we test in this study, the size
of the mem bw array is four times larger than the size of the last level of cache.

The set of resource-stressing benchmarks we present in this paper can be easily
extended to stress execution units and I/O interfaces of different processors. For each
architecture under study, the user should determine the set of shared resources in
which co-running tasks may collide and design resource-stressing benchmarks for
each of them.

2.3. Implementation

The framework for automatic execution of the experiments and for processing of the
results is implemented in C programming language using POSIX threads [Butenhof
1997]. The real-time and resource stressing benchmark that are used in each experi-
ment are read from the input file defined by the user.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 34, Publication date: January 2012.

34:8 P. Radojković et al.

Table I. Structure of intAdd Resource-Stressing Benchmark

Line Source code Explanation
001 movl %1, %ecx initialize loop counter ecx (%1 is an input parameter)
002 label intAdd: beginning of the loop
003 add %eax, %ebx target instruction
004 add %ebx, %eax target instruction

...

...
252 add %ebx, %eax target instruction
253 decl %ecx decrement loop counter
254 cmp %ecx, $0 compare loop counter with 0
255 jne label intAdd if (counter != 0) jump to the beginning of the loop

The core of our framework consists of benchmarks that stress specific processor
resources. Each resource-stressing benchmark is defined in the function that is included
in the framework. The benchmark functions are implemented directly in assembly of
the target processor in order to: (1) Provide the programmer with the maximum control
over the instructions that are to be executed, and (2) Prevent a compiler from applying
any optimization that changes the core of the benchmarks. The assembly functions are
inlined in a C code in order to avoid the overhead of the function call.

All the resource-stressing benchmarks are designed using the same principle that is
presented in Table I. Each benchmark is comprised of three parts: (1) The register used
as a loop iteration counter (ecx) is initialized to the value of the input parameter (line
001). The initial value of ecx determines the number of loop iterations and the duration
of the benchmark. (2) The main part of the benchmark is a sequence of instructions of
target type (lines from 003 to 252). The add instruction is changed by the corresponding
target instruction in each of the resource stressing benchmarks: nop instruction3 in the
case of the nop benchmark, integer multiplication in the case of the intMul benchmark,
etc. (3) Finally, the sequence of target instructions is followed with the decrement of
the loop counter register (line 253), comparison of the counter value with zero (line
254), and a conditional branch to the beginning of the loop (line 255). The overhead of
the loop and the calling code is very low - more than 99% of the instructions targets
the specific resource we want to stress.

An overview of the benchmarks that stress the cache memory and the memory
bandwidth is shown in Figure 2. The benchmarks are implemented using the concept
of pointer chasing. In the benchmark initialization, which is done in the C code, we
allocate a contiguous section of memory and initialize it in such a way that a given
array element contains the address of the next array element (memory location) that
we want to access, see Figure 2(a). The benchmarks are initialized to (1) Traverse the
whole array, and (2) Access different cache lines in each memory access. An example of
a benchmark memory access pattern is shown in Figure 2(b). Finally, Figure 2(c) shows
the assembly code that stresses the memory subsystem. First, the register used as a
loop iteration counter (ecx) is initialized to the value of the input parameter (line 001).
The initial address of the array is passed to the assembly code as an input parameter
(line 002). The main part of the benchmark (lines from 004 to 253) is a sequence of

3In the current version of the nop resource-stressing benchmark, we use one-byte nop instruction which is an
alias mnemonic for the XCHG (E)AX, (E)AX instruction in Intel architectures. This instruction performs no
operation and does not impact machine context, except for the instruction pointer register [Intel Corporation
2011]. The same effect could be achieved by using multi-byte nop in processors that have a support for this
instruction [Intel Corporation 2011]. As a part of future work, we plan to analyze whether using more complex
opcodes would put higher stress to the decode unit and cause higher collision among simultaneously-running
tasks that share this processor resource.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 34, Publication date: January 2012.

Impact of Shared Resources in Multithreaded COTS Processors 34:9

Fig. 2. Overview of the memory stressing benchmarks.

indirect load instructions (mov(%eax), %eax) that follow the memory access pattern
specified in the initialization.

In order to design the L1 icache benchmark, we used a sequence of unconditional
jump instructions that point to different labels (jump destinations). The code is de-
signed in such a way that, at run-time, the benchmark (1) Traverses the whole instruc-
tion cache, and (2) Accesses different cache lines in each jump instruction.

We analyzed not only the functionality of the resource-stressing benchmarks, but
also their portability to different processors with different cache organization or dif-
ferent ISA. By setting the values of parameters array size and stride to proper values
(see Figure 2(a)), a user can easily adjust the memory stressing benchmarks to stress
different parts of the memory subsystem of different architectures. The stressing as-
sembly code of the L1 icache benchmark is automatically generated. In order to adjust
the L1 icache benchmark to stress instruction caches with different size and organiza-
tion, the user only has to specify the desired size of the stressing code and the stride
between consecutive jump instructions (i.e. the stride between consecutive accesses to
instruction cache). The resource stressing benchmarks are implemented in x86 ISA. In
order to port benchmarks to architectures with different ISA, e.g. POWER or SPARC,
the programmer only needs to change the x86 instructions in the assembly stressing
code with the corresponding instructions of the target ISA. The assembly stressing

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 34, Publication date: January 2012.

34:10 P. Radojković et al.

code of the benchmarks is very simple, see Table I and Figure 2(c), thus a little effort
is required to port this code to architectures with different ISAs. As a part of future
work, we plan to develop a tool that automatically generates the resource-stressing
benchmarks for different architectures based on the architecture’s ISA and a brief de-
scription of the hardware resources (e.g. the size and the organization of shared cache
memory).

2.4. Using the Resource-Stressing Benchmarks

We used the resource-stressing benchmarks to: (1) Estimate the upper limit of a slow-
down that co-running tasks may experience because of collision in different shared
resources of a processor. This slowdown can be used to determine if a given MT pro-
cessor is suitable for a time-critical environment; (2) Quantify the possible impact
of inter-task interference to the execution time of an application. This improves the
WCET estimation for applications that execute in MT COTS processors.

2.4.1. Worst-Case Slowdown in Shared Processor Resources. In order to quantify the slow-
down that an application may experience due to collision in the different shared re-
sources of a given MT COTS processor, we deploy our resource-stressing benchmark
in the following way. First, we measure the execution time of each resource-stressing
benchmark when it runs in isolation (ETisolation). Second, we measure the execution
time when several resource-stressing benchmarks run concurrently (ETMT). In order
to quantify the interference in processor resources, we compute the slowdown or nor-
malized execution time as the relative difference between the benchmark execution
time when it shares processor resources with other co-running benchmarks and when
it runs in isolation: slowdown = ETMT /ETisolation. As resource-stressing benchmarks
put high load on different hardware resources of a processor, the computed slowdown
presents a good estimation of the worst-case slowdown that real applications may
experience because of collision in these resources. Understanding the slowdown that
co-runners may experience because of collision in shared resources can be used to define
the suitability of a processor for a time-critical environment.

—When co-runners experience a significant slowdown due to resource sharing, this
shows a potentially high variation in execution time of applications running on the
processor. This means that the processor is not a good candidate for systems that
have timing requirements.

—When co-runners experience a low slowdown due to resource sharing, it means that
the processor is suitable for running time-critical applications. Low variation in
execution time would allow accurate timing analysis for applications running on
these architectures even if the set of co-runners change.

2.4.2. WCET Estimation for Real Applications. In order to provide a meaningful WCET
estimate of real applications running on a given MT COTS processor, it is important
to quantify the slowdown that applications may experience due to collision in shared
processor resources. Resource-stressing benchmarks can be used to measure this slow-
down. In order to quantify a slowdown due to inter-task interferences in shared pro-
cessor resources, we deploy our resource-stressing benchmark in the following way. We
measure the execution time of a real application when it runs in isolation (ETisolation)
and when it simultaneously executes with different resource-stressing benchmarks
(ETRS[i]). The sensitivity of the application to sharing a given resource X of the proces-
sor is computed as sensitivity[X] = ETRS[X]/ETisolation, where ETRS[X] is the execution
time of the application when co-running with a resource-stressing benchmark that
targets resource X.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 34, Publication date: January 2012.

Impact of Shared Resources in Multithreaded COTS Processors 34:11

The sensitivity of an application running on a given processor is computed as the
maximum value of sensitivity for all analyzed processor resources. If this sensitivity
low, the application is not sensitive to the resource sharing on a given processor. This
may be because the application does not stress shared processor resources. If the
application experiences a significant slowdown when it executes with a benchmark
stressing a given processor resource, the application will show a high sensitivity to that
resource. Collision in that hardware resource is a potential source of high execution
time variation that the application may experience.

In processors with more than two virtual CPUs (i.e. cores or hardware contexts), we
can run the real application under study and several resource-stressing benchmarks at
a time. These experiments combine the effect of the interferences in different resources,
which may increase a measured slowdown and improve the WCET estimation. We ex-
pect that this methodology will show even better results in future MT COTS processors
in which the number of cores and hardware contexts will increase.

3. EXPERIMENTAL ENVIRONMENT

In this section, we present the experimental environment used in the case study. We
describe the different MT COTS processors, real benchmarks, and the methodology
used in the experiments.

3.1. Hardware Environment

In this paper, we present a methodology that can be used to analyze how collision in
shared processor resources can impact on the execution time of an application running
on MT architectures. Still, in order to determine if a given processor is suitable for
embedded real-time systems, it is important to consider several characteristics such
as performance, energy consumption, dissipation, etc. The processors we used in the
case studies are not necessarily the type of MT COTS processors used in embedded
real-time systems because they do not necessarily meet those requirements. However,
the processors used exhibit several configurations of resource sharing that allow us to
show the application of our methodology for different types of target architectures. The
three MT COTS processors considered in this study are the following.

(1) Atom Z530 [Atom Z530 2009] is a HyperThreading processor. The schematic view
of the processor is shown on in Figure 3(a). Atom Z530 has one core that supports
the simultaneous execution of two tasks (two software threads). Most of the processor
resources are shared among co-running tasks: from the front-end of the pipeline to
the memory bandwidth. The platform based on the Atom processor contains 500MB of
main memory.

(2) The Pentium D processor [Pentium 2007] contains two cores, and each of them
can execute only one task at a time, see Figure 3(b). The front end of the pipeline,
integer and FP execution units, L1 data, instruction, and L2 caches are private to each
core. Simultaneously-running tasks on this processor can only collide in the bandwidth
to the main memory. Platform based on Pentium D processor contains 2GB of main
memory.

(3) The Core2Quad processor [Core2Quad] that we use in the study (Q9550) contains
four cores, and each of them can execute only one task at a time, see Figure 3(c). The
front end of the pipeline, integer and FP execution units, L1 data and instruction caches,
are private to each core. The L2 cache memory has two partitions. Each partition is
shared by tasks running on two cores: Partition 1 is shared by tasks running on Core 0
and Core 1, while partition 2 is shared among Core 2 and Core 3. This means that
the distribution of simultaneously-running tasks on the processor determines if tasks
share the L2 cache.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 34, Publication date: January 2012.

34:12 P. Radojković et al.

Fig. 3. Schematic view of the processors used in the study.

In order to evaluate all the possible scenarios, we run two sets of experiments for the
Core2Quad processor: (1) Reference and stressing benchmarks are bound to Core 0 and
Core 1, while no benchmarks are running on cores 2 and 3 (RS-nn). In this distribution,
reference and stressing benchmarks share the L2 cache. (2) A reference benchmark
is bound to Core 0, while no benchmark is running on Core 1, and two stressing
benchmarks are running on Core 2 and Core 3 (Rn-SS distribution). In this distribution,
reference and stressing benchmarks do not share L2 cache. Finally, on the Core2Quad
processor, the bandwidth of the main memory is shared among all simultaneously
running tasks. The platform based on the Core2Quad processor contains 4GB of main
memory.

As mentioned in Section 2, when a processor contains more than two cores of hard-
ware contexts, we can run several combinations of resource-stressing benchmarks in
order to improve the worst-case slowdown obtained by our methodology. In the case of
the Core2Quad processor, we will bind the benchmark under study to Core 0, and run
all possible combinations of L2 and mem bw benchmarks in Core 1, Core 2, and Core 3.

3.2. Benchmarks

In addition to the set of resource-stressing benchmarks presented in Section 2, we used
the following benchmarks to evaluate the proposed methodology.

STAP Radar. Space Time Adaptive Processing (STAP) Radar is a mission-critical
application developed by Thales Research & Technology [Chevalier and Maria 2006].
The application is a simplified view of a moving target indication application, whose
goal is to receive the echo of a periodic sequence of radar pulses and to detect the
objects that are moving on the ground. The main characteristics of the applications
are the following. First, a large part of the application is data-flow, manipulating
multidimensional arrays of data. Second, data reordering (switching dimensions of
arrays) is often needed. Third, the processing chain uses different operators, with

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 34, Publication date: January 2012.

Impact of Shared Resources in Multithreaded COTS Processors 34:13

different specific needs in terms of precision and dynamic range. And, fourth, real-time
performance is one of the key requirements, both in terms of computation throughput
and latency.

CoreMark [CoreMark] is a benchmark developed by the Embedded Microproces-
sor Benchmark Consortium (EEMBC) [Eembc] and is designed specifically to test the
functionality of a processor core. The EEMBC CoreMark suite contains three types
of functionality that are representative of real-time environments: (1) Matrix-related
functionality: Matrix multiplications, matrix addition, addition of a constant to a ma-
trix; (2) Linked list management operations: Operations like insert, remove, or find the
element in the linked list; (3) Finite State Machine (automata) operations. In each run,
CoreMark benchmark executes all three sets of functions.

H264 Encode is a benchmark included in MediaBench II suite [Fritts et al.]. The
benchmark encodes videos using H.264 compression standard. This compression stan-
dard is widely used for recording, compression, and distribution of high definition video.
H264 encode is a good representative of soft real-time applications. In addition to this,
video encoding using H.264 standard is used for video streaming in high-performance
mission-critical networks [Andritsopoulos et al. 2007; Detti et al. 2010; Higgins 2004].

3.3. Experimental Methodology

The experiments were designed in such a way as to provide reliable results and min-
imize the impact of the operating system processes. Each experiment was repeated
50 times and each time we measured the execution time of the application under study.
As our study addresses timing predictability and timing bounds of applications, we re-
ported and analyzed the Longest Observed Execution Time (LOET) in 50 repetitions.
We measured the execution time of an experiment by reading the time stamp counter
(rdtsc). The time stamp counter is a 64-bit register that counts the number of ticks since
reset on x86 processors. We accessed the counter register using the macro written in
x86 assembly that is included in the experimental framework. This way, we avoided
any system call for measuring time.

As the experiments were executed on a full-fledged Linux operating system (OS),
we paid special attention to minimizing the impact of the OS to our measurements
[Gioiosa et al. 2003; Petrini et al. 2003; Radojković et al. 2008]. To avoid task migration
among different cores (virtual CPUs, hardware contexts, strands) of a processor, we
bound each benchmark to the corresponding core using the sched setaffinity system
call.

In order to quantify the impact of the OS processes on the platforms used in the
study, we repeated each benchmark in isolation for 10,000 times and measured the
impact of OS processes to the execution time of the benchmark. Our results show that
the impact of interference with the OS processes to variation of benchmark execution
time is below 1%.

4. EVALUATION

In this section, we show how the proposed methodology can be applied to determine
the suitability of the three MT COTS architectures presented in the previous section
for time-critical environments. This scenario is relevant when companies have to de-
termine which MT COTS architectures are good candidates to be used in their future
time-critical system. After using our methodology to select a subset of processors with
appropriate distribution and characteristics of shared resources, the company can do a
detailed analysis of each of the selected processors to provide stronger guarantees that
it meets the requirements of the system.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 34, Publication date: January 2012.

34:14 P. Radojković et al.

4.1. Potential Execution Time Variation

We start by analyzing the potential slowdown that applications may experience because
of the collision in shared processor resources. To that end, we run all resource-stressing
benchmarks in isolation and in different workloads. By observing the slowdown of
the benchmarks, we can quantify the potential slowdown a real application would
experience due to resource sharing. The results are presented in Table II. Each entry of
the table shows the slowdown that the benchmark under study (listed in the rows of the
table) experiences when it is simultaneously executed with the stressing benchmarks
(columns).

Atom Processor. When running on the Atom processor, all benchmarks in our
resource-stressing benchmark suite have a co-runner that makes them experience
significant slowdown, see Table II(a). In most of the experiments, the benchmark un-
der study experiences the highest slowdown when it is simultaneously executed with
one more instance of the same resource-stressing benchmark. We also observe that,
in general, the detected slowdown is quite high (up to 15.3×) and that the variation
of the slowdown for different benchmarks is also very high. The slowdown due to the
sharing of pipeline resources is less than 2x. When co-running tasks collide in the cache
memory, the slowdown is higher and it ranges up to 6.2×, 2.7×, 14.1×, and 15.3× due
to collision in the L1 data cache, instruction cache, L2 cache, and memory bandwidth,
respectively. The mem bw stressing benchmark stresses memory bandwidth through
shared L2 cache. Hence, the slowdown that the benchmark under study experiences
when it is co-scheduled with mem bw stressing benchmark is the consequence of cu-
mulative collision in the L2 cache and the memory bandwidth.

As applications running on Atom processor may experience a significant slowdown
because of interference in several resources, it is very difficult to estimate WCET of
concurrently running time-critical tasks. Therefore, we conclude that the hyperthread-
ing feature in the Atom processor should be avoided in time-critical environments that
require predictability of application execution time. Disabling hyperthreading would
lead to a more predictable execution time of the applications. However, this would make
Atom a single-threaded processor that would defy all performance improvements of MT
architectures.

Pentium D Processor. The results for the Pentium D processor are presented in
Table II(b). We do not detect any slowdown because of the collision in execution
pipeline resources (front-end of the pipeline, integer and FP execution units) or L1
data and instruction caches. These resources are private to each core, and, therefore,
not shared among co-running tasks. Simultaneously-running applications only share
the memory bandwidth. The slowdown we detect when the two mem bw benchmarks
simultaneously execute is very low, only 30%. We also detect interference between L2
and mem bw benchmarks (10% slowdown). This is due to the fact that the L2 bench-
mark traverses an array whose size is equal to the size of the L2 cache. Although we
try to access the whole cache equally, the replacement policy may put a higher stress on
some sets. This causes the L2 benchmark to experience some L2 misses. The memory
accesses that miss in the L2 cache collide with mem bw in the memory bandwidth.

To sum up, the potential slowdown because of inter-task interference on Pentium D
processor is fairly low (around 30%). In addition to this, the co-running tasks do not
interfere in most of the processor resources. Thus, it is much easier to estimate WCET
of co-running time-critical tasks. We conclude that the architectures like Pentium D
are good candidates to be used in time-critical environments that require predictability
of application execution time.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 34, Publication date: January 2012.

Impact of Shared Resources in Multithreaded COTS Processors 34:15

Table II. Possible Slowdown Because of the Collision in Processor Resources

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 34, Publication date: January 2012.

34:16 P. Radojković et al.

Core2Quad Processor. The Core2Quad processor has two levels of resource shar-
ing [Čakarević et al. 2009], see Figure 3(c). In order to cover all possible scenarios,
we analyzed the two benchmark distributions for the Core2Quad processor: (1) RS-nn,
when the benchmark under study and the stressing benchmark share L2 cache, and
(2) Rn-SS when the benchmark under study and stressing benchmarks do not share
L2 cache, but only the memory bandwidth.

Results for the RS-nn distribution are presented in Table II(c). We detect a significant
slowdown when the two benchmarks collide in the L2 cache. The L2 resource-stressing
benchmark experiences a slowdown of 14.4x when co-running with one more instance
of L2 or mem bw benchmark. In addition to this, we detect a 10% slowdown because of
collision in memory bandwidth.

Results for the distribution in which the benchmark under study does not share the
L2 cache with stressing co-runners are presented in Table II(d). As for the Pentium D
processor, we detect only a low interference in the memory bandwidth (30% slowdown).
In addition to interference between mem bw benchmarks, we also detect a slowdown
when reference mem bw is co-scheduled with two instances of the L2 benchmark.
When two stressing L2 benchmarks share the L2 cache, they experience a lot of L2
cache misses that access the main memory and stress memory bandwidth, as the
majority of the instructions miss in L2 cache. Therefore, although the L2 benchmark
is not designed to stress bandwidth to the main memory, the two benchmark instances
that share L2 cache are very bad co-runners for applications using memory bandwidth.

From the analysis of the Core2Quad processor, we see that the potential slowdown
that the application experiences because of collision in processor resources with the
co-running tasks also depends on the distribution of running benchmarks. When the
two running benchmarks share L2 cache, they can experience a significant slowdown
because of the collision in this resource. However, if the benchmarks are distributed
in such a way that they share only the memory bandwidth, the slowdown we detect
is low, around 30%. Therefore, architectures similar to Core2Quad processor are good
candidates for systems with timing requirements, as long as time-critical applications
do not share the L2 cache memory with co-running tasks.

4.2. Application Sensitivity to Resource Sharing

The results presented in the previous section show that applications simultaneously-
running on a processor may experience high variations in execution time because of
collision in shared processor resources.

Unlike stressing benchmarks, real applications do not use a single resource during
their entire execution, but have different phases in which they use different resources.
The usage patterns determine the actual effect that resource sharing has on the ap-
plications’ execution time. In order to understand which resources are stressed by
real applications, we execute them simultaneously with the resource-stressing bench-
marks. We define the sensitivity of an application to a specific processor resource as the
slowdown that the application experiences when it is co-scheduled with corresponding
resource-stressing benchmark.

The results presented in Table III show the sensitivity of applications to resource
sharing. Each entry of the table shows the slowdown that the real benchmark, whose
sensitivity we measure (listed in the rows of the table), experiences when it is simul-
taneously executed with different resource-stressing benchmarks (columns).

Atom. The results for the Atom processor are presented in Table III(a). We reach
two conclusions: (1) All real benchmarks presented are sensitive to sharing most of
the processor resources, and (2) The slowdown experienced by real applications when
co-running with resource-stressing benchmarks is up to 22% for STAP Radar, 47% for

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 34, Publication date: January 2012.

Impact of Shared Resources in Multithreaded COTS Processors 34:17

Table III. Sensitivity of the Real Benchmarks to a Collision in Processor Resources

H264 encode, and up to 18% for the CoreMark benchmark. This is significantly lower
than the slowdown we detect for resource-stressing benchmarks (see Table II(a)).
This means that, although the underlying architecture has a strong potential to lead
to high variation in the execution time of running applications, the particular real
benchmarks that we used do not experience a significant slowdown.

Pentium D. The results for the Pentium D processor are presented in Table III(b).
Real benchmarks running on the Pentium D are only sensitive to sharing the memory
bandwidth. The slowdown that the real benchmarks experience is still lower than the
slowdown of resource-stressing benchmarks (see Table II(b)), but the difference is low,
below 30%.

Core2Quad. The results for the Core2Quad processor and the task distribution in
which reference and stressing benchmarks share the L2 cache are presented in Ta-
ble III(c). We detect no slowdown for the STAP Radar benchmark, and a very low
slowdown (below 2%) when H264 encode and CoreMark are executed with L2 and
mem bw co-runners. This means that the processor has the potential for significant
slowdown because of a collision in the shared L2 cache, but that the given set of bench-
marks is insensitive to this resource. However, if the target applications change, the
possible variation in the execution time due to interference in L2 cache is high.

We repeat the experiments on the Core2Quad processor for the distribution in which
real applications and resource-stressing benchmarks do not share the L2 cache, see

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 34, Publication date: January 2012.

34:18 P. Radojković et al.

Table III(d). We detect a very low slowdown (around 1%) when STAP Radar and
H264 encode simultaneously execute with mem bw stressing benchmark. Again, the
slowdown that the real benchmarks experience is lower than the slowdown of resource-
stressing benchmarks (see Table II(d)).

One conclusion we reach from the presented results is that the real benchmarks we
use in the study show low sensitivity to resource sharing. The other way to under-
stand the results is that the applications under study are under-utilizing some of the
processor resources (e.g. the L2 cache), so a less aggressive processor could be used to
provide similar performance. It is important to note that these conclusions apply to
the benchmarks and processors we analyze in the study and not to the methodology
we propose in the paper. The same methodology applied to different real benchmarks
or processors could reach different conclusions.

4.3. WCET Estimation

In order to reduce costs, current and future real-time systems follow an integrated
approach in which more functionality is executed on the same hardware. This requires
hardware that provides higher performance, and that enables incremental timing ver-
ification. Incremental timing verification means that a user does not have to verify the
timing behavior of all running applications each time a new component (application)
is changed or added to the system [EMPRESS]. In that sense, the system is time com-
posable if the WCET estimate of the tasks do not change if any of the tasks in the
workload change. In this section, we show how our methodology helps with providing
composable WCET estimations.

When directly extending the the standard measurement-based approach (used in
single-threaded processors) to MT architectures, the application under study should be
executed with different sets of co-running tasks (in different workloads). The longest
observed execution time of the application in any workload would then be used to
estimate the WCET. We show that this approach does not properly quantify the im-
pact of inter-task interaction to application execution time, and that can lead to an
underestimation of WCET.

In the standard measurement-based analysis (classical approach) the application
under study is executed in different workloads. In our case, as we analyze three real
benchmarks, we can run all possible workloads. In Table IV, we present the slowdown
that the benchmarks under study (listed in the rows of the table) experience when
they execute with different stressing benchmarks (columns). In the last column of the
table (our approach), we also present the slowdown of the benchmark that is computed
by measuring benchmark sensitivity to inter-task interference in shared processor
resources. This is the maximum slowdown that the benchmark experiences when it is
co-scheduled with different resource stressing benchmarks (see Section 2.4.2).

Atom. The results for the Atom processor are presented in Table IV(a). For all three
benchmarks, STAP Radar, H264 encode, and CoreMark, the maximum slowdown de-
tected using the classical approach is exceeded in experiments with resource-stressing
benchmarks. The difference between the slowdown measured by the classical approach
and the slowdown measured using our methodology ranges up to 14% (CoreMark
benchmark).

Pentium D. The results for the Pentium D processor are presented in Table IV(b).
In this case, we detected no slowdown when pairs of real benchmarks executed on
the processor. However, when we execute STAP Radar, H264 encode, and CoreMark
with resource stressing benchmarks, we detected a slowdown of up to 2%, 4%, and
3%, respectively. Again, the maximum slowdown detected when using the classical
approach was exceeded in experiments with resource-stressing benchmarks.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 34, Publication date: January 2012.

Impact of Shared Resources in Multithreaded COTS Processors 34:19

Table IV. Comparison of Classical Measurement-Based Timing Analysis
and Our Approach

Core2Quad. The results for the Core2Quad processor are presented in Tables IV(c)
and (d). In both task distribution, RS-nn and Rn-SS, we detect no slowdown when
workloads composed of real benchmarks execute on the processor. When H264 encode
and CoreMark share the L2 cache with resource stressing benchmarks (see Table IV(c))
we detect slowdown of 2% and 1%, respectively. When STAP Radar and H264 encode
share memory bandwidth with stressing benchmarks, the detected slowdown is 1%,
see Table IV(d).

Real applications have different phases in which they stress different processor
resources. Also, the stress that real applications put on each processor resource is not
the highest possible stress of that resource. Therefore, experiments in which several
real applications simultaneously execute on the processor are unlikely to capture the
worst possible inter-task interference. Resource stressing benchmarks put high stress
on specific processor resources. Running real applications with resource stressing
benchmarks will detect inter-task interference in shared processor resources and
properly quantify the impact of this interference on execution time. To summarize,
measuring the interference between real applications and resource stressing bench-
marks can significantly improve measurement-based methods for estimation of WCET
in MT COTS processors.

As we explained in Section 2.1, the design of a worst-stressing benchmark is infea-
sible in practice. As a part of future work, we plan to understand how the sensitivity

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 34, Publication date: January 2012.

34:20 P. Radojković et al.

Table V. The Timing Analysis of the Core2Quad Processor: The Improvement of
the Mixed Stressing Workload

of real applications to collision in different processor resources independently can be
combined to estimate the worst possible slowdown that the application may experience
because of interference with tasks co-running on the MT COTS processor. This value
could be used to compute a good estimate of the application WCET independently from
the set of co-running tasks.

4.4. Mixed Stressing Workloads

When the analyzed MT COTS processor comprises more than two cores or hard-
ware contexts, the application under study can be co-scheduled with different sets
of resource-stressing benchmarks. In these experiments, the slowdown that an appli-
cation experiences is a combination of collision in different processor resources, so this
approach improves the estimation of application worst case slowdown.

In our study, Core2Quad is the only processor that supports simultaneous execution
of more than two tasks. In order to test mixed criticality stressing workloads, we
execute real benchmarks with homogeneous stressing workloads (three instances
of L2 or mem bw benchmark) and with workloads that combine L2 and mem bw
benchmarks. In these experiments, we use only L2 and mem bw because they are
the only benchmarks that stress shared resources of the Core2Quad processor (see
Table II). The results of the experiments with mixed stressing workloads are presented
in Table V. Each entry of the table shows the slowdown that the benchmark under
study (listed in the rows of the table) experiences when it is simultaneously executed
with different stressing workloads (columns). For two out of three real benchmarks
under study, H264 encode and CoreMark, the slowdown caused by mixed stressing
workload exceeds the highest slowdown of homogeneous workloads.

Overall, we show that running workloads composed of real applications may not
be sufficient to determine which processor is a better candidate to be used in time-
critical environments. In addition to analyzing the measured slowdown experienced by
a given set of applications, it is also important to understand the potential slowdown
that simultaneously-running applications can experience because of collision in shared
resources. We show that the slowdown that applications experience because of collision
in shared resources may be low if the applications are insensitive to these resources,
even if the potential slowdown is very high.

4.5. Additional Considerations

System Level Timing Analysis. Once the presented methodology is used to quantify
the slowdown that an application may experience due to inter-task interferences and
WCET of the application is estimated, it is necessary to consider system level issues
such as sharing of OS services, process preemption, context switching cost, or task
scheduling, and to do a response time analysis. The impact of system level issues

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 34, Publication date: January 2012.

Impact of Shared Resources in Multithreaded COTS Processors 34:21

on an application WCET, and the response time analysis are out of the scope of the
presented study.

Hybrid WCET Analysis. Several studies propose hybrid WCET analysis as a method
for the timing analysis of real-time systems. Hybrid WCET analysis is the combination
of static program analysis and the measurement-based techniques [Kirner et al. 2004;
Deverge and Puaut 2005; Schaefer et al. 2006; Wenzel et al. 2008]. First, the hybrid
WCET analysis statically analyzes the application code. As the analysis of all possible
execution paths of real industrial programs is complex or even infeasible, hybrid WCET
analysis divides the program into mutually exclusive segments and analyzes each
segment separately. For each program segment, the analysis determines the different
possible execution paths of the program and generates sets of input data that force the
execution of each path. Later, the program is executed on real hardware for different
input data sets provided by static analysis. For each set of input data, the user measures
the execution time of the corresponding segment of the code. Finally, the WCET of
the whole program is computed based on the measured execution time of different
program segments. In hybrid WCET analysis, the measurements are performed on
real hardware, so a detailed model of the architecture under study is not required. This
is its main advantage when compared to the static WCET analysis. To the best of our
knowledge, current hybrid WCET analysis studies are focused on WCET estimation
of applications running on single-threaded processors. As a part of our future work,
we plan to use the presented methodology to detect the possible slowdown of different
program segments and to extend the current hybrid WCET analysis to MT COTS
architectures.

In all the experiments presented in the paper, the slowdown that the benchmarks
experience is measured from the entry until the termination of the benchmark
execution (end-to-end measurements). However, the presented methodology can be
easily adjusted to focus on different program segments, so it can be used in hybrid
WCET analysis or when only some program segments have time-critical requirements.
In this case, the set of resource-stressing benchmarks and the set of experiments
would remain the same: the application under study should be executed in isolation
and with the resource-stressing co-runners. The only difference is that, in this case,
instead of measuring the execution time (slowdown) of the whole application, the user
should instrument only the program segments under study. Methods for low-overhead
instrumentation of different application segments have already been proposed
[Rieder et al. 2007].

5. RELATED WORK

Despite the benefits that MT COTS processors may offer in embedded real-time sys-
tems these architectures are still not widely used in real-time systems because the
timing analysis is too complex. To the best of our knowledge, our study presents the
first systematic approach for measurement-based timing analysis of time-critical ap-
plications running on MT COTS architectures. Several studies and projects analyze
collision in shared hardware resources among tasks co-scheduled on MT architectures
and the impact of this collision on WCET analysis.

Schliecker et al. [2008] and Pellizzoni et al. [2010b] analyze the delay of memory
access in systems where several simultaneously-running tasks share the main memory.
The proposals require a detailed profiling of application memory access pattern and a
deep understanding of the memory arbitration policy. Although both proposals can be
applied only in systems where the main memory is the only shared resource (authors
assume non-shared caches), we believe that these studies are a very good starting

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 34, Publication date: January 2012.

34:22 P. Radojković et al.

point to better understand the possible use of multithreaded processors in time-critical
systems.

Cullmann et al. [2010] analyze the design of future multithreaded processors for
time-critical systems. The authors show that some processor designs make the timing
analysis infeasible and suggest design principles for making multithreaded architec-
tures predictable. This analysis is complementary to our study. Based on the theoretical
analysis, the authors give guidelines for the design of predictable architectures, while
we present the measurement-based approach to determine if a given architecture is a
good candidate for time-critical systems.

Several projects propose hardware solutions to deal with the inter-task interferences
on WCET in MT architectures [Across; Hansson et al. 2009; Genesys; Merasa; Pret; Tta;
Predator]. These projects make a wide range of proposals. Some suggest preventing
inter-task interferences by assigning each task a subset of resources and not allowing
other user tasks to use the resources. This can be implemented by splitting the hard-
ware resource temporally or spatially. Other proposals suggest actually allowing tasks
to share hardware resources and defining the boundaries of this interaction so that
the maximum effect of the interaction on the WCET is known. Although these propos-
als are different, the common factor is that they all propose changes in hardware to
reach their objectives. In this paper, our objective is to show how, without any change,
MT COTS processors can assess the challenges and the requirements imposed in a
real-time environment, mainly time predictability.

Several studies focus on Measurement-Based Timing Analysis (MBTA) for single-
threaded architectures. The studies propose an improvement of the accuracy and
coverage of MBTA by using static code analysis. Schaefer et al. [2006] propose mea-
suring execution time at basic block level and using this data to estimate WCET of the
whole program. Deverge and Puaut [2005] propose using structural testing methods
to generate input data for experiments used in measurement-based WCET analysis.
Kirner et al. [2004] use static program analysis to generate test data that cover different
execution paths. Authors also propose a decomposition of program paths into smaller
parts (subpaths) and using an independent measurement-based analysis for each
subpath. Finally, the WCET estimate of the whole program is calculated based on the
execution time of each subpath. Wenzel et al. [2008] present a similar approach: they
propose a decomposition of the program into segments and doing a timing analysis for
each segment. The authors also propose an approach for good program segmentation–
one that balances the number of program segments with the average number of paths
per segment. Rieder et al. [2007] analyze different approaches for measuring the
execution time of program segments. The authors propose an external Runtime Mea-
surement Device and suggest the integration of this device into the analysis framework
that automatically collects the data needed for measurement-based WCET analysis.
All the above studies propose improvements of end-to-end measurement-based timing
techniques for single-threaded processors. In this paper, we extend measurement
based timing analysis for multithreaded processors and show how it can be used to
determine which architecture is more suitable for systems with timing requirements.

6. CONCLUSIONS

COTS processors are increasingly being considered in the design of systems with timing
requirements. MT COTS architectures are of special interest due to good performance-
per-watt ratio, high performance opportunities, and their suitability for embedded
architectures in which several functions are integrated into the same processor.

Unfortunately, despite the benefits that MT COTS may offer in embedded real-
time systems, the time-critical market has not yet embraced a shift toward these
architectures. The main challenge with MT COTS architectures is the difficulty when

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 34, Publication date: January 2012.

Impact of Shared Resources in Multithreaded COTS Processors 34:23

predicting the execution time for simultaneosly running time-critical tasks. Providing
a timing analysis for real industrial applications running on MT COTS processors
becomes extremely difficult because the execution time of a task, and hence its WCET
depends on the interference with co-running tasks in shared processor resources.

In this paper, we have shown that the measurement-based timing analysis used for
single-threaded processors cannot be directly extended for MT COTS architectures.
Running workloads composed of real applications may not be sufficient to capture the
possible slowdown that applications experience due to interferences. This is due to the
fact that the applications used may be insensitive to interference in processor shared
resources. We propose a methodology that quantifies the slowdown that a task may
experience because of collision with co-runners in shared resources of MT COTS pro-
cessor. To that end, we developed a set of specific resource-stressing benchmarks and
propose a measurement-based approach to determine the possible slowdown caused
by inter-task interferences. The two main applications of our methodology are: (1) The
methodology helps to determine which architecture among different MT COTS pro-
cessors is more suitable to be used in time-critical environments, (2) Our methodology
shows the potential variation in execution time a task in a workload may experience if
any of the co-runner changes.

We also presented several case studies in which we analyze three MT COTS archi-
tectures with different degrees of shared resources. We show that, for a given workload
composed of several real-time benchmarks, all three types of architecture show low
interference among co-running tasks and stable execution time. However, our method
shows that potential variation in the execution time of applications is different for each
architecture under study, and that not every one of the three architectures are good
candidates to be used in time-critical systems.

ACKNOWLEDGMENTS

The authors want to thank the anonymous reviewers for their insightful feedback on this work.

REFERENCES

ACROSS. ARTEMIS CROSS-domain architecture. http://www.across-project.eu.
ANDRITSOPOULOS, F., PAPASTEFANOS, S., GEORGAKARAKOS, G., AND DOUMENIS, G. 2007. Reliable multicast H.264

video streaming for surveillance applications. In Proceedings of the IEEE 18th International Symposium
on Personal, Indoor and Mobile Radio Communications.

ATOM Z530. 2009. IntelR© AtomTM processor Z5xx series. http://download.intel.com/design/processor/datashts/
319535.pdf.

AUTOSAR. AUTomotive open system architecture. http://www.autosar.org.
BAKER, T. 2002. Lessons learned integrating COTS into systems. In COTS-Based Software Systems, Lecture

Notes in Computer Science, Springer.
BUTENHOF, D. R. 1997. Programming with POSIX Threads. Addison-Wesley Professional.

ČAKAREVIĆ, V., RADOJKOVIĆ, P., VERDÚ, J., PAJUELO, A., CAZORLA, F. J., NEMIROVSKY, M., AND VALERO, M. 2009.
Characterizing the resource-sharing levels in the UltraSPARC T2 processor. In Proceedings of the 42nd
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-42).

CHEVALIER, F. L. AND MARIA, S. 2006. STAP processing without noise-only reference: requirements and solu-
tions. In Proceedings of the International Conference on Radar.

CORE2QUAD. IntelR© CoreTM2Quad extreme processor QX9000 and IntelR© CoreTMQuad processor Q9000 series
datasheet. http://www.intel.com/design/processor/datashts/318726.htm?wapkw=(datasheet+q9000).

COREMARK. The embedded microprocessor benchmark consortium benchmark suite. http://www.coremark.
org.

CULLMANN, C., FERDINAND, C., GEBHARD, G., GRUND, D., MAIZA, C., REINEKE, J., TRIQUET, B., AND WILHELM, R.
2010. Predictability considerations in the design of multi-core embedded systems. In Proceedings of the
Symposium on Embedded Real Time Software and Systems (ERTS).

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 34, Publication date: January 2012.

34:24 P. Radojković et al.

DETTI, A., LORETI, P., BLEFARI-MELAZZI, N., AND FEDI, F. 2010. Streaming H.264 scalable video over data
distribution service in a wireless environment. In Proceedings of the International Symposium on a
World of Wireless, Mobile and Multimedia Networks.

DEVERGE, J.-F. AND PUAUT, I. 2005. Safe measurement-based WCET estimation. In Proceedings of the 5th
International Workshop on Worst-Case Execution Time Analysis.

DOUCETTE, D. AND FEDOROVA, A. 2007. Base vectors: A potential technique for microarchitectural classification
of applications. In Proceedings of the Workshop on the Interaction between Operating Systems and
Computer Architecture.

DURANTON, M., YEHIA, S., DE SUTTER, B., DE BOSSCHERE, K., COHEN, A., FALSAFI, B., GAYDADJIEV, G., KATEVENIS,
M., MAEBE, J., MUNK, H., NAVARRO, N., RAMIREZ, A., TEMAM, O., AND VALERO, M. The HiPEAC vision. High
performance and embedded architecture and compilation. http://www.HiPEAC.net.

EEMBC. The embedded microprocessor benchmark consortium benchmark suite. http://www.eembc.org.
EMPRESS. Incremental verification and validation practices, EMPRESS public deliverable. http://www.

empress-itea.org/.
FRITTS, J. E., STEILING, F. W., AND TUCEK, J. A. Mediabench II video: Expediting the next generation of video

systems research. http://mathcs.slu.edu/∼fritts/papers/fritts spie05 mbvideo.pdf.
GENESYS. GENeric Embedded SYStem Platform. http://www.genesys-platform.eu.
GEREFFI, G. 1999. A Commodity Chains Framework for Analyzing Global Industries. Duke University.
GIOIOSA, R., PETRINI, F., DAVIS, K., AND LEBAILLIF-DELAMARE, F. 2003. Analysis of system overhead on parallel

computers. In Proceedings of the ACM/IEEE Conference on Supercomputing.
HANSSON, A., GOOSSENS, K., BEKOOIJ, M., AND HUISKEN, J. 2009. Compsoc: A template for composable and

predictable multi-processor system on chips. Trans. Des. Automat. Electron. Syst.
HIGGINS, K. J. 2004. Video IP project boosts networks profile. Netw. Comput.
INTEL CORPORATION 2011. IntelR© 64 and IA-32 Architectures Software Developer’s Manual.
KIRNER, R. AND PUSCHNER, P. 2008. Obstacles in worst-case execution time analysis. In Proceedings of the

11th IEEE International Symposium on Object Oriented Real-Time Distributed Computing (ISORC ’08).
333–339.

KIRNER, R., PUSCHNER, P., AND WENZEL, I. 2004. Measurement-based worst-case execution time analysis using
automatic test-data generation. In Proceedings of the IEEE Workshop on Software Technologies for
Future Embedded and Ubiquitous Systems (SEUS).

KIRNER, R., WENZEL, I., RIEDER, B., AND PUSCHNER, P. 2005. Using measurements as a complement to static
worst-case execution time analysis. In Intelligent Systems at the Service of Mankind, Vol. 2, UBooks
Verlag.

MERASA. Multi-core execution of hard real-time applications supporting analysability. http://www.
merasa.org.

MEZZETTI, E. AND VARDANEGA, T. 2011. On the industrial fitness of WCET analysis. In Proceedings of the
11th International Workshop on Worst-Case Execution Time Analysis (WCET ’11). C. Healy, Ed., OCG,
Austrian Computer Society.

NATALE, M. D. AND SANGIOVANNI-VINCENTELLI, A. 2010. Moving from federated to integrated architectures in
automotive: The role of standards, methods and tools. Proc. IEEE.

PAOLIERI, M., QUIÑONES, E., CAZORLA, F. J., BERNAT, G., AND VALERO, M. 2009a. Hardware support for WCET
analysis of hard real-time multicore systems. In Proceedings of ISCA ’09.

PAOLIERI, M., QUINONES, E., CAZORLA, F. J., AND VALERO, M. 2009b. An analyzable memory controller for hard
real-time CMPs. In Embedded System Letters.

PELLIZZONI, R., SCHRANZHOFER, A., CHEN, J.-J., CACCAMO, M., AND THIELE, L. 2010a. Worst case delay analysis
for memory interference in multicore systems. In Proceedings of the Conference on Design, Automation
and Test in Europe (DATE ’10).

PELLIZZONI, R., SCHRANZHOFER, A., CHEN, J.-J., CACCAMO, M., AND THIELE, L. 2010b. Worst case delay analysis
for memory interference in multicore systems. In Proceedings of the Conference on Design, Automation
and Test in Europe (DATE ’10).

PENTIUM, D. 2007. IntelR© PentiumR© D processor 900 Sequence and IntelR© PentiumR© processor extreme
edition 955, 965. http://www.intel.com/Assets/PDF/datasheet/310306.pdf.

PETRINI, F., KERBYSON, D. J., AND PAKIN, S. 2003. The case of the missing supercomputer performance: Achieving
optimal performance on the 8,192 processors of ASCI Q. In Proceedings of the ACM/IEEE Conference
on Supercomputing.

PREDATOR. PREDATOR consortium. http://www.predator-project.eu.
PRET. Precision timed (PRET) machines. http://chess.eecs.berkeley.edu/pret.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 34, Publication date: January 2012.

Impact of Shared Resources in Multithreaded COTS Processors 34:25

PUSCHNER, P. AND BURNS, A. 2000. A review of worst-case execution-time analysis. J. Real-Time Syst. 18, 2/3,
115–128.

RADOJKOVIĆ, P., CAKAREVIĆ, V., VERDÚ, J., PAJUELO, A., GIOIOSA, R., CAZORLA, F., NEMIROVSKY, M., AND VALERO, M.
2008. Measuring operating system overhead on CMT processors. In Proceedings of the 20th International
Symposium on Computer Architecture and High Performance Computing (SBAC-PAD ’08).

RIEDER, B., WENZEL, I., STEINHAMMER, K., AND PUSCHNER, P. 2007. Using a runtime measurement device with
measurement-based WCET analysis. In Proceedings of the International Embedded Systems Symposium
(IESS’07).

SCHAEFER, S., SCHOLZ, B., PETTERS, S. M., AND HEISER, G. 2006. Static analysis support for measurement-based
WCET analysis. In Proceedings of the 12th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications.

SCHLIECKER, S., NEGREAN, M., NICOLESCU, G., PAULIN, P., AND ERNST, R. 2008. Reliable performance analysis
of a multicore multithreaded system-on-chip. In Proceedings of the 6th IEEE/ACM/IFIP international
conference on Hardware/Software codesign and system synthesis (CODES+ISSS ’08).

TTA. Time-triggered architecture. http://www.vmars.tuwien.ac.at/projects/tta.
UNGERER, T., CAZORLA, F., SAINRAT, P., BERNAT, G., PETROV, Z., ROCHANGE, C., QUINONES, E., GERDES, M., PAOLIERI,

M., AND WOLF, J. 2010. Merasa: Multi-core execution of hard real-time applications supporting analysabil-
ity. IEEE Micro.

WATKINS, C. AND WALTER, R. 2007. Transitioning from federated avionics architectures to Integrated Modular
Avionics. In Proceedings of the 26th Digital Avionics Systems Conference (DASC ’07).

WENZEL, I., KIRNER, R., RIEDER, B., AND PUSCHNER, P. 2008. Measurement-based timing analysis. In Proceed-
ings of 3rd International Symposium on Leveraging Applications of Formal Methods, Verification and
Validation.

WILHELM, R., ENGBLOM, J., ERMEDAHL, A., HOLSTI, N., THESING, S., WHALLEY, D., BERNAT, G., FERDINAND, C.,
HECKMANN, R., MITRA, T., MUELLER, F., PUAUT, I., PUSCHNER, P., STASCHULAT, J., AND STENSTRÖM, P. 2008.
The worst-case execution-time problem—overview of methods and survey of tools. ACM Trans. Embed.
Comput. Syst.

Received July 2011; revised October 2011 and December 2011; accepted January 2012

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 34, Publication date: January 2012.

