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ABSTRACT
Data centers are increasingly employing virtualization and
consolidation as a means to support a large number of dis-
parate applications running simultaneously on server plat-
forms. However, server platforms are still being designed
and evaluated based on performance modeling of a single
highly parallel application or a set of homogenous work-
loads running simultaneously. Since most future datacen-
ters are expected to employ server virtualization, this pa-
per takes a look at the challenges of modeling virtual ma-
chine (VM) performance on a datacenter server. Based on
vConsolidate (a server virtualization benchmark) and lat-
est multi-core servers, we show that the VM modeling chal-
lenge requires addressing three key problems: (a) modeling
the contention of visible resources (cores, memory capacity,
I/O devices, etc), (b) modeling the contention of invisible
resources (shared microarchitecture resources, shared cache,
shared memory bandwidth, etc) and (c) modeling overheads
of virtual machine monitor (or hypervisor) implementation.
We take a first step to addressing this problem by describ-
ing a VM performance modeling approach and performing a
detailed case study based on the vConsolidate benchmark.
We conclude by outlining outstanding problems for future
work.
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1. INTRODUCTION
Traditionally, server platforms have been designed and

evaluated based on individual parallel applications or bench-
marks (TPC-C, TPC-E, TPC-W, SPECjbb, SPECjappserver,
etc) as the focus. Developing the performance analysis ca-
pability for such commercial server workloads was by itself
a significant challenge since the benchmarks had complex
behaviors, required multiple client/server systems and were
difficult to run on full-system simulators. However, indus-
try and academic researchers coped with this problem by
developing scaled-down execution-driven simulations [17] for
these workloads, by trace-driven simulations [16] [18] [19] [25]
where possible and also by developing analytical models
driven by measurement/simulation experiments. Now, the
recent emergence of virtualization [3] [23] [24] introduces

another level of complexity to the problem of server model-
ing and performance analysis. As datacenters rapidly adopt
virtualization [22] as a means to consolidate multiple appli-
cations on a server, it becomes critical that the performance
behavior of virtual machines is well understood. In addition,
it also becomes important that we develop the ability to esti-
mate virtual machine performance on a datacenter server. In
this paper, we discuss the challenges to virtual machine per-
formance estimation and introduce potential approaches for
appropriate metrics and modeling techniques for this pur-
pose. The first challenge of virtualization was addressing
the lack of a virtualization benchmark that can be used for
consistent and repeatable server performance analysis. Re-
cently, there have been specific industry benchmarks that
have been developed (VMmark [10], vConsolidate [20]) to
address this issue. In addition, there is also a SPEC com-
mittee [6] that is working on defining its first virtualization
benchmark expected to release sometime in the future. In
this paper, we focus our case studies on vConsolidate to
show the challenges and the potential approach of server
virtualization modeling.

The key considerations when modeling the performance
of virtual machines (VMs) can be summarized as follows:

1. VM performance is not only dependent on its own
characteristics, but also dependent on the interference
caused by the other virtual machines running on the
same platform with it. We need a method to capture
the effect of these interactions.

2. The above interference can affect the use of (i) shared
resources (e.g. core, memory capacity) that are visible
to the operating system or virtual machine monitor di-
rectly or through performance counters and (ii) shared
resources (cache space, memory bandwidth, etc) that
are invisible to the operating system since they are
transparent resources managed by the hardware. The
modeling approach needs to be aware of both visible
and invisible resource interference.

3. the specifics of virtualization technology (both hard-
ware virtualization and software virtualization) and
the scheduling disciplines adopted by the virtual ma-
chine monitor could be quite different on any given
platform. The modeling approach needs to take into
account the virtualization technology as well as the
scheduling heuristics required (Figure 1).
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Figure 1: From Dedicated Workloads to Consoli-
dated Workloads.
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Figure 2: VM Performance Scenarios

In this paper, we will expand primarily on the resource
interference effects and describe how a modeling approach
can potentially take into account both visible and invisible
resource contention effects on performance. Specifically, the
contributions of this paper are as follows:

1. Using a virtualization/consolidation benchmark, we
will show how VM performance depends heavily on vis-
ible and invisible resource interference caused by other
VMs.

2. We will de scribe offline and online monitoring tech-
niques needed to accurately characterize the behavior
of multiple VMs sharing resources.

3. We will describe a potential modeling approach that
employs either online or offline monitoring mechanisms
to estimate the performance of the virtual machine.

4. We will outline a detailed list of next steps required
to achieve a complete model for VM performance es-
timation.

2. VM PERFORMANCE EFFECTS
One of the key challenges when modeling the performance

of virtual machines is that the application no longer has plat-
form resources dedicated solely for its consumption. Fig-
ure 1 illustrates the transition from a dedicated execution
(where one application used to run on a server previously)
to a shared execution (where multiple guest OSes or VMs
now run on the same server). Figure 2 illustrates a typical
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Figure 3: SpecJBB Performance (1 copy vs 2 copies)

0

20

40

60

80

100

120

JBB Alone JBB + Sys Same Cache JBB + Sys Same Core JBB + Sys Same Core

Simultaneous Threads

VM Configurations

N
o

rm
a
li

z
e
d

 P
e
rf

o
rm

a
n

c
e

Figure 4: SpecJBB Performance (Alone vs with Sys-
bench)

server platform with multiple cores and the following four
scenarios for the execution of a virtual machine (say VM1)
with two virtual cpus (v0 and v1):

1. VM1 runs in dedicated mode with v0 running on c0
and v1 running c2. Since c0 and c2 have last-level
caches of their own, these two virtual cpus do not share
cache resources.

2. VM1 runs in shared mode with VM2 running on sibling
cores (virtual cpus of these VMs share cache). This
causes cache contention between the VMs and affects
performance.

3. VM1 runs in shared mode with VM2 scheduled to run
on the same core (time sliced scheduling). This causes
core as well as cache contention between the two VMs
and affects performance.

4. VM1 runs in shared mode with VM2 scheduled to run
on the same core but on simultaneous threads made
possible by hyperthreading [30]. This causes core con-
tention (because of thread contention within the core
for shared pipeline resources) as well as cache con-
tention between the two VMs and affects performance.

To measure the performance in various scenarios, we ran
experiments using virtual machines within the vConsoli-
date benchmark (consisting of SPECjbb [7], Sysbench [8],
Webbench [11] and a mail server). We chose SPECjbb as
VM1 as well as VM2 to collect the data shown in Figure 3.
We also chose SPECjbb as VM1 and Sysbench as VM2 for
the data collected in Figure 4. The first three configu-
rations (illustrated in Figure 2) were collected on a Xen
hypervisor [13] [12] running on a Core 2 Duo - based server
platform [4] with two cores on each die sharing a last-level
cache. The performance effect of the last configuration (ef-
fect of sharing simultaneous threads) was measured on the
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latest Intel Nehalem-based server platform since the Core
2 Duo processor does not support threads, whereas future
platforms are expected to. As shown in the Figure 3and
Figure 4, the performance of the virtual machine is signif-
icantly affected by the sharing of cache and core resources.
The performance can drop by as much as 20 to 30% due
to cache contention alone. The performance further drops
by another 30% when sharing cores. The performance can
deteriorate further by 25% when multiple threads are being
used on the same core. Overall, the performance of a virtual
machine can vary from its performance during dedicated ex-
ecution to its performance when running with other virtual
machines either on a sibling core, a sibling thread, the same
core or even the same thread. It should be noted that some
of these resources are visible (e.g. core) and some are invis-
ible (cache space, pipeline resources shared by simultaneous
threads). Overall, the combined performance effect can be
as high as 3X reduction due to resource contention. In ad-
dition, the performance depends on which virtual machine
monitor you use.

3. VM PERFORMANCE MODELING AP-
PROACHES

In the previous subsection, we showed how virtual ma-
chine performance can be significantly affected by resource
contention with other virtual machine running along with
it. In order to model the VM performance, it is important
to accurately characterize all shared resource contention ef-
fects [14] [18] [21] in the platform. In this section, we will
describe how this can be achieved for two modeling modes:

1. Offline modeling: This assumes that the workload
performance can be measured on several platform con-
figurations alone as well as pairwise with other virtual
machines. It also assumes that the workload (each
VM at a minimum) can be traced to run through core
and cache simulators to collect behavioral information.
Here, the intent is to fully calibrate a model in order
to predict the performance of a virtual machine on a
future server architecture or configuration.

2. Online modeling: This assumes that no offline anal-
ysis is available and the characterization of the VM
performance effects needs to be done online (on pro-
duction servers with perhaps some brief initial runs on
test configurations within the datacenter). Here, the
intent is to develop a model that will predict the per-
formance of a VM on a different platform (if it was
migrated to that platform within the datacenter).

In addition, it is important to consider the following key
visible and invisible resources that will be contended for:

1. Visible Resources: Platform resources that are cur-
rently exposed (or visible) to the OS/VMM include
core, memory capacity and potential I/O devices. In
this paper we focus primarily on core usage since that
is a dominant factor out of these three.

2. Invisible Resources: Platform resources that are
currently transparent (or invisible) to the OS/VMM
include shared cache space and core pipeline resources.
In other words, the cache space occupied by one VM or
another cannot be monitored today by an OS/VMM.

Similarly, the pipeline resources used by one thread
(running one VM) versus another thread (running an-
other VM) cannot be observed today. The effect of
cache and core contention (i.e. misses per instruction
(MPI) and instructions per cycle (IPC) can however be
obtained through performance monitoring counters).

The proposed approach for the VM modeling effort is the
resource estimation of a virtual platform architecture that
each virtual machine ends up with when running on a phys-
ical server platform. A virtual platform architecture (VPA)
is defined as the set of resources used by (or solely made
available to) the virtual machine of interest. The VPA re-
sources include key resources such as number of cores, the
core frequency and utilization, the cache space at each level
and the memory frequency and bandwidth. In this paper,
we focus on a VPA proof of concept that consists of one vis-
ible resource (the core) and one invisible resource (shared
last-level cache space). In other words, the estimated VPA
will produce (a) the number of cores and core utilization
that a VM is given, (b) the cache space that a VM is given.
Once the VPA core usage and the cache usage are available,
the problem of estimating the performance of the virtual
machine is mapped back to the simple problem of estimat-
ing the performance of a application running on a dedicated
platform (with VPA as the dedicated platform).

A. VPA Core Utilization Estimation

Since the core is a visible resource, the VMM can easily
track the VPA core utilization on the platform for every
VMM. The cost of tracking the core utilization [15] is neg-
ligible and provides an accurate accounting. However, in
order to predict the core utilization on a different platform
configuration, a simplistic approach to start with is as fol-
lows:

(i) Monitor a VM’s core utilization when running
alone(VMxAloneUtil)

• In an offline mode, this requires running the VM by
itself on a platform and monitoring the core utilization
using performance counters.

• In an online mode, this requires monitoring the VM
core utilization and keeping track of the maximum core
utilization (especially when no other VM is running).

(ii) Predict a VM’s core utilization on a different
consolidated platform by scaling down the above VMx
core utilization by the ratio of number of available physical
CPUs over the total utilization of all VMs on the target
platform (VMxConsUtil)

VMxConstUtil =

min[VMxAloneUtil,
V MxAloneUtil ∗ PhysCPUs

VMallAloneUtil
]

This simple model allows for reasonable estimation of the
VPA core utilization of a VM. In the future, we plan to ex-
tend this simple model by taking VMM scheduling heuristics
into account. For the vConsolidate measurement, we applied
the estimation model to platforms configured with different
cache sizes (1MB, 2MB, 4MB) as described earlier. We also
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Table 2: Execution Probability of VMs running cores sharing a L2 Cache with SPECjbb
L2 size, SPECjbb(%) sysbench(%) webbench(%) MMB(%) Domain-0(%)

4MB 18 38 32 3 9
2MB 37 19 31 3 10
1MB 36 17 32 4 12

Table 1: SPECjbb VPA Core Utilization
SPECjbb, 4MB 2MB 1MB

Estimated(%) 115 124 126
Measured(%) 122 124 121

Error(%) -5.58 0.39 3.91

instrumented the Xen VMM to measure the actual utiliza-
tion of the SPECjbb virtual machine and compare it to the
estimated utilization. Table 1 shows the utilization (in %) as
well as the accuracy (computed as relative error). For exam-
ple, the estimated utilization is 1.15 cores (115% utilization)
for a 4MB configuration, whereas the measured utilization
is 1.22 cores (122%) for the same configuration. With such
a simplistic model, we find that the error is around 6% or
less. The error is, in part, attributed to software scheduling
that is not considered in the model above.

B. VPA Cache Space Estimation

Since the shared last-level cache is an invisible resource and
cannot be directly monitored by OS/VMMs, we propose the
following approach to estimating VPA cache space (per VM)
as follows:
(i) Profile the execution of a VM by capturing the
percentage of time it runs with other VMs on sib-
ling cores (sharing the same cache).

• One approach to this is to instrument the VMM at
schedule/deschedule points to keep track of where a
VM was running. However, this is useful only in hind-
sight for understanding the performance effects of other
VMs in a platform configuration already established.

• In order to predict the performance on a future plat-
form configuration (with different VMs), it is possi-
ble to statistically approximate the percentage of time
that a VM runs with other VMs.

P (VMx+VMy) =
VMyUtil

(VMallCons− Util − VMxCons− Util)

Table 3: Overall Cache Contention Effect for Con-
solidation

Benchmark, Estimated MPI Measured MPI
SpecJBB 0.0077 0.0085
Sysbench 0.0041 0.0043

Table 2 presents the fraction of SPECjbb VM’s execution
time that it spends running with another virtual machine
contending on a shared cache. For example, a SPECjbb vir-
tual cpu runs with a SysBench virtual cpu sharing the same
shared cache for an estimated 38% of its overall execution

0

0.5

1

1.5

2

2.5

3

specJBB Sysbench

Workload

N
o

rm
a
li

z
e
d

 M
e
tr

ic Alone

Pairwise with MMB

Pairwise with specJBB

Pairwise with Sysbench

Pairwise with Webbench

Consolidated

Figure 5: MPI Increase in Pairwise/Consolidated
Execution

in the platform configuration with 4MB of shared cache.
On the other hand, it spends an estimated 18% of its over-
all execution time running with the other SPECjbb virtual
cpu in the same configuration. It should be noted that we
have validated these fractions (and found them to be within
2% error) by profiling the execution of vConsolidate on Xen.

(ii) Estimate the pairwise VPA cache space for a
VM when it runs with another sibling VM (assum-
ing two CPUs sharing a cache)

• In the offline mode, it is possible to capture a trace for
each VM and then run every pair of traces (for different
VMs) through a shared cache model to create a table
of VPA cache space usage per VM.

• In the online mode, it is not possible today to monitor
the cache space usage directly. However, proposals like
[25] that provide accurate cache space monitoring in
future architectures might address this problem in the
future. Instead, the VMM can monitor the effect of
cache interference by keeping track of the misses per
instruction (collected through performance counters)
as a function of the other VMs running on sibling cores.
Even here, it is required that this estimation be done
on a test configuration where all pairs of VMs are run
simultaneously and measured.

Figure 5 shows the effect on normalized MPIs (cache Misses-
per-Instruction) of SPECjbb and sysbench from pairwise
workload runs. The normalization is done with respect to
the MPI values when the workload was running alone. As
shown in Figure 5, for a 4MB cache configuration, one
SPECjbb virtual CPU’s MPI increases by as much as 62%
when running with another SPECjbb virtual CPU, whereas
it increases by 58% and 34% when running with Sysbench
and Webbench virtual CPUs respectively.

(iii) Estimate the consolidated VPA cache space that
is a weighted average of the pairwise VPA cache
space (with weights being the fraction of execution
time).
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Table 3 shows that the estimated MPI (for SPECjbb and
sysbench) comes reasonably close to the measured MPI dur-
ing consolidation. The cache contention effect can also be
translated to prediction of effective cache size by looking up
the cache size based on offline MPI profiling experiments.
For example, Figure 6 shows the MPI of SPECjbb running
alone and in consolidated mode as a function of cache size.
By looking up the miss rate curve (for 4MB), we can find
the effective cache size ( 3.5MB).

(iv) Use the estimated MPI to derive the CPI for
the virtual machine.
The cache contention effects can now be translated into es-
timated CPI values (cycles per instruction) for each virtual
machine in the consolidated environment using the perfor-
mance data and based on the VMA core utilization. Due to
space constraints we skip the exact procedure here. Table 4
shows that the estimated CPI values match the measured
values with low error ( 5%).

Table 4: CPI Estimation for SPECjbb
Metric, SPECjbb Single VM SPECjbb in vCon

SpecJBB 1.549 2.231
Sysbench 1.543 2.234

(v) Estimate performance loss from cache con-
tention (as a multiplier) as follows:

CacheContentionPerfMultiplier =
VMx −Alone− CPI

VMx − Cons− CPI

The factor calculated above represents the performance loss
due to cache contention.

4. CONCLUSIONS AND FUTURE WORK
In this paper we presented the VM performance modeling

challenges and highlighted that visible and invisible resource
interference cause a significant performance degradation and
need to be considered when modeling VM performance. We
then proposed VPA estimation as an approach to modeling
VM performance. Using a case study of vConsolidate (a
server virtualization benchmark), we showed that VPA core
and cache usage estimation is possible with offline models.
With online models, only VPA core usage estimation is pos-
sible and cache usage estimation needs to be approximated
as cache performance effects. Future work in this area is
as follows. We plan to extend the VPA modeling approach
to include other resources (core pipeline resources, memory

bandwidth, etc). We also plan to test out the modeling ap-
proach on a wider set of configurations and put together
a analytical model that can be calibrated for this purpose.
Last but not least, we would also like to study other virtual-
ization benchmarks and VMMs to ensure that this approach
proves valid for a wider range of workload, VMM implemen-
tations and cloud computing scenarios [1] [9] [2] [5].
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