
FeBrUAry 2010 | vOl. 53 | nO. 2 | communicAtions of the Acm 49

MODErn M UlTICO rE S YS TEM S are designed to allow
clusters of cores to share various hardware structures,
such as LLCs (last-level caches; for example, L2 or
L3), memory controllers, and interconnects, as well
as prefetching hardware. We refer to these resource-
sharing clusters as memory domains because the

shared resources mostly have to do
with the memory hierarchy. Figure 1
provides an illustration of a system
with two memory domains and two
cores per domain.

Threads running on cores in the
same memory domain may compete
for the shared resources, and this
contention can significantly degrade

their performance relative to what they
could achieve running in a contention-
free environment. Consider an ex-
ample demonstrating how contention
for shared resources can affect appli-
cation performance. In this example,
four applications—Soplex, Sphinx,
Gamess, and Namd, from the Standard
Performance Evaluation Corporation

managing
contention
for shared
Resources
on multicore
Processors

Doi:10.1145/1646353.1646371

 Article development led by
 queue.acm.org

Contention for caches, memory controllers,
and interconnects can be eased by
contention-aware scheduling algorithms.

BY ALexAnDRA feDoRoVA, seRGeY BLAGoDuRoV,
AnD seRGeY zhuRAVLeV

50 communicAtions of the Acm | FeBrUAry 2010 | vOl. 53 | nO. 2

practice

(SPEC) CPU 2006 benchmark suite6—
run simultaneously on an Intel Quad-
Core Xeon system similar to the one
depicted in Figure 1.

As a test, we ran this group of appli-
cations several times, in three different
schedules, each time with two different
pairings sharing a memory domain.
The three pairing permutations af-
forded each application an opportu-
nity to run with each of the other three
applications within the same memory
domain:

Soplex and Sphinx ran in a mem- ˲

ory domain, while Gamess and Namd
shared another memory domain.

Sphinx was paired with Gamess, ˲

while Soplex shared a domain with
Namd.

Sphinx was paired with Namd, ˲

while Soplex ran in the same domain
with Gamess.

Figure 2 contrasts the best perfor-
mance of each application with its
worst performance. The performance
levels are indicated in terms of the

percentage of degradation from solo
execution time (when the application
ran alone on the system), meaning that
the lower the numbers, the better the
performance.

There is a dramatic difference be-
tween the best and the worst schedules,
as shown in the figure. The workload as
a whole performed 20% better with the
best schedule, while gains for individu-
al applications Soplex and Sphinx were
as great as 50%. This indicates a clear
incentive for assigning applications to
cores according to the best possible
schedule. While a contention-oblivi-
ous scheduler might accidentally hap-
pen upon the best schedule, it could
just as well run the worst schedule. A
contention-aware schedule, on the oth-
er hand, would be better positioned to
choose a schedule that performs well.

This article describes an investiga-
tion of a thread scheduler that would
mitigate resource contention on mul-
ticore processors. Although we began
this investigation using an analytical
modeling approach that would be dif-
ficult to implement online, we ulti-
mately arrived at a scheduling method
that can be easily implemented online
with a modern operating system or
even prototyped at the user level. To
share a complete understanding of the
problem, we describe both the offline
and online modeling approaches. The
article concludes with some actual per-
formance data that shows the impact
contention-aware scheduling tech-
niques can have on the performance
of applications running on currently
available multicore systems.

To make this study tractable we
made the assumption that the threads
do not share any data (that is, they be-
long either to different applications
or to the same application where each
thread works on its own data set). If
threads share data, they may actually

figure 1. A schematic view of a multicore system with two memory domains representing
the architecture of intel Quad-core xeon processors.

core 0 core 1

LAst-LeVeL cAche

fRont-siDe
Bus

PRe-fetch
hARDWARe

core 0 core 1

LAst-LeVeL cAche

fRont-siDe
Bus

PRe-fetch
hARDWARe

figure 3. Mcf (a) is an application with a rather poor temporal locality, hence the low reuse frequency and high miss frequency.
Povray (b) has excellent temporal locality. Milc (c) rarely reuses its data, therefore showing a very low reuse frequency and
a very high miss frequency.

Mcf Povray Milc

figure 2. Percentage of performance degradation over a solo run achieved in
two different scheduling assignments: the best and the worst. the lower the bar,
the better the performance.

70

60

50

40

30

20

10

0

 best
 Worst

soplex sphinx AverageGames namd

%
 D

eg
ra

d
at

io
n

 o
ve

r
so

lo

(a) (b) (c)

practice

FeBrUAry 2010 | vOl. 53 | nO. 2 | communicAtions of the Acm 51

benefit from running in the same do-
main. In that case, they may access the
shared resources cooperatively; for ex-
ample, prefetch the data for each other
into the cache. While the effects of co-
operative sharing must be factored into
a good thread-placement algorithm
for multicores, this subject has been
explored elsewhere.9 The focus here is
managing resource contention.

understanding
Resource contention
To build a contention-aware scheduler,
we must first understand how to model
contention for shared resources. Mod-
eling allows us to predict whether a
particular group of threads is likely
to compete for shared resources and
to what extent. Most of the academic
work in this area has focused on mod-
eling contention for LLCs, as this was
believed to have the greatest effect on
performance. This is where we started
our investigation as well.

Cache contention occurs when two
or more threads are assigned to run on
the cores of the same memory domain
(for example, Core 0 and Core 1 in Fig-
ure 1). In this case, the threads share
the LLC. A cache consists of cache lines
that are allocated to hold the memory
of threads as the threads issue cache
requests. When a thread requests a line
that is not in the cache—that is, when it
issues a cache miss—a new cache line
must be allocated. The issue here is
that when a cache line must be allocat-
ed but the cache is full (which is to say
whenever all the other cache lines are
being used to hold other data), some
data must be evicted to free up a line
for the new piece of data. The evicted
line might belong to a different thread
from the one that issued the cache
miss (modern CPUs do not assure any
fairness in that regard), so an aggres-
sive thread might end up evicting data
for some other thread and thus hurting
its performance.

Although several researchers have
proposed hardware mechanisms for
mitigating LLC contention,3,7 to the
best of our knowledge these have not
been implemented in any currently
available systems. We therefore looked
for a way to address contention in the
systems that people are running now
and ended up turning our attention to
scheduling as a result. Before building

dicates the miss frequency (how often
that application misses in the cache).
The reuse-frequency histogram shows
the locality of reused data. Each bar
represents a range of reuse distances—
these can be thought of as the number
of time steps that have passed since the
reused data was last touched. An appli-
cation with a very good temporal locali-
ty will have many high bars to the left of
the histogram (Figure 3b), as it would
reuse its data almost immediately. This
particular application also has negli-
gible miss frequency. An application
with a poor temporal locality will have
a flatter histogram and a rather high
miss frequency (Figure 3a). Finally, an
application that hardly ever reuses its
data will result in a histogram indicat-
ing negligible reuse frequency and a
very high miss frequency (Figure 3c).

Memory-reuse profiles have been
used in the past to effectively model
the contention between threads that
share a cache.3 These models, the de-
tails of which we omit from this article,
are based on the shape of memory-re-
use profiles. One such model, the SDC
(stack distance competition) examines
the reuse frequency of threads sharing
the cache to determine which of the
threads is likely to “win” more cache
space; the winning thread is usually
the one with the highest overall reuse
frequency. Still, the SDC model, along
with all the other models based on
memory-reuse profiles, was deemed
too complex for our purposes. After
all, our goal was to use a model in an
operating-system scheduler, mean-
ing it needed to be both efficient and
lightweight. Furthermore, we were
interested in finding methods for ap-
proximating the sort of information
memory-reuse profiles typically afford
using just the data that’s available at
runtime, since memory-reuse profiles
themselves are very difficult to obtain
at runtime. Methods for obtaining
these profiles online require uncon-
ventional hardware7 or rely on hard-
ware performance counters available
only on select systems.8

Our goal, therefore, was to capture
the essence of memory-reuse profiles
in a simple metric and then find a way
to approximate this metric using data
that a thread scheduler can easily ob-
tain online. To this end, we discovered
that memory-reuse profiles are highly

a scheduler that avoids cache conten-
tion, however, we needed to find ways
to predict contention.

There are two schools of thought
regarding the modeling of cache con-
tention. The first suggests that consid-
ering the LLC miss rate of the threads
is a good way to predict whether these
threads are likely to compete for the
cache (the miss rate under contention
is an equally good heuristic as the solo
miss rate). A miss rate is the number
of times per instruction when a thread
fails to find an item in the LLC and so
must fetch it from memory. The rea-
soning is that if a thread issues lots of
cache misses, it must have a large cache
working set, since each miss results in
the allocation of a new cache line. This
way of thinking also maintains that any
thread that has a large cache working
set must suffer from contention (since
it values the space in the cache) while
inflicting contention on others.

This proposal is contradicted by fol-
lowers of the second school of thought,
who reason that if a thread hardly ever
reuses its cached data—as would be the
case with a video-streaming application
that touches the data only once—it will
not suffer from contention even if it
brings lots of data into the cache. That
is because such a thread needs very lit-
tle space to keep in cache the data that
it actively uses. This school of thought
advocates that to model cache conten-
tion one must consider the memory-
reuse pattern of the thread. Followers
of this approach therefore created sev-
eral models for shared cache conten-
tion based on memory-reuse patterns,
and they have demonstrated that this
approach predicts the extent of con-
tention quite accurately.3 On the other
hand, only limited experimental data
exists to support the plausibility of the
other approach to modeling cache con-
tention.5 Given the stronger evidence in
favor of the memory-reuse approach,
we built our prediction model based
on that method.

A memory-reuse pattern is captured
by a memory-reuse profile, also known
as the stack-distance2 or reuse-distance
profile.1 Figure 3 shows examples of
memory-reuse profiles belonging to ap-
plications in the SPEC CPU2006 suite.
The red bars on the left show the reuse
frequency (how often the data is re-
used), and the blue bar on the right in-

52 communicAtions of the Acm | FeBrUAry 2010 | vOl. 53 | nO. 2

practice

successful at modeling contention
largely because they manage to capture
two important qualities related to con-
tention: sensitivity and intensity. Sensi-
tivity measures how much a thread suf-
fers whenever it shares the cache with
other threads. Intensity, on the other
hand, measures how much a thread
hurts other threads whenever it shares
a cache with them. Measuring sensitivi-
ty and intensity appealed to us because
together they capture the key informa-
tion contained within memory-reuse
profiles; we also had some ideas about
how they could be approximated us-
ing online performance data. Before
learning how to approximate sensitiv-
ity and intensity, however, we needed
to confirm that these were indeed good
bases for modeling cache contention
among threads. To accomplish that,
we formally derived the sensitivity and
intensity metrics based on data in the
memory-reuse profiles. After confirm-
ing that the metrics derived in this way
did indeed accurately model conten-
tion, we could then attempt to approxi-
mate them using just online data.

Accordingly, we derived sensitivity S
and intensity Z for an application using
data from its memory-reuse profile. To
compute S, we applied an aggregation
function to the reuse-frequency histo-
gram. Intuitively, the higher the reuse
frequency, the greater an application
is likely to suffer from the loss of cache
space due to contention with another
application—signifying a higher sen-
sitivity. To compute Z, we simply used
the cache-access rate, which can be in-
ferred from the memory-reuse profile.
Intuitively, the higher the access rate,
the higher the degree of competition

from the thread in question since the
high access rate shows that it allocates
new cache lines while retaining old
ones. Details for the derivation of S and
Z are described in another article.10

Using the metrics S and Z, we then
created another metric called Pain,
where the Pain of thread A due to shar-
ing a cache with thread B is the product
of the sensitivity of A and the intensity
of B, and vice versa. A combined Pain
for the thread pair is the sum of the
Pain of A due to B and the Pain of B due
to A, as shown here:

Pain(A|B) = SA * ZB

Pain(B|A) = SB * ZA

Pain(A,B) – Pain(A|B) + Pain(B|A)

Intuitively, Pain(A|B) approximates
the performance degradation of A
when A runs with B relative to running
solo. It will not capture the absolute
degradation entirely accurately, but it
is good for approximating relative deg-
radations. For example, given two po-
tential neighbors for A, the Pain metric
can predict, which will cause a higher
performance degradation for A. This is
precisely the information a contention-
aware scheduler would require.

The Pain metric shown here as-
sumes that only two threads share a
cache. There is evidence, however,
showing this metric applies equally
well when more than two threads
share the cache. In that case, in order
to compute the Pain for a particular
thread as a consequence of running
with all of its neighbors concurrently,
the Pain owing to each neighbor must
be averaged.

After developing the Pain metric

based on memory-reuse profiles, we
looked for a way to approximate it using
just the data available online via stan-
dard hardware performance counters.
This led us to explore two performance
metrics to approximate sensitivity and
intensity: the cache-miss rate and the
cache-access rate. Intuitively these met-
rics correlate with the reuse frequency
and the intensity of the application.
Our findings regarding which metric
offers the best approximation are sur-
prising, so to maintain some suspense,
we postpone their revelation until the
section entitled “Evaluation of Model-
ing Techniques.”

using contention
models in a scheduler
In evaluating the new models for cache
contention, our goal was to determine
how effective the models would be for
constructing contention-free thread
schedules. We wanted the model to
help us find the best schedule and
avoid the worst one (recall Figure 2).
Therefore, we evaluated the models on
the merit of the schedules they man-
aged to construct. With that in mind,
we describe here how the scheduler
uses the Pain metric to find the best
schedule.

To simplify the explanation for this
evaluation, we have a system with two
pairs of cores sharing the two caches
(as illustrated in Figure 1), but as men-
tioned earlier, the model also works
well with more cores per cache. In this
case, however, we want to find the best
schedule for four threads. The sched-
uler would construct all the possible
permutations of threads on this sys-
tem, with each of the permutations be-
ing unique in terms of how the threads
are paired on each memory domain. If
we have four threads—A, B, C, and D—
there will be three unique schedules:
(1) {(A,B), (C,D)}; (2) {(A,C), (B,D)}; and
(3) {(A,D), (B,C)}. Notation (A,B) means
that threads A and B are co-scheduled
in the same memory domain. For each
schedule, the scheduler estimates the
Pain for each pair: in schedule {(A,B),
(C,D)} the scheduler would estimate
Pain(A,B) and Pain(C,D) using the
equations presented previously. Then
it averages the Pain values of the pairs
to estimate the Pain for the schedule
as a whole. The schedule with the low-
est Pain is deemed to be the estimated

figure 4. computing the pain for all possible schedules. the schedule with the lowest Pain
is chosen as the estimated best schedule.

Schedule {(A,B), (C,D)}: Pain = Average(Pain(A,B), Pain(C, d))
Schedule {(A,C), (B,D)}: Pain = Average(Pain(A,C), Pain(B, d))
Schedule {(A,D), (B,C)}: Pain = Average(Pain(A,d), Pain(B, C))

figure 5. the metric for comparing the actual best and the estimated best schedule.

Estimated Best Schedule {(A,B), (C,D)}:
 DegradationEst = Average(degrad(A|B), degrad(B|A), degrad(C|d), degrad(d|C))
Actual Best Schedule {(A,C), (B,D)}:
 DegradationAct = Average(degrad(A|C), degrad(C|A), degrad(B|d), degrad(d|B))

Degradation over actual best = (DegradationEst
DegradationAct

– 1) ´ 100%

practice

FeBrUAry 2010 | vOl. 53 | nO. 2 | communicAtions of the Acm 53

best schedule. Figure 4 is a summary of
this procedure.

The estimated best schedule can
be obtained either by using the Pain
metric constructed via actual memory-
reuse profiles or by approximating the
Pain metric using online data.

Once the best schedule has been es-
timated, we must compare the perfor-
mance of the workload in the estimat-
ed best schedule with the performance
achieved in the actual best schedule.
The most direct way of doing this is to
run the estimated best schedule on real
hardware and compare its performance
with that of the actual best schedule,
which can be obtained by running all
schedules on real hardware and then
choosing the best one. Although this
is the most direct approach (which
we used for some experiments in the
study), it limited the number of work-
loads we could test because running all
possible schedules for a large number
of workloads is time consuming.

To evaluate a large number of work-
loads in a short amount of time, we
invented a semi-analytical evaluation
methodology that relies partially on
data obtained from tests on a real sys-
tem and otherwise applies analytical
techniques. Using this approach, we
selected 10 benchmark applications
from the SPEC CPU2006 suite to use in
the evaluation. They were chosen using
the minimum spanning-tree-cluster-
ing method to ensure the applications
represented a variety of memory-access
patterns.

We then ran all possible pairings of
these applications on the experimental
platform, a Quad-Core Intel Xeon sys-
tem, where each Quad-Core processor
looked like the system depicted in Fig-
ure 1. In addition to running each pos-
sible pair of benchmark applications
on the same memory domain, we ran
each benchmark alone on the system.
This gave us the measure for the actual
degradation in performance for each
benchmark as a consequence of shar-
ing a cache with another benchmark,
as opposed to running solo. Recall that
degradation relative to performance in
the solo mode is precisely the quantity
approximated by the Pain metric. So by
comparing the scheduling assignment
constructed based on the actual deg-
radation to that constructed based on
the Pain metric, we can evaluate how

good the Pain metric is in finding good
scheduling assignments.

Having the actual degradations en-
abled us to construct the actual best
schedule using the method shown in
Figure 5. The only difference was that,
instead of using the model to compute
Pain(A,B), we used the actual perfor-
mance degradation that we had mea-
sured on a real system (with Pain being
equal to the sum of degradation of A
running with B relative to running solo
and the degradation of B running with
A relative to running solo).

Once we knew the actual best sched-
ule, we needed a way to compare it with
the estimated best schedule. The per-
formance metric was the average deg-
radation relative to solo execution for
all benchmarks. For example, suppose
the estimated best schedule was {(A,B),
(C,D)}, while the actual best schedule
was {(A,C), (B,D)}. We computed the
average degradation for each sched-
ule to find the difference between the
degradation in the estimated best ver-
sus the degradation in the actual one,
as indicated in Figure 5. The notation
Degrad(A|B) refers to the measured
performance degradation of A when
running alongside B, relative to A run-
ning solo.

This illustrates how to construct es-
timated best and actual best schedules
for any four-application workload on a
system with two memory domains so
long as actual pair-wise degradations
for any pair of applications have been
obtained on the experimental system.
Using the same methodology, we can
evaluate this same model on systems
with a larger number of memory do-
mains. In that case, the number of pos-
sible schedules grows, but everything
else in the methodology remains the
same. In using this methodology, we
assumed that the degradation for an
application pair (A,B) would be the
same whether it were obtained on a
system where only A and B were run-
ning or on a system with other threads,
such as (C,D) running alongside (A,B)
on another domain. This is not an en-
tirely accurate assumption since, with
additional applications running, there
will be a higher contention for the
front-side bus. Although there will be
some error in estimating schedule-av-
erage degradations under this method,
the error is not great enough to affect

in evaluating the
new models for
cache contention,
our goal was to
determine how
effective the
models would be
for constructing
contention-free
thread schedules.

54 communicAtions of the Acm | FeBrUAry 2010 | vOl. 53 | nO. 2

practice

the evaluation results significantly.
Certainly, the error is not large enough
to lead to a choice of the “wrong” best
schedule.

evaluation of modeling techniques
Here, we present the results obtained
using our semi-analytical methodolo-
gy, followed by the performance results
obtained via experiments only. Figure
6 compares the degradation over the
actual best schedules (the method for
which was indicated earlier) with es-
timated best schedules constructed
using various methods. The blue bar
indicating Pain is the model that uses
memory-reuse profiles to estimate Pain
and find the best schedule (the method
for which was set forth in Figure 4). In
the red bar indicating Approx-Pain, the
Pain for a given application running
with another is estimated with the aid
of data obtained online (we explain
which data this is at the end of this sec-
tion); once Pain has been estimated,
we can once again use the method
shown in Figure 4. In SDC, a previously
proposed model based on memory-
reuse profiles3 can be used to estimate
the performance degradation of an ap-
plication when it shares a cache with a
co-runner. This estimated degradation
can then be used in place of Pain(A|B);
apart from that, the method shown
in Figure 4 applies. Although SDC is
rather complex for use in a scheduler,
we compared it with our new models
to evaluate how much performance
was being sacrificed by using a sim-
pler model. Finally, in Figure 6 the bar
labeled Random shows the results for
selecting a random-thread placement.

Figure 6 shows how much worse the
schedule chosen with each method
ended up performing relative to the
actual best schedule. This value was
computed using the method shown in
Figure 4. Ideally, this difference from
the actual best ought to be small, so
in considering Figure 6, remember
that low bars are good. The results for
four different systems—with four, six,
eight, and 10 cores—are indicated.
In all cases there were two cores per
memory domain. (Actual results from
a system with a larger number of cores
per memory domain are shown later.)
Each bar represents the average for all
the benchmark pairings that could be
constructed out of our 10 representa-

figure 7. A breakdown of factors causing performance degradation due to contention
for shared hardware on multicore systems based on tests using select applications in
the sPec cPu2006 suite.

100

90

80

70

60

50

40

30

20

10

0

 Prefetch cache/controller bus

Gcc Lbm mcf milc soplex sphinx

figure 6. the percentage by which performance of schedules estimated to be
best according to various modeling techniques varies from the actual best schedules.
Low bars are good.

8

7

6

5

4

3

2

1

0

 Pain
 approx-Pain

 SDc
 random

4-core 6-core 8-core 10-core

%
 W

or
se

 t
h

an
 A

ct
u

al
 B

es
t

figure 8. A breakdown of factors causing performance degradation due to contention
for shared hardware on multicore systems based on tests using select applications in
the sPec cPu2006 suite. these experiments were performed on an intel xeon (cloverton)
processor. We also obtained data showing that cache contention is not dominant on AmD
opteron systems.

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

 Prefetch L2 FSb Memory controller

soplex

c
on

tr
ib

u
ti

on
 t

o
to

ta
l D

eg
ra

d
at

io
n

Gcc Lbm mcf sphinx milc

practice

FeBrUAry 2010 | vOl. 53 | nO. 2 | communicAtions of the Acm 55

tive benchmarks on a system with a
given number of cores, such that there
is exactly one benchmark per core. On
four- and six-core systems, there were
210 such combinations, whereas an
eight-core system had 45 combina-
tions, and a 10-core system had only
one combination. For each combina-
tion, we predicted the best schedule.
The average performance degradation
from the actual best for each of these
estimated best schedules is reported in
each bar in the figure.

The first thing we learned from the
metric in Figure 5 was that the Pain
model is effective for helping the sched-
uler find the best thread assignment. It
produces results that are within 1% of
the actual best schedule. (The effect on
the actual execution time is explored
later). We also found that choosing
a random schedule produces signifi-
cantly worse performance, especially
as the number of cores grows. This is
significant in that a growing number
of cores is the expected trend for future
multicore systems.

Figure 6 also indicates that the Pain
approximated by way of an online
metric works very well, coming within
just 3% of the actual best schedule. At
the same time, the SDC, a well-proven
model from an earlier study, turns out
to be less accurate. These results—
both the effectiveness of the approxi-
mated Pain metric and the disappoint-
ing performance of the older SDC
model—were quite unexpected. Who
could have imagined that the best way
to approximate the Pain metric would
be to use the LLC miss rate? In other
words, the LLC miss rate of a thread is
the best predictor of both how much
the thread will suffer from contention
(its sensitivity) and how much it will
hurt others (its intensity). As explained
at the beginning of this article, while
there was limited evidence indicating
that the miss rate predicts contention,
it ran counter to the memory-reuse-
based approach, which was supported
by a much larger body of evidence.

Our investigation of this paradox
led us to examine the causes of con-
tention on multicore systems. We per-
formed several experiments that aimed
to isolate and quantify the degree of
contention for various types of shared
resources: cache, memory controller,
bus, prefetching hardware. The precise

That is, they should not be co-sched-
uled in the same memory domain. Al-
though some researchers have already
suggested this approach, it is not well
understood why using the miss rate
as a proxy for contention ought to be
effective, particularly in that it contra-
dicts the theory behind the popular
memory-reuse model. Our findings
should help put an end to this contro-
versy.

Based on this new knowledge, we
have built a prototype of a contention-
aware scheduler that measures the
miss rates of online threads and de-
cides how to place threads on cores
based on that information. Here, we
present some experimental data show-
ing the potential impact of this conten-
tion-aware scheduler.

implications
Based on our understanding of conten-
tion on multicore processors, we have
built a prototype of a contention-aware
scheduler for multicore systems called
Distributed Intensity Online (DIO).
The DIO scheduler distributes inten-
sive applications across memory do-
mains (and by intensive we mean those
with high LLC miss rates) after measur-
ing online the applications’ miss rates.
Another prototype scheduler, called
Power Distributed Intensity (Power
DI), is intended for scheduling applica-
tions in the workload across multiple
machines in a data center. One of its
goals is to save power by determining
how to employ as few systems as pos-
sible without hurting performance.
The following are performance results
of these two schedulers.

Distributed Intensity Online. Dif-
ferent workloads offer different op-
portunities to achieve performance
improvements through the use of a con-
tention-aware scheduling policy. For
example, a workload consisting of non-
memory-intensive applications (those
with low cache miss rates) will not expe-
rience any performance improvement
since there is no contention to alleviate
in the first place. Therefore, for our ex-
periments we constructed eight-appli-
cation workloads containing from two
to six memory-intensive applications.
We picked eight workloads in total, all
consisting of SPEC CPU2006 applica-
tions, and then executed them under
the DIO and the default Linux sched-

setup of these experiments is described
in another study.10 We arrived at the fol-
lowing findings.

First, it turns out that contention for
the shared cache—the phenomenon by
which competing threads end up evict-
ing each others’ cache lines from the
cache—is not the main cause of per-
formance degradation experienced by
competing applications on multicore
systems. Contention for other shared
resources, such as the front-side bus,
prefetching resources, and the memo-
ry controller are the dominant causes
for performance degradation (see Fig-
ure 7). That is why the older memory-
reuse model, designed to model cache
contention only, was not effective in
our experimental environment. The
authors of that model evaluated it on
a simulator that did not model conten-
tion for resources other than shared
cache, and it turns out that, when ap-
plied to a real system where other types
of contention were present, the model
did not prove effective.

On the other hand, cache-miss rate
turned out to be an excellent predic-
tor for contention for the memory
controller, prefetching hardware, and
front-side bus. Each application in our
model was co-scheduled with the Milc
application to generate contention.
Given limitations of existing hardware
counters, it was difficult to separate
the effects of contention for prefetch-
ing hardware itself and the effects of
additional contention for memory
controller and front-side bus caused by
prefetching. Therefore, the impact of
prefetching shows the combined effect
of these two factors.

An application issuing many cache
misses will occupy the memory con-
troller and the front-side bus, so it will
not only hurt other applications that
use that hardware, but also end up suf-
fering itself if this hardware is usurped
by others. An application aggressively
using prefetching hardware will also
typically have a high LLC miss rate, be-
cause prefetch requests for data that is
not in the cache are counted as cache
misses. Therefore, a high miss rate is
also an indicator of the heavy use of
prefetching hardware.

In summary, our investigation of
contention-aware scheduling algo-
rithms has taught us that high-miss-
rate applications must be kept apart.

56 communicAtions of the Acm | FeBrUAry 2010 | vOl. 53 | nO. 2

practice

uler on an AMD Opteron system fea-
turing eight cores—four per memory
domain. The results are shown in Fig-
ure 8. The performance improvement
relative to default has been computed
as the average improvement for all ap-
plications in the workload (since not
all applications are memory intensive,
some do not improve). We can see that
DIO renders workload-average perfor-
mance improvements of up to 11%.

Another potential use of DIO is as a

way to ensure QoS (quality of service)
for critical applications since DIO es-
sentially provides a means to make sure
the worst scheduling assignment is
never selected, while the default sched-
uler may occasionally suffer as a con-
sequence of a bad thread placement.
Figure 9 shows for each of the applica-
tions as part of the eight test workloads
its worst-case performance under DIO
relative to its worst-case performance
under the default Linux scheduler. The

numbers are shown in terms of the per-
centage of improvement or the worst-
case behavior achieved under DIO
relative to that encountered with the
default Linux scheduler, so higher bars
in this case are better. We can see that
some applications are as much as 60%
to 80% better off with their worst-case
DIO execution times, and in no case
did DIO do significantly worse than the
default scheduler.

Power Distributed Intensity. One of
the most effective ways to conserve CPU
power consumption is to turn off un-
used cores or entire memory domains
in an active system. Similarly, if the
workload is running on multiple ma-
chines—for example, in a data center—
power savings can be accomplished by
clustering the workload on as few serv-
ers as possible while powering down
the rest. This seemingly simple solu-
tion is a double-edged sword, however,
because clustering the applications on
just a few systems may cause them to
compete for shared system resources
and thus suffer performance loss. As
a result, more time will be needed to
complete the workload, meaning that
more energy will be consumed. In an
attempt to save power it is also neces-
sary to consider the impact that cluster-
ing can have on performance. A metric
that takes into account both the energy
consumption and the performance
of the workload is the energy-delay
product (EDP).4 Based on our findings
about contention-aware scheduling,
we designed Power DI, a scheduling al-
gorithm meant to save power without
hurting performance.

Power DI works as follows: Assum-
ing a centralized scheduler has knowl-
edge of the entire computing infra-
structure and distributes incoming
applications across all systems, Power
DI clusters all incoming applications
on as few machines as possible, except
for those applications deemed to be
memory intensive. Similarly, within a
single machine, Power DI clusters ap-
plications on as few memory domains
as possible, with the exception of mem-
ory-intensive applications. These ap-
plications are not co-scheduled on the
same memory domain with another ap-
plication unless the other application
has a very low cache miss rate (and thus
a low memory intensity). To determine
if an application is memory-intensive,

figure 9. Performance of eight workloads under Dio relative to the default Linux scheduler.

12

10

8

6

4

2

0

WL1 WL2 WL3 WL4 WL5 WL6 WL7 WL8

Workloads

%
 im

p
ro

ve
m

en
t

ov
er

 D
ef

au
lt

figure 11. Percentage reduction in eDP.

 Spread Power Di
40

30

20

10

0

–10

–20

–30

–40

–50

–60
0% 13% 25% 38% 50% 63% 88% 100%75%

fraction of memory-intensive Apps in the Workload

%
 B

et
te

r
t

h
an

 c
lu

st
er

figure 10. Worst-case performance for each of the applications included as part
of the eight test workloads.

90

80

70

60

50

40

20

10

0

–10

S
P

h
In

X
S

O
P

le
X

G
A

M
eS

S
n

A
M

d

S
O

P
le

X
M

C
F

G
A

M
eS

S
G

O
B

M
K

M
C

F

P
O

v
r

A
y

G
A

M
eS

S

M
C

F
O

M
n

e
T

P
P

n
A

M
d

M
Il

C
lI

B
Q

P
O

v
r

A
y

S
P

h
In

X
G

C
C

n
A

M
d

G
A

M
eS

S

lB
M

M
Il

C
S

P
h

In
X

G
O

B
M

K

lB
M

M
Il

C
M

C
F

n
A

M
d

P
e

r
lB

h
26

4
r

e
F

lI
B

Q

WL2WL1 WL3 WL4 WL5 WL6 WL7 WL8

%
 im

p
ro

ve
m

en
t

ov
er

 D
ef

au
lt

practice

FeBrUAry 2010 | vOl. 53 | nO. 2 | communicAtions of the Acm 57

Power DI uses an experimentally de-
rived threshold of 1,000 misses per mil-
lion instructions; an application whose
LLC miss rate exceeds that amount is
considered memory intensive.

Although we did not have a data-
center setup available to us to evaluate
this algorithm, we simulated a multi-
server environment in the following
way. The in-house AKULA scheduling
simulator created a schedule for a giv-
en workload on a specified data-center
setup, which in this case consisted of
16 eight-core systems, assumed by
the simulator to be Intel Xeon dual
quad-core servers. Once the simulated
scheduler decided how to assign ap-
plications across machines and mem-
ory domains within each machine, we
computed the performance of the en-
tire workload from the performance
of the applications assigned by the
scheduler to each eight-core machine.
The performance on a single system
could be easily measured via experi-
mentation. This simulation method
was appropriate for our environment,
since there was no network commu-
nication among the running applica-
tions, meaning that inferring the over-
all performance from the performance
of individual system was reasonable.

To estimate the power consump-
tion, we used a rather simplistic model
(measurements with the actual power
meter are still under way) but captured
the right relationships between power
consumed in various load conditions.
We assumed that a memory domain
where all the cores are running appli-
cations consumes one unit of power. A
memory domain where one out of two
cores are busy consumes 0.75 units of
power. A memory domain where all
cores are idle is assumed to be in a very
low power state and thus consumes 0
units of power. We did not model the
latency of power-state transitions.

We constructed a workload of 64
SPEC CPU2006 applications randomly
drawn from the benchmark suite. We
varied the fraction of memory-inten-
sive applications in the workload from
zero to 100%. The effectiveness of
scheduling strategies differed accord-
ing to the number of memory-inten-
sive applications. For example, if there
were no memory-intensive applica-
tions, it was perfectly fine to cluster all
the applications to the greatest extent

 Related articles
 on queue.acm.org

Maximizing Power Efficiency with
Asymmetric Multicore Systems

Alexandra Fedorova, Juan Carlos Saez,
Daniel Shelepov, and Manuel Prieto
http://queue.acm.org/detail.cfm?id=1658422

The Future of Microprocessors

Kunle Olukotun
http://queue.acm.org/detail.cfm?id=1095418

References
1. berg, E. and hagersten, E. Statcache: a probabilistic

approach to efficient and accurate data locality
analysis. in Proceedings of the IEEE International
Symposium on Performance Analysis of Systems and
Software (2004), 20–27.

2. cascaval, c., Derose, L., Padua, D.a. and reed, D.
1999. compile-time based performance prediction.
in Proceedings of the 12th International Workshop
on Languages and Compilers for Parallel Computing
(1999), 365–379.

3. chandra, D., guo, F., kim, S. and Solihin, y. Predicting
inter-thread cache contention on a multiprocessor
architecture. in Proceedings of the 11th International
Symposium on High-performance Computer
Architecture (2005), 340–351.

4. gonzalez, r. and horowitz, M. Energy dissipation in
general-purpose microprocessors. IEEE Journal of
Solid State Circuits 31, 9 (1999), 1277–1284.

5. knauerhase, r., brett, P., hohlt, b., Li, t. and hahn,
S. Using oS observations to improve performance in
multicore systems. IEEE Micro (2008), 54–66.

6. SPEc: Standard Performance Evaluation corporation;
http://www.spec.org.

7. Suh, g., Devadas, S. and rudolph, L. a new memory
monitoring scheme for memory-aware scheduling and
partitioning. in Proceedings of the 8th International
Symposium on High-performance Computer
Architecture (2002), 117.

8. tam, D., azimi, r., Soares, L. and Stumm, M.
rapidMrc: approximating L2 miss rate curves on
commodity systems for online optimizations. in
Proceedings of the 14th International Conference on
Architectural Support for Programming Languages
and Operating Systems (2009), 121–132.

9. tam, D., azimi, r. and Stumm, M. thread clustering:
sharing-aware scheduling on SMP-cMP-SMt
multiprocessors. in Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer
Systems (2007), 47–58.

10. zhuravlev, S., blagodurov, S. and Fedorova, a.
addressing shared resource contention in multicore
processors via scheduling. in Proceedings of the 15th
International Conference on Architectural Support
for Programming Languages and Operating Systems
(2010).

Alexandra Fedorova is an assistant professor of
computer science at Simon Fraser University in Vancouver,
canada, where she co-founded the SyNar (Systems,
Networking and architecture) research lab. her research
interests span operating systems and virtualization
platforms for multicore processors, with a specific focus
on scheduling. recently she started a project on tools and
techniques for parallelization of video games, which has
led to the design of a new language for this domain.

Sergey Blagodurov is a Ph.D. student in computer
science at Simon Fraser University, Vancouver, canada.
his research focuses on operating-system scheduling
on multicore processors and exploring new techniques
to deliver better performance on non-uniform memory
access (NUMa) multicore systems.

Sergey Zhuravlev is a Ph.D. student in computer science
at Simon Fraser University, Vancouver, canada. his
recent research focuses on scheduling on multiprocessor
systems to avoid shared resource contention as well as
simulating computing systems.

© 2010 acM 0001-0782/10/0200 $10.00

possible. Conversely, if all the applica-
tions were memory intensive, then the
best policy was to spread them across
memory domains so that no two ap-
plications would end up running on
the same memory domain. An intelli-
gent scheduling policy must be able to
decide to what extent clustering must
be performed given the workload at
hand.

Figure 10 shows the EDP for three
different scheduling methods: Power
DI, a naïve Spread method (which al-
ways spreads applications across ma-
chines to the largest extent possible),
and the Cluster method (which in an
attempt to save power always clusters
applications on as few machines and
as few memory domains as possible).
The numbers are shown as a percent-
age reduction in the EDP (higher is
better) of Power DI and Spread over
Cluster.

We can see that when the fraction
of memory-intensive applications in
the workload is low, the naïve Spread
method does much worse than the
Cluster method, but it beats Cluster
as that fraction increases. Power DI,
on the other hand, is able to adjust
to the properties of the workload and
minimize EDP in all cases, beating
both Spread and Cluster—or at least
matching them—for every single
workload.

conclusion
Contention for shared resources sig-
nificantly impedes the efficient op-
eration of multicore systems. Our re-
search has provided new methods for
mitigating contention via scheduling
algorithms. Although it was previous-
ly thought that the most significant
reason for contention-induced per-
formance degradation had to do with
shared cache contention, we found
that other sources of contention—
such as shared prefetching hardware
and memory interconnects—are just
as important. Our heuristic—the LLC
miss rate—proves to be an excellent
predictor for all types of contention.
Scheduling algorithms that use this
heuristic to avoid contention have the
potential to reduce the overall comple-
tion time for workloads, avoid poor
performance for high-priority applica-
tions, and save power without sacrific-
ing performance.

