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MODErn  M UlTICO rE S YS TEM S  are designed to allow 
clusters of cores to share various hardware structures, 
such as LLCs (last-level caches; for example, L2 or 
L3), memory controllers, and interconnects, as well 
as prefetching hardware. We refer to these resource-
sharing clusters as memory domains because the 

shared resources mostly have to do 
with the memory hierarchy. Figure 1 
provides an illustration of a system 
with two memory domains and two 
cores per domain. 

Threads running on cores in the 
same memory domain may compete 
for the shared resources, and this 
contention can significantly degrade 

their performance relative to what they 
could achieve running in a contention-
free environment. Consider an ex-
ample demonstrating how contention 
for shared resources can affect appli-
cation performance. In this example, 
four applications—Soplex, Sphinx, 
Gamess, and Namd, from the Standard 
Performance Evaluation Corporation 
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(SPEC) CPU 2006 benchmark suite6—
run simultaneously on an Intel Quad-
Core Xeon system similar to the one 
depicted in Figure 1.

As a test, we ran this group of appli-
cations several times, in three different 
schedules, each time with two different 
pairings sharing a memory domain. 
The three pairing permutations af-
forded each application an opportu-
nity to run with each of the other three 
applications within the same memory 
domain:

Soplex and Sphinx ran in a mem- ˲

ory domain, while Gamess and Namd 
shared another memory domain. 

Sphinx was paired with Gamess,  ˲

while Soplex shared a domain with 
Namd. 

Sphinx was paired with Namd,  ˲

while Soplex ran in the same domain 
with Gamess. 

Figure 2 contrasts the best perfor-
mance of each application with its 
worst performance. The performance 
levels are indicated in terms of the 

percentage of degradation from solo 
execution time (when the application 
ran alone on the system), meaning that 
the lower the numbers, the better the 
performance. 

There is a dramatic difference be-
tween the best and the worst schedules, 
as shown in the figure. The workload as 
a whole performed 20% better with the 
best schedule, while gains for individu-
al applications Soplex and Sphinx were 
as great as 50%. This indicates a clear 
incentive for assigning applications to 
cores according to the best possible 
schedule. While a contention-oblivi-
ous scheduler might accidentally hap-
pen upon the best schedule, it could 
just as well run the worst schedule. A 
contention-aware schedule, on the oth-
er hand, would be better positioned to 
choose a schedule that performs well. 

This article describes an investiga-
tion of a thread scheduler that would 
mitigate resource contention on mul-
ticore processors. Although we began 
this investigation using an analytical 
modeling approach that would be dif-
ficult to implement online, we ulti-
mately arrived at a scheduling method 
that can be easily implemented online 
with a modern operating system or 
even prototyped at the user level. To 
share a complete understanding of the 
problem, we describe both the offline 
and online modeling approaches. The 
article concludes with some actual per-
formance data that shows the impact 
contention-aware scheduling tech-
niques can have on the performance 
of applications running on currently 
available multicore systems. 

To make this study tractable we 
made the assumption that the threads 
do not share any data (that is, they be-
long either to different applications 
or to the same application where each 
thread works on its own data set). If 
threads share data, they may actually 

figure 1. A schematic view of a multicore system with two memory domains representing 
the architecture of intel Quad-core xeon processors.
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figure 3. Mcf (a) is an application with a rather poor temporal locality, hence the low reuse frequency and high miss frequency.  
Povray (b) has excellent temporal locality. Milc (c) rarely reuses its data, therefore showing a very low reuse frequency and  
a very high miss frequency.
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figure 2. Percentage of performance degradation over a solo run achieved in  
two different scheduling assignments: the best and the worst. the lower the bar,  
the better the performance. 
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benefit from running in the same do-
main. In that case, they may access the 
shared resources cooperatively; for ex-
ample, prefetch the data for each other 
into the cache. While the effects of co-
operative sharing must be factored into 
a good thread-placement algorithm 
for multicores, this subject has been 
explored elsewhere.9 The focus here is 
managing resource contention. 

understanding  
Resource contention
To build a contention-aware scheduler, 
we must first understand how to model 
contention for shared resources. Mod-
eling allows us to predict whether a 
particular group of threads is likely 
to compete for shared resources and 
to what extent. Most of the academic 
work in this area has focused on mod-
eling contention for LLCs, as this was 
believed to have the greatest effect on 
performance. This is where we started 
our investigation as well. 

Cache contention occurs when two 
or more threads are assigned to run on 
the cores of the same memory domain 
(for example, Core 0 and Core 1 in Fig-
ure 1). In this case, the threads share 
the LLC. A cache consists of cache lines 
that are allocated to hold the memory 
of threads as the threads issue cache 
requests. When a thread requests a line 
that is not in the cache—that is, when it 
issues a cache miss—a new cache line 
must be allocated. The issue here is 
that when a cache line must be allocat-
ed but the cache is full (which is to say 
whenever all the other cache lines are 
being used to hold other data), some 
data must be evicted to free up a line 
for the new piece of data. The evicted 
line might belong to a different thread 
from the one that issued the cache 
miss (modern CPUs do not assure any 
fairness in that regard), so an aggres-
sive thread might end up evicting data 
for some other thread and thus hurting 
its performance. 

Although several researchers have 
proposed hardware mechanisms for 
mitigating LLC contention,3,7 to the 
best of our knowledge these have not 
been implemented in any currently 
available systems. We therefore looked 
for a way to address contention in the 
systems that people are running now 
and ended up turning our attention to 
scheduling as a result. Before building 

dicates the miss frequency (how often 
that application misses in the cache). 
The reuse-frequency histogram shows 
the locality of reused data. Each bar 
represents a range of reuse distances—
these can be thought of as the number 
of time steps that have passed since the 
reused data was last touched. An appli-
cation with a very good temporal locali-
ty will have many high bars to the left of 
the histogram (Figure 3b), as it would 
reuse its data almost immediately. This 
particular application also has negli-
gible miss frequency. An application 
with a poor temporal locality will have 
a flatter histogram and a rather high 
miss frequency (Figure 3a). Finally, an 
application that hardly ever reuses its 
data will result in a histogram indicat-
ing negligible reuse frequency and a 
very high miss frequency (Figure 3c). 

Memory-reuse profiles have been 
used in the past to effectively model 
the contention between threads that 
share a cache.3 These models, the de-
tails of which we omit from this article, 
are based on the shape of memory-re-
use profiles. One such model, the SDC 
(stack distance competition) examines 
the reuse frequency of threads sharing 
the cache to determine which of the 
threads is likely to “win” more cache 
space; the winning thread is usually 
the one with the highest overall reuse 
frequency. Still, the SDC model, along 
with all the other models based on 
memory-reuse profiles, was deemed 
too complex for our purposes. After 
all, our goal was to use a model in an 
operating-system scheduler, mean-
ing it needed to be both efficient and 
lightweight. Furthermore, we were 
interested in finding methods for ap-
proximating the sort of information 
memory-reuse profiles typically afford 
using just the data that’s available at 
runtime, since memory-reuse profiles 
themselves are very difficult to obtain 
at runtime. Methods for obtaining 
these profiles online require uncon-
ventional hardware7 or rely on hard-
ware performance counters available 
only on select systems.8

Our goal, therefore, was to capture 
the essence of memory-reuse profiles 
in a simple metric and then find a way 
to approximate this metric using data 
that a thread scheduler can easily ob-
tain online. To this end, we discovered 
that memory-reuse profiles are highly 

a scheduler that avoids cache conten-
tion, however, we needed to find ways 
to predict contention. 

There are two schools of thought 
regarding the modeling of cache con-
tention. The first suggests that consid-
ering the LLC miss rate of the threads 
is a good way to predict whether these 
threads are likely to compete for the 
cache (the miss rate under contention 
is an equally good heuristic as the solo 
miss rate). A miss rate is the number 
of times per instruction when a thread 
fails to find an item in the LLC and so 
must fetch it from memory. The rea-
soning is that if a thread issues lots of 
cache misses, it must have a large cache 
working set, since each miss results in 
the allocation of a new cache line. This 
way of thinking also maintains that any 
thread that has a large cache working 
set must suffer from contention (since 
it values the space in the cache) while 
inflicting contention on others. 

This proposal is contradicted by fol-
lowers of the second school of thought, 
who reason that if a thread hardly ever 
reuses its cached data—as would be the 
case with a video-streaming application 
that touches the data only once—it will 
not suffer from contention even if it 
brings lots of data into the cache. That 
is because such a thread needs very lit-
tle space to keep in cache the data that 
it actively uses. This school of thought 
advocates that to model cache conten-
tion one must consider the memory-
reuse pattern of the thread. Followers 
of this approach therefore created sev-
eral models for shared cache conten-
tion based on memory-reuse patterns, 
and they have demonstrated that this 
approach predicts the extent of con-
tention quite accurately.3 On the other 
hand, only limited experimental data 
exists to support the plausibility of the 
other approach to modeling cache con-
tention.5 Given the stronger evidence in 
favor of the memory-reuse approach, 
we built our prediction model based 
on that method.

A memory-reuse pattern is captured 
by a memory-reuse profile, also known 
as the stack-distance2 or reuse-distance 
profile.1 Figure 3 shows examples of 
memory-reuse profiles belonging to ap-
plications in the SPEC CPU2006 suite. 
The red bars on the left show the reuse 
frequency (how often the data is re-
used), and the blue bar on the right in-
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successful at modeling contention 
largely because they manage to capture 
two important qualities related to con-
tention: sensitivity and intensity. Sensi-
tivity measures how much a thread suf-
fers whenever it shares the cache with 
other threads. Intensity, on the other 
hand, measures how much a thread 
hurts other threads whenever it shares 
a cache with them. Measuring sensitivi-
ty and intensity appealed to us because 
together they capture the key informa-
tion contained within memory-reuse 
profiles; we also had some ideas about 
how they could be approximated us-
ing online performance data. Before 
learning how to approximate sensitiv-
ity and intensity, however, we needed 
to confirm that these were indeed good 
bases for modeling cache contention 
among threads. To accomplish that, 
we formally derived the sensitivity and 
intensity metrics based on data in the 
memory-reuse profiles. After confirm-
ing that the metrics derived in this way 
did indeed accurately model conten-
tion, we could then attempt to approxi-
mate them using just online data. 

Accordingly, we derived sensitivity S 
and intensity Z for an application using 
data from its memory-reuse profile. To 
compute S, we applied an aggregation 
function to the reuse-frequency histo-
gram. Intuitively, the higher the reuse 
frequency, the greater an application 
is likely to suffer from the loss of cache 
space due to contention with another 
application—signifying a higher sen-
sitivity. To compute Z, we simply used 
the cache-access rate, which can be in-
ferred from the memory-reuse profile. 
Intuitively, the higher the access rate, 
the higher the degree of competition 

from the thread in question since the 
high access rate shows that it allocates 
new cache lines while retaining old 
ones. Details for the derivation of S and 
Z are described in another article.10 

Using the metrics S and Z, we then 
created another metric called Pain, 
where the Pain of thread A due to shar-
ing a cache with thread B is the product 
of the sensitivity of A and the intensity 
of B, and vice versa. A combined Pain 
for the thread pair is the sum of the 
Pain of A due to B and the Pain of B due 
to A, as shown here:

Pain(A|B) = SA * ZB

Pain(B|A) = SB * ZA

Pain(A,B) – Pain(A|B) + Pain(B|A)

Intuitively, Pain(A|B) approximates 
the performance degradation of A 
when A runs with B relative to running 
solo. It will not capture the absolute 
degradation entirely accurately, but it 
is good for approximating relative deg-
radations. For example, given two po-
tential neighbors for A, the Pain metric 
can predict, which will cause a higher 
performance degradation for A. This is 
precisely the information a contention-
aware scheduler would require. 

The Pain metric shown here as-
sumes that only two threads share a 
cache. There is evidence, however, 
showing this metric applies equally 
well when more than two threads 
share the cache. In that case, in order 
to compute the Pain for a particular 
thread as a consequence of running 
with all of its neighbors concurrently, 
the Pain owing to each neighbor must 
be averaged. 

After developing the Pain metric 

based on memory-reuse profiles, we 
looked for a way to approximate it using 
just the data available online via stan-
dard hardware performance counters. 
This led us to explore two performance 
metrics to approximate sensitivity and 
intensity: the cache-miss rate and the 
cache-access rate. Intuitively these met-
rics correlate with the reuse frequency 
and the intensity of the application. 
Our findings regarding which metric 
offers the best approximation are sur-
prising, so to maintain some suspense, 
we postpone their revelation until the 
section entitled “Evaluation of Model-
ing Techniques.” 

using contention  
models in a scheduler
In evaluating the new models for cache 
contention, our goal was to determine 
how effective the models would be for 
constructing contention-free thread 
schedules. We wanted the model to 
help us find the best schedule and 
avoid the worst one (recall Figure 2). 
Therefore, we evaluated the models on 
the merit of the schedules they man-
aged to construct. With that in mind, 
we describe here how the scheduler 
uses the Pain metric to find the best 
schedule. 

To simplify the explanation for this 
evaluation, we have a system with two 
pairs of cores sharing the two caches 
(as illustrated in Figure 1), but as men-
tioned earlier, the model also works 
well with more cores per cache. In this 
case, however, we want to find the best 
schedule for four threads. The sched-
uler would construct all the possible 
permutations of threads on this sys-
tem, with each of the permutations be-
ing unique in terms of how the threads 
are paired on each memory domain. If 
we have four threads—A, B, C, and D—
there will be three unique schedules: 
(1) {(A,B), (C,D)}; (2) {(A,C), (B,D)}; and 
(3) {(A,D), (B,C)}. Notation (A,B) means 
that threads A and B are co-scheduled 
in the same memory domain. For each 
schedule, the scheduler estimates the 
Pain for each pair: in schedule {(A,B), 
(C,D)} the scheduler would estimate 
Pain(A,B) and Pain(C,D) using the 
equations presented previously. Then 
it averages the Pain values of the pairs 
to estimate the Pain for the schedule 
as a whole. The schedule with the low-
est Pain is deemed to be the estimated 

figure 4. computing the pain for all possible schedules. the schedule with the lowest Pain 
is chosen as the estimated best schedule.

Schedule {(A,B), (C,D)}:  Pain = Average( Pain(A,B), Pain(C, d))
Schedule {(A,C), (B,D)}:  Pain = Average( Pain(A,C), Pain(B, d))
Schedule {(A,D), (B,C)}:  Pain = Average( Pain(A,d), Pain(B, C))

figure 5. the metric for comparing the actual best and the estimated best schedule. 

Estimated Best Schedule {(A,B), (C,D)}:     
 DegradationEst = Average( degrad(A|B), degrad(B|A), degrad(C|d), degrad(d|C))
Actual Best Schedule {(A,C), (B,D)}:     
 DegradationAct = Average( degrad(A|C), degrad(C|A), degrad(B|d), degrad(d|B)) 

Degradation over actual best = (DegradationEst
DegradationAct

– 1) ´ 100%
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best schedule. Figure 4 is a summary of 
this procedure. 

The estimated best schedule can 
be obtained either by using the Pain 
metric constructed via actual memory-
reuse profiles or by approximating the 
Pain metric using online data. 

Once the best schedule has been es-
timated, we must compare the perfor-
mance of the workload in the estimat-
ed best schedule with the performance 
achieved in the actual best schedule. 
The most direct way of doing this is to 
run the estimated best schedule on real 
hardware and compare its performance 
with that of the actual best schedule, 
which can be obtained by running all 
schedules on real hardware and then 
choosing the best one. Although this 
is the most direct approach (which 
we used for some experiments in the 
study), it limited the number of work-
loads we could test because running all 
possible schedules for a large number 
of workloads is time consuming. 

To evaluate a large number of work-
loads in a short amount of time, we 
invented a semi-analytical evaluation 
methodology that relies partially on 
data obtained from tests on a real sys-
tem and otherwise applies analytical 
techniques. Using this approach, we 
selected 10 benchmark applications 
from the SPEC CPU2006 suite to use in 
the evaluation. They were chosen using 
the minimum spanning-tree-cluster-
ing method to ensure the applications 
represented a variety of memory-access 
patterns. 

We then ran all possible pairings of 
these applications on the experimental 
platform, a Quad-Core Intel Xeon sys-
tem, where each Quad-Core processor 
looked like the system depicted in Fig-
ure 1. In addition to running each pos-
sible pair of benchmark applications 
on the same memory domain, we ran 
each benchmark alone on the system. 
This gave us the measure for the actual 
degradation in performance for each 
benchmark as a consequence of shar-
ing a cache with another benchmark, 
as opposed to running solo. Recall that 
degradation relative to performance in 
the solo mode is precisely the quantity 
approximated by the Pain metric. So by 
comparing the scheduling assignment 
constructed based on the actual deg-
radation to that constructed based on 
the Pain metric, we can evaluate how 

good the Pain metric is in finding good 
scheduling assignments. 

Having the actual degradations en-
abled us to construct the actual best 
schedule using the method shown in 
Figure 5. The only difference was that, 
instead of using the model to compute 
Pain(A,B), we used the actual perfor-
mance degradation that we had mea-
sured on a real system (with Pain being 
equal to the sum of degradation of A 
running with B relative to running solo 
and the degradation of B running with 
A relative to running solo). 

Once we knew the actual best sched-
ule, we needed a way to compare it with 
the estimated best schedule. The per-
formance metric was the average deg-
radation relative to solo execution for 
all benchmarks. For example, suppose 
the estimated best schedule was {(A,B), 
(C,D)}, while the actual best schedule 
was {(A,C), (B,D)}. We computed the 
average degradation for each sched-
ule to find the difference between the 
degradation in the estimated best ver-
sus the degradation in the actual one, 
as indicated in Figure 5. The notation 
Degrad(A|B) refers to the measured 
performance degradation of A when 
running alongside B, relative to A run-
ning solo.  

This illustrates how to construct es-
timated best and actual best schedules 
for any four-application workload on a 
system with two memory domains so 
long as actual pair-wise degradations 
for any pair of applications have been 
obtained on the experimental system. 
Using the same methodology, we can 
evaluate this same model on systems 
with a larger number of memory do-
mains. In that case, the number of pos-
sible schedules grows, but everything 
else in the methodology remains the 
same. In using this methodology, we 
assumed that the degradation for an 
application pair (A,B) would be the 
same whether it were obtained on a 
system where only A and B were run-
ning or on a system with other threads, 
such as (C,D) running alongside (A,B) 
on another domain. This is not an en-
tirely accurate assumption since, with 
additional applications running, there 
will be a higher contention for the 
front-side bus. Although there will be 
some error in estimating schedule-av-
erage degradations under this method, 
the error is not great enough to affect 

in evaluating the 
new models for 
cache contention, 
our goal was to 
determine how 
effective the 
models would be 
for constructing 
contention-free 
thread schedules. 
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the evaluation results significantly. 
Certainly, the error is not large enough 
to lead to a choice of the “wrong” best 
schedule. 

evaluation of modeling techniques
Here, we present the results obtained 
using our semi-analytical methodolo-
gy, followed by the performance results 
obtained via experiments only. Figure 
6 compares the degradation over the 
actual best schedules (the method for 
which was indicated earlier) with es-
timated best schedules constructed 
using various methods. The blue bar 
indicating Pain is the model that uses 
memory-reuse profiles to estimate Pain 
and find the best schedule (the method 
for which was set forth in Figure 4). In 
the red bar indicating Approx-Pain, the 
Pain for a given application running 
with another is estimated with the aid 
of data obtained online (we explain 
which data this is at the end of this sec-
tion); once Pain has been estimated, 
we can once again use the method 
shown in Figure 4. In SDC, a previously 
proposed model based on memory-
reuse profiles3 can be used to estimate 
the performance degradation of an ap-
plication when it shares a cache with a 
co-runner. This estimated degradation 
can then be used in place of Pain(A|B); 
apart from that, the method shown 
in Figure 4 applies. Although SDC is 
rather complex for use in a scheduler, 
we compared it with our new models 
to evaluate how much performance 
was being sacrificed by using a sim-
pler model. Finally, in Figure 6 the bar 
labeled Random shows the results for 
selecting a random-thread placement. 

Figure 6 shows how much worse the 
schedule chosen with each method 
ended up performing relative to the 
actual best schedule. This value was 
computed using the method shown in 
Figure 4. Ideally, this difference from 
the actual best ought to be small, so 
in considering Figure 6, remember 
that low bars are good. The results for 
four different systems—with four, six, 
eight, and 10 cores—are indicated. 
In all cases there were two cores per 
memory domain. (Actual results from 
a system with a larger number of cores 
per memory domain are shown later.) 
Each bar represents the average for all 
the benchmark pairings that could be 
constructed out of our 10 representa-

figure 7. A breakdown of factors causing performance degradation due to contention  
for shared hardware on multicore systems based on tests using select applications in  
the sPec cPu2006 suite. 

100

90

80

70

60

50

40

30

20

10

0

 Prefetch   cache/controller   bus

Gcc Lbm mcf milc soplex sphinx

figure 6. the percentage by which performance of schedules estimated to be  
best according to various modeling techniques varies from the actual best schedules.  
Low bars are good.  

8

7

6

5

4

3

2

1

0

 Pain
 approx-Pain

 SDc
 random

4-core 6-core 8-core 10-core

%
 W

or
se

 t
h

an
 A

ct
u

al
 B

es
t

figure 8. A breakdown of factors causing performance degradation due to contention  
for shared hardware on multicore systems based on tests using select applications in  
the sPec cPu2006 suite. these experiments were performed on an intel xeon (cloverton)  
processor. We also obtained data showing that cache contention is not dominant on AmD 
opteron systems.

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

 Prefetch   L2   FSb   Memory controller

soplex

c
on

tr
ib

u
ti

on
 t

o 
to

ta
l D

eg
ra

d
at

io
n

Gcc Lbm mcf sphinx milc



practice

FeBrUAry 2010  |   vOl.  53  |   nO.  2  |   communicAtions of the Acm     55

tive benchmarks on a system with a 
given number of cores, such that there 
is exactly one benchmark per core. On 
four- and six-core systems, there were 
210 such combinations, whereas an 
eight-core system had 45 combina-
tions, and a 10-core system had only 
one combination. For each combina-
tion, we predicted the best schedule. 
The average performance degradation 
from the actual best for each of these 
estimated best schedules is reported in 
each bar in the figure. 

The first thing we learned from the 
metric in Figure 5 was that the Pain 
model is effective for helping the sched-
uler find the best thread assignment. It 
produces results that are within 1% of 
the actual best schedule. (The effect on 
the actual execution time is explored 
later). We also found that choosing 
a random schedule produces signifi-
cantly worse performance, especially 
as the number of cores grows. This is 
significant in that a growing number 
of cores is the expected trend for future 
multicore systems. 

Figure 6 also indicates that the Pain 
approximated by way of an online 
metric works very well, coming within 
just 3% of the actual best schedule. At 
the same time, the SDC, a well-proven 
model from an earlier study, turns out 
to be less accurate. These results—
both the effectiveness of the approxi-
mated Pain metric and the disappoint-
ing performance of the older SDC 
model—were quite unexpected. Who 
could have imagined that the best way 
to approximate the Pain metric would 
be to use the LLC miss rate? In other 
words, the LLC miss rate of a thread is 
the best predictor of both how much 
the thread will suffer from contention 
(its sensitivity) and how much it will 
hurt others (its intensity). As explained 
at the beginning of this article, while 
there was limited evidence indicating 
that the miss rate predicts contention, 
it ran counter to the memory-reuse-
based approach, which was supported 
by a much larger body of evidence. 

Our investigation of this paradox 
led us to examine the causes of con-
tention on multicore systems. We per-
formed several experiments that aimed 
to isolate and quantify the degree of 
contention for various types of shared 
resources: cache, memory controller, 
bus, prefetching hardware. The precise 

That is, they should not be co-sched-
uled in the same memory domain. Al-
though some researchers have already 
suggested this approach, it is not well 
understood why using the miss rate 
as a proxy for contention ought to be 
effective, particularly in that it contra-
dicts the theory behind the popular 
memory-reuse model. Our findings 
should help put an end to this contro-
versy.

Based on this new knowledge, we 
have built a prototype of a contention-
aware scheduler that measures the 
miss rates of online threads and de-
cides how to place threads on cores 
based on that information. Here, we 
present some experimental data show-
ing the potential impact of this conten-
tion-aware scheduler. 

implications
Based on our understanding of conten-
tion on multicore processors, we have 
built a prototype of a contention-aware 
scheduler for multicore systems called 
Distributed Intensity Online (DIO). 
The DIO scheduler distributes inten-
sive applications across memory do-
mains (and by intensive we mean those 
with high LLC miss rates) after measur-
ing online the applications’ miss rates. 
Another prototype scheduler, called 
Power Distributed Intensity (Power 
DI), is intended for scheduling applica-
tions in the workload across multiple 
machines in a data center. One of its 
goals is to save power by determining 
how to employ as few systems as pos-
sible without hurting performance. 
The following are performance results 
of these two schedulers. 

Distributed Intensity Online. Dif-
ferent workloads offer different op-
portunities to achieve performance 
improvements through the use of a con-
tention-aware scheduling policy. For 
example, a workload consisting of non-
memory-intensive applications (those 
with low cache miss rates) will not expe-
rience any performance improvement 
since there is no contention to alleviate 
in the first place. Therefore, for our ex-
periments we constructed eight-appli-
cation workloads containing from two 
to six memory-intensive applications. 
We picked eight workloads in total, all 
consisting of SPEC CPU2006 applica-
tions, and then executed them under 
the DIO and the default Linux sched-

setup of these experiments is described 
in another study.10 We arrived at the fol-
lowing findings. 

First, it turns out that contention for 
the shared cache—the phenomenon by 
which competing threads end up evict-
ing each others’ cache lines from the 
cache—is not the main cause of per-
formance degradation experienced by 
competing applications on multicore 
systems. Contention for other shared 
resources, such as the front-side bus, 
prefetching resources, and the memo-
ry controller are the dominant causes 
for performance degradation (see Fig-
ure 7). That is why the older memory-
reuse model, designed to model cache 
contention only, was not effective in 
our experimental environment. The 
authors of that model evaluated it on 
a simulator that did not model conten-
tion for resources other than shared 
cache, and it turns out that, when ap-
plied to a real system where other types 
of contention were present, the model 
did not prove effective. 

On the other hand, cache-miss rate 
turned out to be an excellent predic-
tor for contention for the memory 
controller, prefetching hardware, and 
front-side bus. Each application in our 
model was co-scheduled with the Milc 
application to generate contention. 
Given limitations of existing hardware 
counters, it was difficult to separate 
the effects of contention for prefetch-
ing hardware itself and the effects of 
additional contention for memory 
controller and front-side bus caused by 
prefetching. Therefore, the impact of 
prefetching shows the combined effect 
of these two factors.

An application issuing many cache 
misses will occupy the memory con-
troller and the front-side bus, so it will 
not only hurt other applications that 
use that hardware, but also end up suf-
fering itself if this hardware is usurped 
by others. An application aggressively 
using prefetching hardware will also 
typically have a high LLC miss rate, be-
cause prefetch requests for data that is 
not in the cache are counted as cache 
misses. Therefore, a high miss rate is 
also an indicator of the heavy use of 
prefetching hardware. 

In summary, our investigation of 
contention-aware scheduling algo-
rithms has taught us that high-miss-
rate applications must be kept apart. 
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uler on an AMD Opteron system fea-
turing eight cores—four per memory 
domain. The results are shown in Fig-
ure 8. The performance improvement 
relative to default has been computed 
as the average improvement for all ap-
plications in the workload (since not 
all applications are memory intensive, 
some do not improve). We can see that 
DIO renders workload-average perfor-
mance improvements of up to 11%.

Another potential use of DIO is as a 

way to ensure QoS (quality of service) 
for critical applications since DIO es-
sentially provides a means to make sure 
the worst scheduling assignment is 
never selected, while the default sched-
uler may occasionally suffer as a con-
sequence of a bad thread placement. 
Figure 9 shows for each of the applica-
tions as part of the eight test workloads 
its worst-case performance under DIO 
relative to its worst-case performance 
under the default Linux scheduler. The 

numbers are shown in terms of the per-
centage of improvement or the worst-
case behavior achieved under DIO 
relative to that encountered with the 
default Linux scheduler, so higher bars 
in this case are better. We can see that 
some applications are as much as 60% 
to 80% better off with their worst-case 
DIO execution times, and in no case 
did DIO do significantly worse than the 
default scheduler. 

Power Distributed Intensity. One of 
the most effective ways to conserve CPU 
power consumption is to turn off un-
used cores or entire memory domains 
in an active system. Similarly, if the 
workload is running on multiple ma-
chines—for example, in a data center—
power savings can be accomplished by 
clustering the workload on as few serv-
ers as possible while powering down 
the rest. This seemingly simple solu-
tion is a double-edged sword, however, 
because clustering the applications on 
just a few systems may cause them to 
compete for shared system resources 
and thus suffer performance loss. As 
a result, more time will be needed to 
complete the workload, meaning that 
more energy will be consumed. In an 
attempt to save power it is also neces-
sary to consider the impact that cluster-
ing can have on performance. A metric 
that takes into account both the energy 
consumption and the performance 
of the workload is the energy-delay 
product (EDP).4 Based on our findings 
about contention-aware scheduling, 
we designed Power DI, a scheduling al-
gorithm meant to save power without 
hurting performance. 

Power DI works as follows: Assum-
ing a centralized scheduler has knowl-
edge of the entire computing infra-
structure and distributes incoming 
applications across all systems, Power 
DI clusters all incoming applications 
on as few machines as possible, except 
for those applications deemed to be 
memory intensive. Similarly, within a 
single machine, Power DI clusters ap-
plications on as few memory domains 
as possible, with the exception of mem-
ory-intensive applications. These ap-
plications are not co-scheduled on the 
same memory domain with another ap-
plication unless the other application 
has a very low cache miss rate (and thus 
a low memory intensity). To determine 
if an application is memory-intensive, 

figure 9. Performance of eight workloads under Dio relative to the default Linux scheduler. 
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figure 11. Percentage reduction in eDP.
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figure 10. Worst-case performance for each of the applications included as part  
of the eight test workloads.
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Power DI uses an experimentally de-
rived threshold of 1,000 misses per mil-
lion instructions; an application whose 
LLC miss rate exceeds that amount is 
considered memory intensive. 

Although we did not have a data-
center setup available to us to evaluate 
this algorithm, we simulated a multi-
server environment in the following 
way. The in-house AKULA scheduling 
simulator created a schedule for a giv-
en workload on a specified data-center 
setup, which in this case consisted of 
16 eight-core systems, assumed by 
the simulator to be Intel Xeon dual 
quad-core servers. Once the simulated 
scheduler decided how to assign ap-
plications across machines and mem-
ory domains within each machine, we 
computed the performance of the en-
tire workload from the performance 
of the applications assigned by the 
scheduler to each eight-core machine. 
The performance on a single system 
could be easily measured via experi-
mentation. This simulation method 
was appropriate for our environment, 
since there was no network commu-
nication among the running applica-
tions, meaning that inferring the over-
all performance from the performance 
of individual system was reasonable. 

To estimate the power consump-
tion, we used a rather simplistic model 
(measurements with the actual power 
meter are still under way) but captured 
the right relationships between power 
consumed in various load conditions. 
We assumed that a memory domain 
where all the cores are running appli-
cations consumes one unit of power. A 
memory domain where one out of two 
cores are busy consumes 0.75 units of 
power. A memory domain where all 
cores are idle is assumed to be in a very 
low power state and thus consumes 0 
units of power. We did not model the 
latency of power-state transitions.

We constructed a workload of 64 
SPEC CPU2006 applications randomly 
drawn from the benchmark suite. We 
varied the fraction of memory-inten-
sive applications in the workload from 
zero to 100%. The effectiveness of 
scheduling strategies differed accord-
ing to the number of memory-inten-
sive applications. For example, if there 
were no memory-intensive applica-
tions, it was perfectly fine to cluster all 
the applications to the greatest extent 
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possible. Conversely, if all the applica-
tions were memory intensive, then the 
best policy was to spread them across 
memory domains so that no two ap-
plications would end up running on 
the same memory domain. An intelli-
gent scheduling policy must be able to 
decide to what extent clustering must 
be performed given the workload at 
hand. 

Figure 10 shows the EDP for three 
different scheduling methods: Power 
DI, a naïve Spread method (which al-
ways spreads applications across ma-
chines to the largest extent possible), 
and the Cluster method (which in an 
attempt to save power always clusters 
applications on as few machines and 
as few memory domains as possible). 
The numbers are shown as a percent-
age reduction in the EDP (higher is 
better) of Power DI and Spread over 
Cluster. 

We can see that when the fraction 
of memory-intensive applications in 
the workload is low, the naïve Spread 
method does much worse than the 
Cluster method, but it beats Cluster 
as that fraction increases. Power DI, 
on the other hand, is able to adjust 
to the properties of the workload and 
minimize EDP in all cases, beating 
both Spread and Cluster—or at least 
matching them—for every single 
workload.

conclusion
Contention for shared resources sig-
nificantly impedes the efficient op-
eration of multicore systems. Our re-
search has provided new methods for 
mitigating contention via scheduling 
algorithms. Although it was previous-
ly thought that the most significant 
reason for contention-induced per-
formance degradation had to do with 
shared cache contention, we found 
that other sources of contention—
such as shared prefetching hardware 
and memory interconnects—are just 
as important. Our heuristic—the LLC 
miss rate—proves to be an excellent 
predictor for all types of contention. 
Scheduling algorithms that use this 
heuristic to avoid contention have the 
potential to reduce the overall comple-
tion time for workloads, avoid poor 
performance for high-priority applica-
tions, and save power without sacrific-
ing performance.  




